Нервные импульсы. Мозг человека в переменных пределах Глиальные клетки общаются с нейронами

Нервная система человека состоит из миллионов нервных клеток, которые постоянно обмениваются информацией. Отростки одной клетки соединяются с десятками других и образуют особые щелевые контакты - синапсы. Как только нервный импульс доходит до места, где одна клетка соединяется с другой, выбрасывается небольшое количество химического посредника. Эти химические посредники (или нейромедиаторы) передают возбуждение от одной нервной клетки к другой. В некоторых случаях они могут передавать не возбуждение, а торможение, а иногда существенно влияют на внутренние процессы в клетке - например, изменяют экспрессию генов и заставляют клетку синтезировать новые белки.

Нейромедиаторы связывают нервные клетки и между собой, и с мышцами. Именно с помощью химических посредников нервная система регулирует работу почти всех внутренних органов. Выделяясь из окончаний вегетативной нервной системы, нейромедиаторы заставляют сердце биться медленнее ночью и быстрее днём, снижают артериальное давление, пока мы лежим, регулируют мочеиспускание во сне и так далее.

Только в начале XX века учёные сошлись на том, что нервная система - это множество нервных клеток, а не сложная сеть волокон. Многие исследователи до 1930-х годов не верили, что нервные клетки передают импульсы с помощью химических посредников.

Почему воевали «суповики» и «искровики»


В 1914 году британский фармаколог Генри Дейл работал над лекарствами, симулирующими работу вегетативной нервной системы. В результате кропотливой работы он выделил множество интересных молекул. Часть из них нашли своё клиническое применение, другие - нет. Среди последних была одна особая молекула - ацетилхолин. В экспериментах на мышах Дейл установил, что эта молекула повторяет действие одного отдела вегетативной нервной системы - парасимпатической нервной системы. Парасимпатическая нервная система замедляет дыхание во сне и сердцебиение, регулирует сексуальное возбуждение, выделение желудочного сока и другие физиологические эффекты. Эффект ацетилхолина продолжался всего минуты. Именно поэтому для медицинских целей это вещество было совершенно непригодно.

Через 20 лет после этого открытия исследователю из Австрии Отто Леви приснился сон с идеей эксперимента, доказывающего существование химических посредников. По воспоминаниям Леви (которые многие считают преувеличенными) он проснулся посреди ночи в 1921 году, сделал заметку с планом отличного эксперимента и вернулся в кровать. Утром идею он вспомнить не смог, а записи оказались каракулями. Но следующей ночью он проснулся опять, и в этот раз не стал ничего записывать, а прямиком отправился в лабораторию.

Леви препарировал двух лягушек и извлёк их сердца. Одно сердце - с частью блуждающего нерва, другое было изолировано от всех нервов. В спокойном состоянии вне тела сердца бились с постоянной частотой. Сердце с блуждающим нервом Леви поместил в специальный раствор и начал стимулировать нерв током. В результате сердцебиение замедлялось. Затем он достал сердце из раствора и поместил туда другое (без нервов), оно тут же замедлило свой ход. Эксперимент доказывал, что блуждающий нерв (часть парасимпатической нервной системы) замедляет сердцебиение с помощью химического посредника.

Многие исследователи, которые пытались повторить эксперимент, не смогли получить те же результаты. В 1926 году Леви попросили повторить его эксперимент публично на Международном физиологическом конгрессе в Стокгольме. Ему удалось это сделать 18 раз подряд.

Фактически публикация этих данных спровоцировала настоящую войну между фармакологами , которые поддержали теорию химической передачи возбуждения, и некоторыми нейрофизиологами, которые были уверены, что нервный импульс может передаваться только напрямую. Среди историков науки это противостояние получило название войны «суповиков» и «искровиков».

Леви долго работал над тем, чтобы идентифицировать химическое вещество, выделяющееся из окончания блуждающего нерва. Он провёл эксперименты со многими химическими соединениями и осторожно высказался на тему того, что это может быть ацетилхолин. Убедил его в этом его британский друг - Генри Дейл, который вспомнил о своих открытиях 20-летней давности. После вручения Дейлу и Леви Нобелевской премии в 1938 году критики поубавилось.

