Строение сосудистой стенки.

Тема: Сердечно-сосудистая система. Кровеносные сосуды. Общий план строения. Разновидности. Зависимость строения стенки сосудов от гемодинамических условий. Артерии. Вены. Классификация. Особенности строения. Функции. Возрастные особенности.

Сердечно – сосудистая система включает сердце, кровеносные и лимфатические сосуды. При этом сердце, кровеносные и лимфатические сосуды называются системой кровообращения или кровеносной системой. Лимфатические сосуды вместе с лимфатическими узлами относятся к лимфатической системе.

Кровеносная система – это замкнутая система трубок разного калибра, выполняющая транспортную, трофическую, обменную функцию и функцию регуляции микроциркуляции крови в органах и тканях.

Развитие сосудов

Источником развития кровеносных сосудов является мезенхима. На третьей неделе эмбрионального развития вне организма зародыша в стенке желточного мешка и в хорионе (у млекопитающих) образуются скопления клеток мезенхимы – кровяные островки. Периферические клетки островков формируют стенки сосудов, а центрально расположенные мезенхимоциты дифференцируются в первичные клетки крови. Позднее таким же образом сосуды появляются в теле зародыша и устанавливается сообщение между первичными кровеносными сосудами внезародышевых органов и тела зародыша. Дальнейшее развитие сосудистой стенки и приобретение различных особенностей строения происходит под влиянием гемодинамических условий к которым относятся: давление крови, величина его скачков, скорость кровотока.

Классификация сосудов

Кровеносные сосуды подразделяются на артерии, вены и сосуды микроциркуляторного русла, к которым относятся артериолы, капилляры, венулы и артериоло-венулярные анастомозы.

Общий план строения стенки кровеносных сосудов

За исключением капилляров и некоторых вен, кровеносные сосуды имеют общий план строения, все они состоят из трех оболочек:

    Внутренняя оболочка (интима) состоит из двух обязательных слоев

Эндотелия – непреывного слоя клеток однослойного плоского эпителия, лежащих на базальной мембране и выстилающих внутреннюю поверхность сосуда;

Подэндотелиального слоя (субэндотелий), образованного рыхлой волокнистой соединительной тканью.

    Средняя оболочка в составе которой обычно присутствуют гладкие миоциты и образуемое этими клетками межклеточное вещество, представленное протеогликанами, гликопротеинами, коллагеновые и эластические волокна.

    Наружная оболочка (адвентиция) представлена рыхлой волокнистой соединительной тканью, с находящимися в ней сосудами сосудов, лимфатическими капиллярами и нервами.

Артерии – это сосуды, обеспечивающие продвижение крови от сердца к микроциркуляторному руслу в органах и тканях. По артериям течет артериальная кровь, за исключением легочной и пупочной артерий.

Классификация артерий

По количественному соотношению эластических и мышечных элементов в стенке сосуда, артерии подразделяются на:

    Артерии эластического типа.

    Артерии смешанного типа (мышечно- эластического) типа.

    Артерии мышечного типа.

Строение артерий эластического типа

К артериям данного типа относятся аорта и легочная артерия. Стенка данных сосудов подвержена большим перепадам давления, поэтому им требуется высокая эластичность.

1. Внутренняя оболочка состоит из трех слоев:

Слой эндотелия

Подэндотелиальный слой, имеющий значительную толщину, т.к. он амортизирует скачки давления. Представлен рыхлой волокнистой соединительной тканью. В пожилом возрасте здесь появляются холестерин и жирные кислоты.

Сплетение эластических волокон, представляет собой густое переплетение продольно и циркулярно расположенных эластических волокон

2. Средняя оболочка представлена 50-70 окончатыми эластическими мембранами, которые имеют вид цилиндров, вставленных друг в друга, между которыми имеются отдельные гладкие миоциты, эластические и коллагеновые волокна.

3. Наружная оболочка представлена рыхлой волокнистой соединительной тканью с кровеносными сосудами, питающими стенку артерии (сосуды сосудов) и нервами.

Строение артерий смешанного (мышечно – эластического) типа

К артериям данного типа относятся подключичная, сонная и подвздошная артерии).

Трех слоев:

Эндотелий

Подэндотелиальный слой

Внутренняя эластическая мембрана

2. Средняя оболочка состоит из примерно равного количества эластических элементов (к которым относятся волокна и эластические мембраны) и гладких миоцитов.

3. Наружная оболочка состоит из рыхлой соединительной ткани, где наряду с сосудами и нервами, находятся продольно расположенные пучки гладких миоцитов.

Строение артерий мышечного типа

Это все остальные артерии среднего и малого калибра.

1. Внутренняя оболочка состоит из

Эндотелия

Подэндотелиального слоя

Внутренней эластической мембраны

2. Средняя оболочка имеет наибольшую толщину, представлена в основном спирально расположенными пучками гладких мышечных клеток, между которыми располагаются коллагеновые и эластические волокна.

Между средней и наружной оболочками артерии находится слабо выраженная наружная эластическая мембрана.

3.Наружная оболочка представлена рыхлой волокнистой соедини тельной тканью с сосудами и нервами, гладких миоцитов нет.

Вены – это сосуды, несущие кровь к сердцу. По ним течет венозная кровь, за исключением легочной и пупочной вен.

В связи с особенностями гемодинамики, к которым относится более низкое давление крови, чем в артериях, отсутствие резких перепадов давления, медленное движение крови и меньшее содержание в крови кислорода, вены имеют в своем строении ряд особенностей по строению с артериями:

    Вены имеют больший диаметр.

    Стенка их более тонкая, легко спадается.

    Слабо развит эластический компонент и подэндотелиальный слой.

    Более слабое развитие гладкомышечных элементов в средней оболочке.

    Хорошо выражена наружная оболочка.

    Наличие клапанов, которые являются производными внутренней оболочки, снаружи створки клапанов покрыты эндотелием, их толщу образует рыхлая волокнистая соединительная ткань, а в основании находятся гладкие миоциты.

    Сосуды сосудов содержатся во всех оболочках сосуда.

Классификация вен

    Вены безмышечного типа.

2. Вены мышечного типа, которые в свою очередь подразделяются на:

Вены со слабым развитием миоцитов

Вены со средним развитием миоцитов

Вены с сильным развитием миоцитов

Степень развития миоцитов зависти от локализации вены: в верхней части тела мышечный компонент развит слабо, в нижней – сильнее.