Джон Экклс, ещё один известный нейрофизиолог, был классическим сторонником теории электрической передачи. Его не убедили ни эксперименты, ни Нобелевская премия Леви. Во время Второй мировой войны Экклс работал в одной лаборатории со Стивеном Куффлером и Бернардом Кацем - двумя невероятно влиятельными сторонниками теории химической передачи. Буквально на его глазах Кац и Куффлер накапливали всё больше свидетельств в пользу химической теории. Cогласно истории, Экклс впал в депрессию, из которой его вытянул известный философ науки Карл Поппер. В 1951 году Экклс начал изучать спинной мозг. Он одним из первых доказал химическую передачу между нейронами спинного мозга и открыл тормозной медиатор - гамма-аминомасляную кислоту. В 1963 году он был удостоен Нобелевской премии.

Какие белки помогают нам помнить всё


Эрик Кэндел, выпускник медицинской школы Нью-Йоркского университета, разбирался, как работает память. Чтобы приблизиться к решению проблемы, он искал память у животных с максимально простой нервной системой. Поиски привели его к морскому зайцу (или аплизии). У него всего 20 тысяч крупных нервных клеток, которые легко разглядеть даже без микроскопа.

Привыкание. У аплизии (как и у многих моллюсков) есть жабры и небольшая
трубка - сифон, с помощью которой моллюски передвигаются, размножаются и выделяют продукты обмена во внешнюю среду. Если дотронуться до сифона аплизии, она тут же втянет его вместе с жабрами внутрь. Можно проделать это несколько раз, и аплизия перестанет втягивать жабры. Это один из самых простых видов памяти.

Сенситизация. Другой вид памяти у морского зайца - повышение чувствительности. Если перед тем, как дотронуться до сифона, ударить аплизию небольшим разрядом электрического тока в хвост, она начнёт более интенсивно втягивать жабры в ответ на любое прикосновение.

Условный рефлекс. В этом случае нужно сначала дотронуться до сифона (при этом жабры втянутся не очень сильно), потом ударить моллюска током (тут они втянутся куда сильнее) и проделать это много раз. В результате аплизия «ассоциирует» прикосновение с ударом тока и начинает втягивать жабры сильнее после обычного прикосновения без удара током.

В рефлексах втягивания жабр участвуют всего несколько нейронов. Сенсорный нейрон передаёт нервный импульс на моторный нейрон, который вызывает сокращение мышц и втягивание жабр. При ударе аплизии возбуждается ещё один нейрон - модуляторный. Он протягивается через всё тело моллюска и регулирует работу других нервных клеток. Когда аплизия запоминает, что ей следует сильнее втягивать жабры, связи между сенсорным и моторным нейронами усиливаются.

Именно эта маленькая молекула необходима для формирования памяти

Усиление связей возможно благодаря ещё одному нейромедиатору - серотонину. Он выделяется из окончания модуляторного нейрона и связывается со специальным рецептором на поверхности сенсорного нейрона. В результате запускается целый каскад биохимических реакций. С рецептором серотонина связаны так называемые G-белки, которые активируют фермент - аденилатциклазу.

Аденилатциклаза - очень популярный в нашем организме фермент. Она превращает АТФ (аденозин-трифосфат) - основной источник энергии в клетке - в циклический АМФ (аденозин-монофосфат), который в десятки раз усиливает действие серотонина. Одна молекула серотонина связывается всего с одним рецептором, а внутри клетки в ответ на это синтезируются сотни молекул циклического АМФ.

Именно эта маленькая молекула необходима для формирования памяти. Циклический АМФ заставляет работать другие ферменты. Например, в случае с запоминанием и усилением синаптической связи это протеинкиназа А, которая изменяет молекулу кальциевого канала в мембране нейрона. Из-за этого в клетку начинают активно поступать ионы кальция. Электрический потенциал в нервном окончании возрастает. Всего одного нервного импульса достаточно для того, чтобы высвободить куда больше глутамата и передать возбуждение на моторный нейрон.

Передаваемые сообщения в виде последовательно поступающих импульсов бегут по аксонам и нейронам центральной нервной системы от одного нейрона к другому, доходят до двигательных нейронов и от них поступают к исполнительным органам (мышцам, железам).

Как же происходит передача нервных импульсов от одного нейрона к другому? На тонких срезах мозга при очень большом увеличении можно заметить, что конечные разветвления аксона не переходят прямо в отростки нервной клетки-адресата. На конце аксонной веточки образуется утолщение типа бутона или бляшки; эта бляшка вплотную приближается к поверхности дендрита, но не касается ее. Расстояние между передатчиком и приемником ничтожно мало, но измеримо. Оно составляет 200 ангстрем, что в 500 тыс. раз меньше сантиметра. Область контакта между аксоном и нейроном, которому адресуются импульсы, получила название синапса.

Оказывается, синапсы есть не только на дендритах, но и на теле клетки. Число их у разных нейронов разное. Все тело клетки и начальные участки дендритов усеяны бутонами. Это конечные разветвления не только одного аксона, а очень многих аксонов, и, следовательно, один нейрон связан с множеством других нервных клеток. Была проделана кропотливая работа по подсчету числа синаптических окончаний на одном нейроне. У одних клеток их оказалось меньше десяти или несколько десятков, у других - несколько сотен, а есть нейроны, на которых обнаружено около 10 тыс. синапсов! От синапсов зависит путь, который проходит возбуждение в нервной системе, и не только потому, что каждый нейрон связан строго определенным образом со строго определенным количеством других нейронов, но и в силу одного из свойств синапса - закона одностороннего проведения. Оказалось, что через синапс импульсы проходят только в одном направлении - от аксона одной нервной клетки к телу и дендритам другой. Таким образом, деятельность синапсов способствует наведению порядка в характере распространения возбуждения в нервной системе.

Соединение нервных клеток (синапсы) в большом увеличении.

Было обнаружено и еще одно свойство синапса: применили одиночное раздражение - побежали импульсы по аксону, а клетка молчит; дали два раздражения подряд - опять молчит, а на шесть подряд - заговорила. Значит, возбуждение может постепенно накапливаться, суммироваться, и, когда оно достигает определенной величины, клетка-приемник начинает передавать сообщение по Своему аксону дальше. И лишь в том случае, если раздражение сильное и сообщение чрезвычайно важное, клетка-приемник отвечает на него сразу. Тем не менее импульсы в аксоне появляются через определенный, совсем маленький промежуток времени; причем, не будь синапса, импульсы уже убежали бы за это время на 10-20 см от данной клетки. Этот промежуток времени, период молчания, получил название синаптической задержки импульса.

Познакомившись с синапсом, мы столкнулись с новыми законами, отличными от законов деятельности нерва. Здесь, очевидно, протекают и иные физиологические процессы. Но какие? Происходят они за «закрытыми дверями» и долгое время были недоступны физиологам. Ведь, чтобы их обнаружить и исследовать, нужно было изучить, как сообщаются между собой различимые только под микроскопом аксон и нервная клетка, с которой он связан синаптическим контактом.

Вот бежит по аксону импульс, добежал до бляшки и остановился перед синаптической щелью. А дальше как? Через щель импульс перепрыгнуть не может. Тут на помощь ученому приходят новые методы исследования. С помощью специального прибора - электронного микроскопа, который дает увеличение в сто тысяч раз, внутри бляшки были обнаружены особые образования, названные синоптическими пузырьками. Их диаметр приблизительно соответствует величине синаптической щели. Наблюдение за этими пузырьками и дало ключ к пониманию того, как импульс преодолевает необычную для него пограничную полосу. В тот момент, когда конечные разветвления аксона охватываются пришедшим возбуждением, из синаптических пузырьков выделяется особое химическое вещество - медиатор (посредник), во многих синапсах это биологически активное вещество ацетилхолин - и проникает в синаптическую щель. Накапливаясь в щели, это вещество действует на мембрану клетки-приемника точно так же, как раздражение, приложенное к нерву, - повышает ее проницаемость; начинается перемещение ионов, и возникает уже знакомая нам картина биоэлектрических явлений. Для выделения медиатора и возникновения тока через мембрану под его воздействием требуется время. Это время входит в синаптическую задержку.