Строение вены безмышечного типа

Располагаются вены подобного типа в головном мозге, его оболочках, сетчатке, плаценте, селезенке, костной ткани.

Стенка сосуда образована эндотелием, окруженным рыхлой волокнистой соединительной тканью, плотно срастается со стромой органов и поэтому не спадается.

Строение вен со слабым развитием миоцитов

Это вены лица, шеи, верхней части тела и верхняя полая вена.

1. Внутренняя оболочка состоит из

Эндотелия

Слабо развитого подэндотелиального слоя

2. В средней оболочке слабо развитые циркулярно расположенные пучки гладкомышечных клеток, между которыми располагаются значительной толщины прослойки рыхлой соединительной ткани.

3. Наружная оболочка представлена рыхлой волокнистой соединительной тканью.

Строение вен со средним развитием миоцитов

К ним относятся плечевая вена и мелкие вены организма.

1. Внутренняя оболочка состоит из:

Эндотелия

Подэндотелиального слоя

2. Средняя оболочка включает несколько слоев циркулярно расположенных миоцитов.

3. Наружная оболочка толстая, содержит в рыхлой волокнистой соединительной ткани продольно расположенные пучки гладких миоцитов.

Строение вен с сильным развитием миоцитов

Располагаются такие вены в нижней части тела и нижних конечностях. Помимо хорошего развития миоцитов во всех слоях стенки характеризуются наличием клапанов, обеспечивающих движение крови в сторону сердца.

Регенерация кровеносных сосудов

При повреждении стенки сосуда быстро делящиеся эндотелиоциты закрывают дефект. Образование гладких миоцитов происходит медленно за счет их деления и дифференцировки миобластов и перицитов. При полном разрыве средних и крупных сосудов их восстановление без оперативного вмешательства невозможно, но дистальнее разрыва кровоснабжение восстанавливается за счет коллатералей и образования мелких сосудов из выпячиваний эндотелиоцитов стенок артериол и венул.

Возрастные особенности кровеносных сосудов

Соотношение между диаметром артерий и вен к моменту рождения ребенка 1:1, у стариков эти отношения изменяются до 1:5. У новорожденного все кровеносные сосуды имеют тонкие стенки, их мышечная ткань и эластические волокна развиты слабо. В первые годы жизни в больших сосудах объем мышечной оболочки увеличивается и нарастает количество эластических и коллагеновых волокон сосудистой стенки. Сравнительно быстро развивается интима и ее подэндотелиальный слой. Просвет сосудов нарастает медленно. Полное формирование стенки всех кровеносных сосудов завершается к 12 годам. При наступлении 40- летнего возраста начинается обратное развитие артерий, при этом в стенке артерий разрушаются эластические волокна, гладкие миоциты, разрастаются коллагеновые волокна, субэндотелий резко утолщается, стенка сосудов уплотняется, в ней откладываются соли, развивается склероз. Возрастные изменения вен аналогичны, но появляются раньше.

Эндотелиоциты, выстилающие стенки артерии изнутри, представляют собой удлиненные плоские клетки полигональной или округлой формы. Тонкая цитоплазма этих клеток распластана, а часть клетки, содержащая ядро, утолщена и выступает в просвет сосуда. Базальная поверхность эндотелиальных клеток образует множество разветвленных отростков, прони- кающих в субэндотелиальный слой. Цитоплазма богата микропиноцитозными пузырьками и бедна органеллами. В эндотелиоцитах имеются

Рис. 127. Схема строения стенки артерии (А) и вены (Б) мышечного типа

среднего калибра:

I - внутренняя оболочка: 1 - эндотелий; 2 - базальная мембрана; 3 - подэндотелиальный слой; 4 - внутренняя эластическая мембрана; II - средняя оболочка: 5 - миоциты; 6 - эластические волокна; 7 - коллагеновые волокна; III - наружная оболочка: 8 - наружная эластическая мембрана; 9 - волокнистая (рыхлая) соединительная ткань; 10 - кровеносные сосуды (по В.Г. Елисееву и др.)

специальные мембранные органеллы размерами 0,1-0,5 мкм, содержащие от 3 до 20 полых трубочек диаметром около 20 нм.

Эндотелиоциты соединены между собой комплексами межклеточных контактов, вблизи просвета преобладают нексусы. Тонкая базальная мембрана отделяет эндотелий от субэндотелиального слоя, состоящего из сети тонких эластических и коллагеновых микрофибрилл, фибробластоподобных клеток, которые вырабатывают межклеточное вещество. Кроме того, в интиме встречаются и макрофаги. Кнаружи расположена внутренняя эластическая мембрана (пластинка), состоящая из эластических волокон.

В зависимости от особенностей строения ее стенок выделяют артерии эластического типа (аорта, легочный и плечеголовной стволы), мышечного типа (большинство мелких и среднего диаметра артерий), а также смешанного, или мышечно-эластического типа (плечеголовной ствол, подключичные, общие сонные и общие подвздошные артерии).

Артерии эластического типа крупные, имеют широкий просвет. В их стенках, в средней оболочке, эластические волокна преобладают над гладкомышечными клетками. Средняя оболочка образована концентрическими слоями эластических волокон, между которыми залегают относительно короткие веретенообразные гладкомышечные клетки - миоциты. Очень тонкая наружная оболочка состоит из рыхлой волокнистой неоформленной соединительной ткани, содержащей множество расположенных продольно или спирально тонких пучков эластических и коллагеновых фибрилл. В наружной оболочке проходят кровеносные и лимфатические сосуды и нервы.

С точки зрения функциональной организации сосудистой системы артерии эластического типа относятся к амортизирующим сосудам. Поступившая из желудочков сердца под давлением кровь сначала немного растягивает эти сосуды (аорту, легочный ствол). После этого благодаря большому количеству эластических элементов стенки аорты, легочного ствола воз- вращаются в исходное положение. Эластичность стенок сосудов этого типа способствует плавному, а не толчкообразному течению крови под высоким давлением (до 130 мм рт.ст.) с большой скоростью (20 см/с).

Артерии смешанного (мышечно-эластического) типа имеют в стенках примерно равное количество как эластических, так и мышечных элементов. На границе между внутренней и средней оболочками у них четко видна внутренняя эластическая мембрана. В средней оболочке гладкие мышечные клетки и эластические волокна распределены равномерно, их ориентация спиральная, эластические мембраны окончатые. В средней оболочке

обнаруживаются коллагеновые волокна и фибробласты. Граница между средней и наружной оболочками выражена нечетко. Наружная оболочка состоит из переплетающихся пучков коллагеновых и эластических волокон, между которыми встречаются клетки соединительной ткани.

Артерии смешанного типа, занимающие среднее положение между артериями эластического и мышечного типов, могут изменять ширину просвета и в то же время способны противостоять высокому давлению крови благодаря эластическим структурам в стенках.

Артерии мышечного типа преобладают в организме человека, их диаметр колеблется от 0,3 до 5 мм. Строение стенок мышечных артерий существенно отличается от артерий эластического и смешанного типов. У мелких артерий (диаметром до 1 мм) интима представлена слоем эндотелиальных клеток, лежащих на тонкой базальной мембране, за кото- рой следует внутренняя эластическая мембрана. У более крупных артерий мышечного типа (коронарных, селезеночной, почечных и др.) между внутренней эластической мембраной и эндотелием расположены слой коллагеновых и ретикулярных фибрилл и фибробласты. Они синтезируют и выделяют эластин и другие компоненты межклеточного вещества. У всех артерий мышечного типа, кроме пупочной, имеется фенестрированная внутренняя эластическая мембрана, которая в световом микроскопе выглядит как волнистая ярко-розовая полоска.

Наиболее толстая средняя оболочка образована 10-40 слоями спирально ориентированных гладких миоцитов, соединенных друг с другом с помощью интердигитаций. У мелких артерий не более 3-5 слоев гладких миоцитов. Миоциты погружены в вырабатываемое ими основное вещество, в котором преобладает эластин. У артерий мышечного типа имеется фенестрированная наружная эластическая мембрана. У мелких артерий наружная эластическая мембрана отсутствует. У мелких артерий мышечного типа имеется тонкий слой переплетающихся эластических волокон, которые обеспечивают постоянное зияние артерий. Тонкая наружная оболочка состоит из рыхлой волокнистой неоформленной соединительной ткани. В ней проходят кровеносные и лимфатические сосуды, а также нервы.

Артерии мышечного типа регулируют региональное кровоснабжение (приток крови в сосуды микроциркуляторного русла), поддерживают артериальное давление.

По мере уменьшения диаметра артерии все их оболочки истончаются, уменьшается толщина подэндотелиального слоя и внутренней эластической мембраны. Постепенно убывает количество гладких миоцитов и эластических волокон в средней оболочке, исчезает наружная

эластическая мембрана. В наружной оболочке уменьшается количество эластических волокон.

Наиболее тонкие артерии мышечного типа - артериолы имеют диаметр менее 300 мкм. Между артериями и артериолами нет четкой границы. Стенки артериол состоят из эндотелия, лежащего на тонкой базальной мембране, за которой у крупных артериол следует тонкая внутренняя эластическая мембрана. У артериол, просвет которых более 50 мкм, внутренняя эластическая мембрана отделяет эндотелий от гладких миоцитов. У более мелких артериол такая мембрана отсутствует. Удлиненные эндотелиоциты ориентированы в продольном направлении и соединяются между собой комплексами межклеточных контактов (десмосомы и нексусы). О высокой функциональной активности эндотелиальных клеток свидетельствует огромное количество микропиноцитозных пузырьков.

Отростки, отходящие от основания эндотелиоцитов, прободают базальную и внутреннюю эластическую мембраны артериолы и образуют межклеточные соединения (нексусы) с гладкими миоцитами (миоэндотелиальные контакты). Один-два слоя гладких миоцитов в их средней оболочке расположены спирально по длинной оси артериолы.

Заостренные концы гладких миоцитов переходят в длинные ветвящиеся отростки. Каждый миоцит со всех сторон покрыт базальной пластинкой, кроме зон миоэндотелиальных контактов и соприкасающихся между собой цитолемм соседних миоцитов. Наружная оболочка артериол образована тонким слоем рыхлой соединительной ткани.

Дистальная часть сердечно-сосудистой системы - микроциркуляторное русло (рис. 128) включает артериолы, венулы, артериоло-венулярные анастомозы и кровеносные капилляры, где обеспечивается взаимодействие крови и тканей. Микроциркуляторное русло начинается самым мелким артериальным сосудом - прекапиллярной артериолой и заканчивается посткапиллярной венулой. Артериола (arteriola) диаметром 30-50 мкм имеют в стенках один слой миоцитов. От артериол отходят прекапилляры, устья которых окружены гладкомышечными прекапиллярными сфинктерами, регулирующими кровоток в истинных капиллярах. Прекапиллярные сфинктеры обычно образованы плотно прилегающими друг к другу несколькими миоцитами, окружающими устье капилляра в зоне его отхождения от артериолы. Прекапиллярные артериолы, сохра- няющие в стенках единичные гладкомышечные клетки, называют артериальными кровеносными капиллярами, или прекапиллярами. Следующие за ними «истинные» кровеносные капилляры мышечных клеток в стенках не имеют. Диаметр просвета кровеносных капилляров колеблется

от 3 до 11 мкм. Более узкие кровеносные капилляры диаметром 3-7 мкм имеются в мышцах, более широкие (до 11 мкм) в коже, слизистой оболочке внутренних органов.

В некоторых органах (печень, железы внутренней секреции, органы кроветворения и иммунной системы) широкие капилляры диаметром до 25-30 мкм получили название синусоидов.

За истинными кровеносными капиллярами следуют так называемые посткапиллярные венулы (посткапилляры), которые имеют диаметр от 8 до 30 мкм и длину 50-500 мкм. Венулы, в свою очередь, впадают в более крупные (диаметром 30-50 мкм) собирательные венулы (venulae), яв- ляющиеся начальным звеном венозной системы.