Так, задержавшись немного, электрический импульс с помощью определенного химического посредника перебрался «на ту сторону». А дальше? Что же происходит в клетке, прежде чем она «заговорит» и возбуждение ее будет передано по ее аксону?

Эта тайна приоткрылась совсем недавно, благодаря тому что удалось проникнуть электродом внутрь нейрона; при этом нейрон продолжал работать как ни в чем не бывало. Таким умелым разведчиком оказался тонкий стеклянный электрод в виде микропипетки, заполненной жидкостью - электролитом, содержащим те же ионы, которые имеются в клетке. Его тонкий (меньше микр9на) кончик прокалывает мембрану нейрона и удерживается ею как круглой резинкой. Таким образом он улавливает и передает прибору все, что происходит в клетке.

А происходит там вот что: под действием медиатора на мембране возникает электрическое колебание в виде медленной волны, которая длится около одной сотой доли секунды (в десять раз дольше, чем импульс, проходящий через каждую точку нерва). Ее особенность в том, что она не распространяется по клетке, а остается в месте своего возникновения. Эта волна получила название постсинаптического (после синапса) потенциала. Миниатюрные постсинаптические потенциалы, возникающие в разных синапсах одного нейрона или в одном и том же синапсе в ответ на приходящие друг за другом импульсы, складываются, суммируются. Наконец, общий потенциал достигает величины, достаточной, чтобы повлиять на проницаемость мембраны в одном, очень чувствительном месте - месте отхождения аксона от тела клетки, названном аксонным холмиком. В результате этого влияния по аксону начинают передаваться импульсы и клетка-приемник становится передатчиком. На процесс суммирования расходуется время, и это время тоже входит в синаптическую задержку.

Изучение особенностей суммирования постсинаптических потенциалов показало, что это очень сложный процесс. В клетке кроме потенциалов, развитие которых способствует возникновению распространяющегося возбуждения, обнаружены потенциалы другого знака, которые влияют на мембрану противоположным образом, подавляя импульсы в аксоне. Первые получили название возбуждающих постсинаптических потенциалов (ВПСП), вторые - тормозных постсинаптических потенциалов (ТПСП).

Наличие двух противоположных процессов - возбуждения и торможения - и их взаимодействие - это основной закон деятельности нервной системы на всех уровнях ее организации. С проявлением этого закона мы еще не раз встретимся в дальнейшем. Здесь заметим только - не будь ТПСП в клетке, какой бы хаос царил в проводящих путях! Импульсы бежали бы по ним без передышки. А центры? Да они были бы завалены информацией, разобраться в которой не представлялось бы возможным. ТПСП ликвидируют излишки информации, способствуют тому, что она поступает порциями, а не непрерывно, подавляют менее важные импульсы, т. е. вносят организованность в нервную деятельность.

Внутри каждой клетки при поступлении к ней импульсов осуществляется взаимодействие ВПСП и ТПСП, идет борьба между ними, а исход борьбы определяет судьбу принятого сообщения - будет оно передано дальше или нет. Таким образом, чем больше сведений поступает на нейрон, тем тоньше и сложнее его ответная деятельность, возникающая при учете многочисленных переменных из внешнего мира и внутренней среды организма. Можно себе представить, как трудно принимать решение в таких условиях.

Трудно, но при хорошей организации возможно. Это осуществляется, как мы видели, разными способами: с помощью объединения волокон в нервные стволы, а нейронов - в нервные центры; благодаря наличию большого числа синапсов на каждой нервной клетке, что способствует передаче импульсов к множеству адресатов; в результате осуществления законов изолированного и одностороннего проведения и, наконец, благодаря взаимодействию двух основных нервных процессов - возбуждения и торможения, возникающих в ответ на различные импульсы.

В нормальных условиях принятие решения и его результат носят приспособительный характер, направлены на пользу организма, находящегося в данной конкретной ситуации. Стало быть, деятельность центральной нервной системы всегда вызвана определенной внешней или внутренней причиной. Формулировка этой причины начинается в рецепторах, ее анализ осуществляется в нервных центрах, а ответные рабочие реакции организма на раздражение обеспечиваются исполнительными органами, или так называемыми эффекторами - мышцами, железами и др.

Реакция организма, осуществляемая при участии центральной нервной системы, в ответ на раздражение рецептора, называется рефлексом, а вся его деятельность - рефлекторной, т. е. комбинацией множества отдельных рефлексов различной сложности. Как же распределены функции между различными отделами центральной нервной системы?

Нервная система - иерархически организованная нервная ткань, пронизывающая весь организм и связывающая его в единое целое.

Нервная система - это сеть коммуникаций, которая обеспечивает взаимодействие организма с окружающей средой. В широком смысле понятие "окружающая среда" подразумевает как внешнюю среду (вне организма), так и внутреннюю (внутри организма). Таким образом, нервная система, обеспечивая интеграцию всех частей организма в единое целое, осуществляет умственную деятельность, связь организма с внешней средой (ощущения), управляет движениями, регулирует все функции, включая человеческую сексуальность и репродукцию (продолжение рода). Нервная система человека, в отличие от нервной системы высших животных, богата уникальными структурами и связями, которые являются морфофизиологическими субстратами мышления, творчества, членораздельной речи, трудовой деятельности. Все функции, включая умственную деятельность, осуществляют группы нервных клеток, связанных между собой многочисленными синапсами.

Нервная система состоит из следующих компонентов:

Сенсорные компоненты - реагируют на явления окружающей среды;

Интегративные компоненты - перерабатывают и хранят сенсорные и другие данные;

Двигательные компоненты - управляют движениями и секреторной деятельностью желез.

На микроскопическом уровне нервная система представляет собой очень сложное скопление разных клеток. Структурно-функциональной единицей нервной системы являются ервные клетки, или нейроны , образуют коммуникативную сеть нервной системы. Основная функция нейрона - получение, переработка, проведение и передача информации.

Нейроны специализируются на получении входящих сигналов и их передаче к другим нейронам или эффекторным клеткам. Другие клетки выполняют в нервной системе поддерживающие функции. Это клетки нейроглии (от греч. "глия" - клей). Их существует несколько типов. Одни глиальные клетки участвуют в поддержании состава межклеточной среды вокруг нейронов, другие образуют оболочку вокруг аксонов, благодаря которой увеличивается скорость проведения потенциалов действия.

Нейрон - основной структурный и функциональный элемент нервной системы; у человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела и отростков, обычно одного длинного отростка - аксона и нескольких коротких разветвленных отростков - дендритов . По дендритам импульсы следуют к телу клетки, по аксону - от тела клетки к другим нейронам, мышцам или железам. Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети и круги, по которым циркулируют нервные импульсы.

Помимо опорных функций глия обеспечивает многообразные метаболические процессы в нервной ткани.

Нервную систему человека подразделяют на центральную и периферическую .

Центральная нервная система состоит из расширенного переднего конца нервной трубки - головного мозга и длинного цилиндрического спинного мозга .

В ЦНС выделяют серое вещество, которое представляет собой скопление тел нейронов, и белое вещество, состоящее из покрытых миелином аксонов, выполняющих роль проводников.

В функции центральной нервной системы входят интеграция и координация почти всех видов нервной активности , при этом центральная нервная система работает в тесном контакте с периферической нервной системой .

К периферической нервной системе относят отходящие от них парные спинномозговые и черепные нервы с корешками, их ветви, нервные окончания и ганглии (нервные узлы, образованные телами нейронов), нервные сплетения и периферические нервы , которые обеспечивают связь ЦНС с различными частями тела.