Стенки кровеносных капилляров (гемокапилляров) образованы одним слоем уплощенных эндотелиальных клеток - эндотелиоцитов, сплошной или прерывистой базальной мембраной и редкими перикапилляр- ными клетками - перицитами (клетки Руже) (рис. 129). Эндотелиальный слой капилляров имеет толщину от 0,2 до 2 мкм. Края смежных эндотелиоцитов образуют интердигитации, клетки соединены между собой нексусами и десмосомами. Между эндотелиоцитами имеются щели шириной от 3 до 15 нм, благодаря которым различные вещества проникают через стенки кровеносных капилляров. Эндотелиоциты лежат

Рис. 128. Схема строения микроциркуляторного русла: 1 - капиллярная сеть (капилляры); 2 - посткапилляр (посткапиллярная венула); 3 - артериоловенулярный анастомоз; 4 - венула; 5 - артериола; 6 - прекапилляр (прекапиллярная артериола). Красными стрелками показано поступление в ткани питательных веществ, синими - выведение из тканей продуктов

Рис. 129. Строение кровеносных капилляров трех типов:

1 - гемокапилляр с непрерывной эндотелиальной клеткой и базальной мембраной; II - гемокапилляр с фенестрированным эндотелием и непрерывной базальной мембраной; III - синусоидный гемокапилляр с щелевидными отверстиями в эндотелии и прерывистой базальной мембраной; 1 - эндотелиоцит;

2 - базальная мембрана; 3 - перицит; 4 - контакт перицита с эндотелиоцитом; 5 - окончание нервного волокна; 6 - адвентициальная клетка; 7 - фенестры;

8 - щели (поры) (по В.Г. Елисееву и др.)

на тонкой базальной мембране (базальном слое). Базальный слой состоит из переплетающихся фибрилл и аморфного вещества, в котором расположены перициты (клетки Руже).

Перициты представляют собой удлиненные многоотростчатые клет- ки, расположенные вдоль длинной оси капилляра. Перицит имеет крупное ядро и хорошо развитые органеллы: зернистую эндоплазматическую сеть, комплекс Гольджи, митохондрии, лизосомы, цитоплазматические филаменты, а также плотные тельца, прикрепленные к цитоплазматической поверхности цитолеммы. Отростки перицитов прободают базальный слой и подходят к эндотелиоцитам. В результате каждый эндотелиоцит контактирует с отростками перицитов. В свою очередь, к каждому перициту подходит окончание аксона симпатического нейрона, которое инвагинируется в его цитолемму, образуя синапсоподобную структуру для передачи нервных импульсов. Перицит передает эндотелиоциту импульс, благодаря которому эндотелиальные клетки или набухают, или теряют жидкость. Это приводит к периодическим изменениям ширины просвета капилляра.

Кровеносные капилляры в органах и тканях, соединяясь друг с другом, формируют сети. В почках капилляры образуют клубочки, в синовиальных ворсинках суставов, сосочках кожи - капиллярные петли.

В пределах микроциркуляторного русла встречаются сосуды прямого перехода крови из артериолы в венулу - артериоло-венулярные анастомозы (anastomosis arteriolovenularis). В стенках артериоло-венулярных анастомозов имеется хорошо выраженный слой гладкомышечных клеток, регулирующий ток крови непосредственно из артериолы в венулу, минуя капилляры.

Кровеносные капилляры являются обменными сосудами, в которых осуществляются диффузия и фильтрация. Общая площадь поперечного сечения капилляров большого круга кровообращения достигает 11 000 см2. Общее число капилляров в организме человека около 40 млрд. Плотность расположения капилляров зависит от функции и строения ткани или органа. Так, например, в скелетных мышцах плотность капилляров составляет от 300 до 1000 в 1 мм3 мышечной ткани. В головном мозге, печени, почках, миокарде плотность капилляров достигает 2500-3000, а в жировой, костной, волокнистой соединительной тканях она минимальна - 150 в 1 мм3. Из просвета капилляров различные питательные вещества, кислород транспортируются в перикапиллярное пространство, толщина которого различная. Так, широкие перикапиллярные пространства наблюдаются в соединительной ткани. Это пространство значительно

уже в легких и печени и наиболее узкое в нервной и мышечной тканях. В перикапиллярном пространстве расположена рыхлая сеть тонких коллагеновых и ретикулярных фибрилл, среди которых находятся единичные фибробласты.

Транспорт веществ через стенки гемокапилляров осуществляется не- сколькими путями. Наиболее интенсивно происходит диффузия. С помощью микропиноцитозных пузырьков через капиллярные стенки в обоих направлениях переносятся метаболиты, крупные молекулы белков. Через фенестры и межклеточные щели диаметром 2-5 нм, расположенные между нексусами, переносятся низкомолекулярные соединения и вода. Широкие щели синусоидных капилляров способны пропускать не только жидкость, но и различные высокомолекулярные соединения и мелкие частицы. Базальный слой является преградой для транспортировки высокомолекулярных соединений и форменных элементов крови.

У кровеносных капилляров эндокринных желез, мочевой системы, сосудистых сплетений мозга, ресничного тела глаза, венозных капилляров кожи и кишечника эндотелий фенестрирован, имеет отверстия - поры. Округлые поры (фенестры) диаметром около 70 нм, располагающиеся регулярно (примерно 30 на 1 мкм2), закрыты тонкой однослойной диафрагмой. В клубочковых капиллярах почки диафрагма отсутствует.

Строение посткапиллярных венул на значительном протяжении сходно со строением стенок капилляров. У них лишь большее количество перицитов и шире просвет. В стенках мелких венул появляются гладкомышечные клетки и соединительнотканные волокна наружной оболочки. В стенках более крупных венул уже имеются 1-2 слоя удлиненных и уплощенных гладкомышечных клеток - миоцитов, и достаточно хорошо выраженная адвентиция. Эластическая мембрана у вен отсутствует.

Посткапиллярные венулы, как и капилляры, участвуют в обмене жидкости, ионов и метаболитов. При патологических процессах (вос- паление, аллергия) благодаря раскрытию межклеточных контактов они становятся проницаемыми для плазмы и форменных элементов крови. Этой способностью не обладают собирательные венулы.

Обычно к капиллярной сети подходит артериальный сосуд - артериола, а выходит из нее венула. В некоторых органах (почка, печень) имеется отступление от этого правила. Так, к сосудистому клубочку почечного тельца подходит артериола (приносящий сосуд), которая разветвляется на капилляры. Из сосудистого клубочка также выходит артериола (выносящий сосуд), а не венула. Капиллярную сеть, вставленную между двумя однотипными сосудами (артериями), называют «чудесной сетью».