Состав внеклеточной жидкости вокруг большинства нейронов регулируется таким образом, чтобы клетки были защищены от резких изменений окружающей среды. Это обеспечивается регуляцией кровообращения в ЦНС, наличием гематоэнцефалического барьера , буферными функциями нейроглии, а также обменом веществ между цереброспинальной (спинномозговой) жидкостью (ЦСЖ) и внеклеточной жидкостью мозга.

На всем своем протяжении центральная нервная система покрыта тремя мозговыми оболочками и заключена в защитную костную капсулу, состоящую из черепа и позвоночника . Головной мозг, кровь и ЦСЖ находятся в полости черепа ( рис. 32.4). Снаружи мозг покрыт прочной твердой мозговой оболочкой ( dura mater), которая сращена с надкостницей черепа и позвоночника. Непосредственно к ткани мозга прилегает мягкая мозговая оболочка (pia mater). Между твердой и мягкой оболочками находится паутинная оболочка мозга ( aracnoidea), образующая сеть из перекладин соединительной ткани, благодаря которым между мягкой и паутинными оболочками образуется подпаутинное пространство мозга , заполненное спинномозговой жидкостью ( цереброспинальной жидкостью). Большая часть цереброспинальной жидкости содержится в центральном канале спинного мозга , а в головном мозге она заполняет четыре расширенных участка - мозговых желудочка . Спинномозговая жидкость омывает мозг снаружи и изнутри, и с ней соприкасаются кровеносные сосуды , обеспечивающие снабжение нервных тканей питательными веществами и кислородом и удаление продуктов обмена. В крыше мозга находятся переднее сосудистое сплетение мозга и заднее сосудистое сплетение мозга , клетки которых выделяют спинномозговую жидкость. Объем спиномозговой жидкости составляет около 100 мл. Она выполняет питательную, выделительную и опорную функции и защищает нервные клетки от механических ударов о твердую костную поверхность. Ресничные клетки , выстилающие полость желудочков и центрального канала, поддерживают непрерывную циркуляцию спиномозговой жидкости.

Головной мозг человека весит около 1350 г; примерно 15% его массы (200 мл) приходится на внеклеточную жидкость. Объем крови внутри черепа составляет около 100 мл, столько же - внутричерепной объем ЦСЖ. Значит, общий объем внеклеточной жидкости в полости черепа равен примерно 400 мл.

Существует еще одна классификация, согласно которой единую нервную систему также условно подразделяют на две части: соматическую (анимальную) и вегетативную (автономную, особую часть нервной системы). Первая иннервирует главным образом тело (кости, скелетные мышцы, кожу) и обеспечивает связь организма с внешней средой. Вегетативная (автономная) нервная система иннервирует все внутренности, железы (в том числе и эндокринные), гладкие мышцы органов и кожи, сосуды и сердце, а также обеспечивает обменные процессы во всех органах и тканях.

В недавно опубликованной книге «Облава на м-ра Альберта» (Driving Mr. Albert) рассказана подлинная история патологоанатома Томаса Харви, который в 1955 г. произвёл вскрытие Альберта Эйнштейна. Выполнив работу, Харви самым непочтительным образом забрал мозг учёного домой, где в течение 40 лет хранил его в пластиковой банке с дезинфицирующей жидкостью. Время от времени патологоанатом отдавал маленькие срезы мозговой ткани исследователям из разных частей света, пытавшимся выяснить причины гениальности Эйнштейна. Когда Харви перевалило за 80, он погрузил остатки мозга в багажник своего «Бьюика» и повёз возвращать их внучке гения.

Одной из тех, кто изучал срезы мозговой ткани Эйнштейна, была Мэриан Даймонд (Marian C. Diamond) - авторитетный гистолог из Калифорнийского университета в Беркли. Она установила, что числом и размерами нервных клеток (нейронов) головной мозг великого физика ничем не отличается от мозга обычного человека. Но в ассоциативной области коры, ответственной за высшие формы мыслительной деятельности, Даймонд обнаружила необычайно большое количество вспомогательных элементов нервной ткани - клеток нейроглии (глии). В мозге Эйнштейна их концентрация была намного больше, чем в голове среднестатистического Альберта.

Любопытное совпадение? Возможно. Но сегодня учёные получают всё больше данных, указывающих на то, что глиальные клетки играют гораздо более важную роль в деятельности мозга, чем предполагалось ранее. Долгие десятилетия всё внимание физиологов было сосредоточено на нейронах - главных, по их мнению, приёмопередатчиках мозга. Хотя глиальных клеток в 9 раз больше, чем нейронов, учёные отводили им скромную роль элементов, поддерживающих жизнедеятельность мозга (транспорт питательных веществ из кровеносных сосудов в нейроны, поддержание нормального баланса ионов в мозге, обезвреживание болезнетворных микробов, ускользнувших от преследования иммунной системы, и т. д.). А тем временем нейроны, поддерживаемые глией, были вольны общаться друг с другом через крошечные контактные точки (синапсы) и формировать сложнейшие сети соединений, благодаря которым мы думаем, вспоминаем прошлое или испытываем радость.

Неизвестно, как долго просуществовала бы ещё такая модель устройства мозга, если бы не недавно обнаруженные факты, свидетельствующие о том, что на протяжении всей жизни человека (от периода эмбрионального развития и до глубокой старости) нейроны и глия ведут весьма оживлённый диалог. Глия влияет на образование синапсов и помогает мозгу определять, какие нервные связи усиливаются или ослабевают с течением времени (эти изменения напрямую связаны с процессами общения и долгосрочной памяти). Последние исследования показали, что глиальные клетки общаются и друг с другом, влияя на деятельность мозга в целом. Нейробиологи с большой осторожностью наделяют глию новыми полномочиями. Однако можно вообразить, какое волнение они испытывают при мысли о том, что большая часть нашего мозга почти не изучена и, следовательно, может ещё раскрыть множество тайн.

Глиальные клетки общаются с нейронами

Мы представляем себе нервную систему в виде переплетения проводов, соединяющих нейроны. Каждый нейрон снабжён одним длинным отростком - аксоном, переносящим электрические сигналы от тела нейрона к расширенным участкам на его конце - аксонным терминалям. Каждая терминаль высвобождает в синаптическую щель молекулы химического посредника - нейротрансмиттера, которые достигают соответствующих рецепторов на коротких ветвящихся отростках (дендритах) соседнего нейрона. Пространства между нейронами и аксонами заполнены массой разнообразных клеток глии. К тому времени, как скончался Эйнштейн, нейробиологи уже подозревали, что глиальные клетки принимают участие в переработке информации, но доказательств у них не было. В конце концов они оставили глию в покое.

Причина того, что учёные не смогли обнаружить обмен сигналами между глиальными клетками, отчасти была связана с несовершенством методик. Но главными виновниками неудач были сами исследователи, ошибочно считавшие, что если клетки глии наделены способностью к общению, то обмениваться информацией они должны точно так же, как и нейроны, - с помощью электрических сигналов. Предполагалось, что клетки глии тоже должны генерировать электрические импульсы (потенциалы действия), стимулирующие выброс в синаптическую щель нейротрансмиттеров, которые, в свою очередь, вызывают импульсы в других клетках. Исследователи обнаружили, что глиальные клетки обладают несколькими типами ионных каналов, ответственных за генерирование электрических сигналов в аксонах, но они предположили, что эти каналы нужны глии просто для того, чтобы чувствовать уровень активности соседних нейронов. Было установлено, что мембрана глиальных клеток не обладает свойствами, необходимыми для проведения потенциалов действия. Нейробиологи, однако, упустили из виду одно обстоятельство, которое удалось обнаружить только благодаря современным методам исследования: глиальные клетки передают друг другу сообщения с помощью химических, а не электрических сигналов.