Общее число вен превышает число артерий, а общая величина (объем) венозного русла больше артериального. Названия глубоких вен аналогичны названиям артерий, к которым вены прилежат (локтевая артерия - локтевая вена, большеберцовая артерия - большеберцовая вена). Такие глубокие вены бывают парными.

Большинство вен, расположенных в полостях тела, одиночные. Непарными глубокими венами являются внутренняя яремная, подключичная, подвздошные (общая, наружная, внутренняя), бедренная и некото- рые другие. Поверхностные вены соединяются с глубокими венами с помощью так называемых прободающих вен, которые выполняют роль анастомозов. Соседние вены также соединены между собой многочисленными анастомозами, образующими в совокупности венозные сплетения (plexus venosus), которые хорошо выражены на поверхности или в стенках некоторых внутренних органов (мочевого пузыря, прямой кишки).

Наиболее крупные вены большого круга кровообращения - верхняя и нижняя полые вены. В систему нижней полой вены входит также воротная вена с ее притоками.

Окольный (обходной) ток крови осуществляется по коллатеральным венам (venae collaterales), по которым венозная кровь оттекает в обход основного пути. Анастомозы между притоками одной крупной (магистральной) вены называют внутрисистемными венозными анастомозами. Между притоками различных крупных вен (верхняя и нижняя полые вены, воротная вена) имеются межсистемные венозные анастомозы, являющиеся коллатеральными путями оттока венозной крови в обход основных вен. Венозные анастомозы встречаются чаще и развиты лучше, чем артериальные анастомозы.

Строение стенок вен принципиально сходно со строением стенок артерий. Стенка вены также состоит из трех оболочек (см. рис. 61). Различают два типа вен: безмышечные и мышечные. К венам безмышечного типа относятся вены твердой и мягкой мозговых оболочек, сетчатки глаза, костей, селезенки и плаценты. В стенках этих вен нет мышечной оболочки. Безмышечные вены сращены с волокнистыми структурами органов и поэтому не спадаются. В таких венах снаружи к эндотелию прилежит базальная мембрана, за которой располагается тонкий слой рыхлой волокнистой соединительной ткани, срастающейся с тканями, в которых эти вены располагаются.

Вены мышечного типа подразделяются на вены со слабым, средним и сильным развитием мышечных элементов. Вены со слабым развитием мышечных элементов (диаметр до 1-2 мм) расположены, в основном,

в верхней части туловища, на шее и лице. Мелкие вены по строению весьма напоминают наиболее широкие мышечные венулы. По мере увеличения диаметра в стенках вен появляется два циркулярных слоя миоцитов. К венам среднего калибра относятся поверхностные (подкожные) вены, а также вены внутренних органов. Их внутренняя оболочка содержит слой плос- ких округлых или полигональных эндотелиальных клеток, соединенных между собой нексусами. Эндотелий лежит на тонкой базальной мембране, отделяющей его от субэндотелиальной соединительной ткани. Внутренняя эластическая мембрана у этих вен отсутствует. Тонкая средняя оболочка образована 2-3 слоями уплощенных мелких циркулярно расположенных гладкомышечных клеток - миоцитов, разделенных пучками коллагеновых и эластических волокон. Наружная оболочка образована рыхлой соединительной тканью, в которой проходят нервные волокна, мелкие кровенос- ные сосуды («сосуды сосудов») и лимфатические сосуды.

У крупных вен со слабым развитием мышечных элементов базальная мембрана эндотелия выражена слабо. В средней оболочке циркулярно располагается небольшое количество миоцитов, которые имеют множество миоэндотелиальных контактов. Наружная оболочка таких вен толстая, состоит из рыхлой соединительной ткани, в которой расположено много безмиелиновых нервных волокон, образующих нервные сплетения, проходят сосуды сосудов и лимфатические сосуды.

В венах со средним развитием мышечных элементов (плечевая и др.) эндотелий, не отличающийся от описанного выше, отделен базальной мембраной от субэндотелиального слоя. Интима формирует клапаны. Внутренняя эластическая мембрана отсутствует. Средняя оболочка го- раздо тоньше, чем у соответствующей артерии, состоит из циркулярно расположенных пучков гладкомышечных клеток, разделенных волокнистой соединительной тканью. Наружная эластическая мембрана отсутствует. Наружная оболочка (адвентиция) развита хорошо, в ней проходят сосуды сосудов и нервы.

Вены с сильным развитием мышечных элементов - крупные вены нижней половины туловища и ног. Они имеют пучки гладких мышечных клеток не только в средней, но и в наружной оболочке. В средней оболочке вены с сильным развитием мышечных элементов имеется несколько слоев циркулярно расположенных гладких миоцитов. Эндотелий лежит на базальной мембране, под которой располагается субэндотелиальный слой, образованный рыхлой волокнистой соединительной тканью. Внутренняя эластическая мембрана не сформирована.

Внутренняя оболочка большинства средних и некоторых крупных вен формирует клапаны (рис. 130). Однако имеются вены, в которых клапаны

Рис. 130. Венозные клапаны. Вена разрезана вдоль и развернута: 1 - просвет вены; 2 - створки венозных клапанов

отсутствуют, например полые, плечеголовные, общие и внутренние подвздошные вены, вены сердца, легких, надпочечников, головного мозга и его оболочек, паренхиматозных органов, костного мозга.

Клапаны - это тонкие складки внутренней оболочки, состоящие из тонкого слоя волокнистой соединительной ткани, покрытого с обеих сторон эндотелием. Клапаны пропускают кровь лишь в направлении к сердцу, препятствуют обратному току крови в венах и предохраняют сердце от излишней затраты энергии на преодоление колебательных движений крови.

Венозные сосуды (синусы), в которые оттекает кровь от головного мозга, располага-

ются в толще (расширениях) твердой мозговой оболочки. Эти венозные синусы имеют неспадающиеся стенки, обеспечивающие беспрепятственный ток крови из полости черепа во внечерепные вены (внутренние яремные).

Вены, в первую очередь вены печени, подсосочковые венозные сплетения кожи и чревной области, являются емкостными сосудами и поэтому способны депонировать большое количество крови.

Важную роль в осуществлении функции сердечно-сосудистой системы играют шунтирующие сосуды - артериоло-венулярные анастомозы (anastomosis arteriovenularis). При их открытии уменьшается или даже прекращается кровоток через капилляры данной микроциркуляторной еди- ницы или области, кровь идет в обход капиллярного русла. Различают истинные артериоло-венулярные анастомозы, или шунты, которые сбрасывают артериальную кровь в вены, и атипичные анастомозы, или полушунты, по которым течет смешанная кровь (рис. 131). Типичные артериоло-венулярные анастомозы имеются в коже подушечек пальцев кисти и стопы, ногтевого ложа, губ и носа. Они также образуют основную часть каротидного, аортального и копчикового телец. Эти короткие, чаще извилистые сосуды.

Рис. 131. Артериоло-венулярные анастомозы (АВА): I - АВА без специального запирательного устройства: 1 - артериола; 2 - венула; 3 - анастомоз; 4 - гладкие миоциты анастомоза; II - АВА со специальным устройством: А - анастомоз типа замыкающей артерии; Б - простой анастомоз эпителиоидного типа; В - сложный анастомоз эпителиоидного типа (клубочковый); 1 - эндотелий; 2 - продольно расположенные пучки гладких миоцитов; 3 - внутренняя эластическая мембрана; 4 - артериола; 5 - венула; 6 - анастомоз; 7 - эпителиоидные клетки анастомоза; 8 - капилляры в соединительнотканной оболочке; III - атипичный анастомоз: 1 - артериола; 2 - короткий гемокапилляр; 3 - венула (по Ю.И. Афанасьеву)

Кровоснабжение сосудов. Кровеносные сосуды кровоснабжаются системой «сосудов сосудов» (vasa vasorum), которые являются ветвями артерий, расположенных в прилежащей соединительной ткани. Кровеносные капилляры имеются лишь в наружной оболочке артерий. Питание и газообмен внутренней и средней оболочек осуществляется путем диффузии из крови, протекающей в просвете артерии. Отток венозной крови от соответствующих отделов артериальной стенки происходит через вены, также относящихся к системе сосудов. Сосуды сосудов в стенках вен кровоснабжают все их оболочки, а капилляры открываются в саму вену.

Вегетативные нервы, сопровождающие сосуды, иннервируют их стенки (артерий и вен). Это преимущественно симпатические адренергические нервы, вызывающие сокращение гладких миоцитов.

Кровь циркулирует по телу при помощи сложной системы кровеносных сосудов. Эта транспортная система доставляет кровь к каждой клетке организма, чтобы она «обменяла» кислород и питательные вещества на отходы жизнедеятельности и углекислый газ.

Немного цифр

В организме здорового взрослого человека более 95 тысяч километров кровеносных сосудов. Через них ежедневно перекачивается более семи тысяч литров крови.

Размер кровеносных сосудов варьируется от 25 мм (диаметр аорты) до восьми мкм (диаметр капилляров).

Какие бывают сосуды?

Все сосуды в человеческом организме можно условно разделить на артерии, вены и капилляры . Несмотря на разницу в размерах, все сосуды устроены примерно одинаково.

Изнутри их стенки выстланы плоскими клетками – эндотелием. За исключением капилляров, все сосуды содержат жесткие и эластичные волокна коллагена и гладкие мышечные волокна, которые могут сжиматься и расширяться в ответ на химические или нервные стимулы.

Артерии несут богатую кислородом кровь от сердца к тканям и органам. Эта кровь ярко-красного цвета , поэтому все артерии выглядят красными.

Кровь перемещается по артериям с большой силой, поэтому их стенки толстые и эластичные. Они состоят из большого количества коллагена, что позволяет им выдерживать давление крови. Наличие мышечных волокон помогает превратить прерывистую подачу крови от сердца в непрерывный поток в тканях.

По мере удаления от сердца артерии начинают ветвиться, и их просвет становится все тоньше и тоньше.

Самые тонкие сосуды, доставляющие кровь в каждый уголок организма – это капилляры . В отличие от артерий, их стенки очень тонкие, поэтому кислород и питательные вещества могут проникать через них в клетки тела. Этот же механизм позволяет отходам жизнедеятельности и углекислому газу попадать из клеток в кровоток.

Капилляры, по которым течет бедная кислородом кровь, собираются в более толстые сосуды – вены . Из-за отсутствия кислорода венозная кровь темнее , чем артериальная, а сами вены кажутся голубоватыми. По ним кровь поступает в сердце и оттуда – в легкие для обогащения кислородом.

Стенки вен тоньше, чем артериальные, поскольку венозная кровь не создает такого сильного давления, как артериальная.

Какие сосуды в теле человека самые крупные?

Две крупнейшие вены в организме человека – это нижняя полая и верхняя полая вены . Они приносят кровь в правое предсердие: верхняя полая вена – от верхней части тела, а нижняя полая вена – от нижней.

Аорта – крупнейшая артерия организма. Она выходит из левого желудочка сердца. Кровь в аорту попадает через аортальный канал. Аорта ветвится на крупные артерии, которые несут кровь по всему телу.

Что такое артериальное давление?

Артериальное давление – это сила, с которой кровь давит на стенки артерий. Она увеличивается, когда сердце сокращается и выталкивает кровь, и уменьшается, когда сердечная мышца расслабляется. Давление крови сильнее в артериях и слабее в венах.

Давление крови измеряют специальным прибором – тонометром . Показатели давления обычно записывают двумя цифрами. Так, нормальным давлением для взрослого человека считается показатель 120/80 .

Первое число – систолическое давление – это показатель давления во время сердечного сокращения. Второе – диастолическое давление – давление во время расслабления сердца.

Давление измеряется в артериях и выражается в миллиметрах ртутного столба. В капиллярах пульсация сердца становится незаметна и давление в них падает примерно до 30 мм рт. ст.

Показатель артериального давления может рассказать врачу о том, как работает сердце. Если одна или обе цифры выше нормы – это говорит о повышенном давлении . Если ниже – о пониженном.

Высокое артериальное давление свидетельствует о том, что сердце работает с избыточной нагрузкой: ему требуется больше усилий, чтобы протолкнуть кровь через сосуды.

Это также говорит о том, что у человека повышен риск сердечных заболеваний.

Функциональная классификация кровеносных сосудов.

Магистральные сосуды.

Резистивные сосуды.

Обменные сосуды.

Ёмкостные сосуды.

Шунтирующие сосуды.

Магистральные сосуды - аорта, крупные артерии. Стенка этих сосудов содержит много эластических элементов и много гладкомышечных волокон. Значение: превращают пульсирующий выброс крови из сердца в непрерывный кровоток.

Резистивные сосуды - пре- и посткапиллярные. Прекапиллярные сосуды - мелкие артерии и артериолы, капиллярные сфинктеры - сосуды имеют несколько слоёв гладкомышечных клеток. Посткапиллярные сосуды - мелкие вены, венулы - тоже есть гладкие мышцы. Значение: оказывают наибольшее сопротивление кровотоку. Прекапиллярные сосуды регулируют кровоток в микроциркуляторном русле и поддерживают определённую величину кровяного давления в крупных артериях. Посткапиллярные сосуды - поддерживают определённый уровень кровотока и величину давления в капиллярах.

Обменные сосуды - 1 слой эндотелиальных клеток в стенке - высокая проницаемость. В них осуществляется транскапиллярный обмен.

Ёмкостные сосуды - все венозные. В них 2/3 всей крови. Обладают наименьшим сопротивлением кровотоку, их стенка легко растягивается. Значение: за счёт расширения они депонируют кровь.

Шунтирующие сосуды - связывают артерии с венами минуя капилляры. Значение: обеспечивают разгрузку капилярного русла.

Количество анастомозов - величина не постоянная. Они возникают при нарушении кровообращения или недостатке кровоснабжения.

Чувствительность - во всех слоях стенки сосудов много рецепторов. При изменении давления, объёма, химического состава крови - рецепторы возбуждаются. Нервные импульсы идут в центральную нервную систему и рефлекторно воздействуют на сердце, сосуды, внутренние органы. За счёт наличия рецепторов сосудистая система связана с другими органами и тканами организма.

Подвижность - способность сосудов изменять просвет в соответствии с потребностями организма. Изменение просвета происходит за счёт гладких мышц сосудистой стенки.

Гладкие мышцы сосудов обладают способностью самопроизвольно генерировать нервные импульсы. Даже в состоянии покоя есть умеренное напряжение сосудистой стенки - базальный тонус. Под действием факторов гладкие мышцы или сокращаются или расслабляются, изменяя кровоснабжение.

Значение:

регуляция определённого уровня кровотока,

обеспечение постоянного давления, перераспределение крови;

емкость сосудов приводится в соответствие с объёмом кров

Время кругооборота крови - время, в течение которого коровь проходит оба круга кровообращения. При частоте сердечных сокращений 70 в минуту, время равно 20 - 23 с, из них 1/5 времени - на малый круг; 4/5 времени - на большой круг. Определяется время с помощью контрольных веществ и изотопов. - они вводятся внутривенно в v.venaris правой руки и определяется через сколько секунд, это вещество появится в v.venaris левой руки. На время влияют - объёмная и линейная скорости.

Объемная скорость - тот объём крови, что протекает через сосуды в единицу времени. Vлин. - скорость движения любой частицы крови в сосудах. Самая большая линейная скорость в аорте, самая малая - в капиллярах (соответственно 0,5 м/с и 0,5 мм/с). Линейная скорость зависит от общей площади сечения сосудов. За счёт низкой линейной скорости в капиллярах условия для транскапиллярного обмена. Эта скорость в центре сосуда болше, чем на периферии.

Движение крови подчиняется физическим и физиологическим закономерностям. Физические: - законы гидродинамики.

1-й закон: количество протекающей по сосудам крови и скорость её движения зависит от разности давления в начале и конце сосуда. Чем эта разница больше, тем лучше кровоснабжение.

2-й закон: движению крови препятствует периферическое сопротивление.

Физиологические закономерности движения крови по сосудам:

работа сердца;

замкнутость сердечно-сосудистой системы;

присасывающее действие грудной клетки;

эластичность сосудов.

В фазу систолы кровь поступает в сосуды. Стенка сосудов растягивается. В диастолу выброса крови нет, эластичная сосудистая стенка возвращается в исходное состояние, в стенке накапливается энергия. При снижении эластичности сосудов появляется пульсирующий кровоток (в норме - в сосудах малого круга кровообращения). В патологических склеротически изменённых сосудах - симптом Мюссе - движения головы в соответствии с пульсацией.

Функции кровеносных сосудов состоят в поддержании постоянного и непрерывного движения крови (оттока крови от сердца и возвращении ее к нему), распределения крови между разными органами и тканями и обеспечении их кровью в соответствии с их потребностями. Различные кровеносные сосуды выполняют неодинаковые функции,
ОС зависит от строения сосудов и их локализации по отношению к сердцу. По функциям выделяют амортизирующие сосуды, сосуды сопротивления, или резистивные, сфинктерных сосуды, обменные, емкостные и шунтирующие сосуды.
Амортизирующие сосуды – это сосуды эластичного типа – аорта легочная артерия. Благодаря хорошо выраженным упругим свойствам их стенки они сглаживают, амортизируют резкие колебания давления в артериальной системе при каждом выбросе сердцем крови и поддерживают непрерывный поток крови от аорты по всем сосудам.
Сосуды сопротивления (резистивные сосуды) – это преимущественно артерии мышечного типа – мелкие артерии и артериолы, которые оказывают наибольшее сопротивление движению крови. Сужаясь или расширяясь за счет сокращения или расслабления гладкой мускулатуры стенки, они меняют свое сопротивление и таким образом осуществляют перераспределение крови между органами и тканями. Конечно сопротивление движению крови поступают и другие кровеносные сосуды – магистральные артерии, капилляры, венулы и вены различного калибра. Но наибольший вклад в общий сосудистого сопротивления (почти 50%) создают конечные артерии и артериолы, почему их и назвали резистивными. Это прекапиллярные сосуды сопротивления. Капилляры тоже добавляют свою долю в общий сопротивления, тогда как сопротивление посткапиллярных сосудов – венул и вен очень незначительный – всего 6-7%.
Сосудисто-сфинктера – это участки артериол в месте отхождения от них капилляров, где находятся последние в артериальном русле гладенькомьзови клетки (всего 1-3), которые образуют сфинктер-образное кольцо. При их сокращении кольцо сжимается, и в капилляр перестает поступать кровь. Таким образом сосуды-сфинктеры регулируют количество открытых капилляров и их поверхность.
К обменных сосудов относятся сосуды, стенка которых лишена медиа и почти полностью адвентиции, благодаря чему через него может происходить обмен веществами между кровью и окружающими тканями. Это кровеносные капилляры и венулы, которые также не имеют гладенькомьзових клеток.
Емкостные, или аккумулирующие, сосуды. Этот тип сосудов включая мелкие, средние и крупные вены, их диаметр значительно больше, чем в соответствующих артерий, а кроме того, в зависимости от уровня давления в них они могут менять профиль поперечного сечения и, соответственно, свою емкость. Благодаря этому вены могут содержать довольно значительные объемы крови. Так, в условиях покоя организма в венах содержится более 70% общего объема крови, в артериях – 15 и в капиллярах – до 10% крови (табл.4.1.). Емкостного функцию выполняют также кровяные депо, которые, по сути, являются видоизмененными венами (см. ниже).
Шунтирующие сосуды, или артерио-венозные анастомозы – это довольно мелкие сосуды диаметром от 20 до 500 мкм с хорошо развитым мышечным слоем, которые соединяют артериолы с венулами. их функция заключается в шунтировании, опрокидывании артериальной крови в венозное русло в обход капилляров или поддержании обходного (коллатерального) кровотока в области ткани, где одна из сосудов была заблокирована тромбом или травмой. Они присутствуют в тех тканях, где по тем или иным причинам возникает необходимость прекратить движение крови через капилляры, не останавливая кровотока в данной области сосудистого русла. Например, в коже на холоде артерио-венозные анастомозы открываются, и кровь переходит из артерий в вены, не попадая в ближе к поверхности расположены капилляры, уменьшает потери тепла организмом. При необходимости отдать избыток тепла анастомозы, наоборот, закрываются, и тогда кровь течет через капилляры, идет теплоотдача, кожа приобретает розовый цвет.
Например, такие
органы, как селезенка, печень, легкие и кожа, несмотря на относительно небольшую массу, вместе вмещает почти половину всей крови организма и могут вытолкнуть от 40 до 75% удерживаемой в своих венах крови. В то же время в сосудах скелетных мышц и подкожной жировой ткани, масса которых достигает половины массы тела, содержится лишь четверть всей крови организма, и мобилизовать, то есть в случае необходимости эти ткани могут выбросить в кровеносное русло не более 5% удерживаемой крови. У человека кровяные депо менее развиты, но у большинства животных они могут содержать до 50% крови и при необходимости выбрасывать в сосудистое русло 25-30% всей крови организма.
Механизм депонирование крови во всех кровяных депо в принципе одинаков: тонкостенные мелкие сосуды – синусы, венулы или вены – легко растягиваются повышенным давлением и вмещает довольно значительные объемы крови. При этом сфинктера на выходе сосудов из органа, сокращаясь, частично или полностью перекрывают вены и обеспечивают содержание в органе депонированной крови. В случае необходимости (физическая нагрузка, эмоциональное напряжение, стресс) возбуждения симпатической нервной системы приводит к сужению депонированных сосудов, расслабление сфинктеров и выхода крови в сосудистое русло.
Селезенка. При массе, не превышает 1% массы тела человека, она удерживает около 15% всей крови и способна выбрасывать в системный кровоток до 75% депонированной крови. Кровь попадает в селезенки по одноименной артерии, расходится по ее капиллярах, а из них поступает в венозных синусов – тонкостенных образований, легко растягиваются и наполняются кровью. На границе между синусами и венулами находятся сфинктеры, которые при сокращении почти полностью перекрывают выход из синуса. Остается лишь узкая щель, сквозь которую постепенно профильтровывается плазма, а форменные элементы крови задерживаются. Капилляры, синусы и венулы селезенки не имеют мышечных клеток и способны к активному сокращению. Во время мобилизации депонированной крови под влиянием симпатической нервной системы раскрываются сфинктера и сокращаются гладкие мышцы соединительнотканной капсулы и трабекул, которые образуют каркас селезенки. В результате происходит быстрое изгнание обогащенной эритроцитами крови в венозное русло.
Печень также является важным депо крови. В ее сосудах, преимущественно воротной и печеночных венах и синусоида, содержится в
20% всей крови. Однако она не исключается из кровообращения, как это имеет место в селезенке, а постоянно, хоть и медленно, течет через печень. Скорость обновления крови в печени и процессы депонирования и мобилизации крови зависят от соотношения скоростей притока крови к печени и ее оттока. Последнее регулируется сфинктерами в печеночных венах. Адреналин и симпатические нервы раскрывают эти сфинктеры и сужают внутрипеченочные сосуды, что приводит к быстрому выбросу почти половины депонированной в печени крови. Гистамин, наоборот, сужает сфинктера и расширяет венозные сосуды печени, тем самым увеличивая объем депонированной крови в ней.
Легкие В легких содержится около 10% всей крови организма, причем распределяется она не только в венах, но также и в артериях, стенка которых значительно тоньше и способна больше растягиваться, чем в артериях большого круга. Мобилизация депонированной в легких крови происходит при физической нагрузке, гипоксии, но чаще всего это имеет место при ортостазе: переход человека из горизонтального положения в вертикальное головой вверх приводит к уменьшению объема крови в легких почти на 30%. При этом происходит выброс дополнительного объема крови в сосуды большого круга кровообращения. Когда человек ложится, кровенаполнение легких увеличивается, а объем циркулирующей крови соответственно уменьшается.
Кожа. Вены и капилляры кожи у человека могут содержать до 1 л крови. Депонирование крови кожей осуществляется не столько ради уменьшения объема циркулирующей крови, сколько для обеспечения терморегуляции. На холоде, когда возникает потребность уменьшить теплоотдачу, пре- и посткапиллярные сфинктера закрываются, а расположенные глубже в подкожной клетчатке артериовенозные анастомозы открываются и через них поддерживается кровообращение. Депонированные в капиллярах и венулах поверхностных слоев кожи кровь исключается из кровообращения и играет роль теплоизоляции. При необходимости отдать лишнее тепло кровоток в капиллярах кожи возрастает, но теперь кровь не депонируется, а быстро проходит сквозь капилляры в вены, отдает через поверхность тела свое тепло и возвращается к сердцу.