Важный вклад в понимание механизмов, позволяющих глии распознавать нейронную активность, был сделан в середине 1990-х гг., когда учёные обнаружили в мембранах глиальных клеток рецепторы, реагирующие на разнообразные химические вещества, включая и нейротрансмиттеры. Это открытие навело их на мысль, что клетки глии способны общаться друг с другом с помощью сигналов, которые не распознаются нервными клетками.

Экспериментально было установлено, что показателем активации глиальных клеток служит поглощение ими кальция. На основании этого наблюдения учёные разработали метод, позволяющий визуально определять, обладают ли терминальные шванновские клетки (один из типов глиальных клеток, окружающих синапсы в области контакта нервов с мышечными клетками) чувствительностью к нервным сигналам, приходящим к этим синапсам. Было показано, что шванновские клетки действительно реагируют на синаптические импульсы и что такая реакция сопровождается проникновением в них ионов кальция.

Но ограничивается ли участие глии в нервных процессах только «подслушиванием» нейронных переговоров? Ведь шванновские клетки окружают аксоны как в области синапсов, так и по ходу нервов в разных частях тела, а глиальные клетки другого типа (олигодендроциты) образуют оболочки вокруг аксонов в центральной нервной системе (т. е. в головном и спинном мозге). Сотрудники лаборатории Национального института здравоохранения решили выяснить, способна ли глия отслеживать и нервные сигналы, распространяющиеся по аксонам в нервных цепях. И если такое общение между глией и нейронами существует, какие механизмы лежат в его основе и, что ещё важнее, как влияют на работу глиальных клеток «подслушанные» ими нервные сообщения?

Чтобы ответить на эти вопросы, мы культивировали сенсорные нейроны (клетки дорсально-корешкового ганглия, ДКГ) мыши в специальных лабораторных чашках с электродами, с помощью которых можно было вызывать потенциалы действия в аксонах. В одни чашки с нейронами мы добавили шванновские клетки, в другие - олигодендроциты. Необходимо было одновременно контролировать активность и аксонов, и глии. За активностью нервных и глиальных клеток мы следили визуально, вводя в них краситель, который при связывании с ионами кальция должен был флуоресцировать. Когда по аксону пробегает нервный импульс, потенциалозависимые ионные каналы в нейронной мембране открываются, и ионы кальция проникают в клетку. Следовательно, распространение импульсов по аксонам должно сопровождаться зелёными вспышками внутри нейронов. По мере роста концентрации кальция в клетке флуоресценция должна становиться ярче. Её интенсивность можно измерить с помощью фотоэлектронного умножителя, а искусственно окрашенные изображения светящейся клетки воспроизвести в реальном времени на экране монитора. Если глиальные клетки реагируют на нервные сигналы и поглощают в это время ионы кальция из окружающей среды, они тоже должны засветиться - только немного позднее, чем нейроны.

Сидя в затенённой комнате и напряжённо вглядываясь в экран монитора, мы с биологом Бетом Стивенсом (Beth Stevens) собирались приступить к эксперименту, на подготовку которого у нас ушло несколько месяцев. На включение стимулятора нейроны ДКГ тут же отреагировали изменением цвета: по мере увеличения концентрации кальция в их аксонах они превратились из синих в зелёные, затем - в красные и, наконец, побелели. Поначалу ни в шванновских клетках, ни в олигодендроцитах никаких изменений не обнаружилось, но спустя 15 долгих секунд они, подобно ёлочным лампочкам, начали загораться. Каким-то неведомым образом клетки глии почувствовали, что по аксонам пробегают импульсы, и отреагировали на это событие увеличением концентрации кальция в цитоплазме.

Глиальные клетки общаются друг с другом

Нам удалось показать, что глия способна распознавать импульсную активность в аксонах, реагируя на неё поглощением кальция. В нейронах он активирует ферменты, ответственные за выработку нейротрансмиттеров. Вполне вероятно, что поступление кальция в глиальные клетки также вызывает активацию ферментов, связанных с развитием какой-то реакции. Но какой?

Исследование ещё одного типа глиальных клеток - астроцитов, транспортирующих питательные вещества из капилляров в нервные клетки и поддерживающих оптимальный уровень ионов, необходимый для генерирования нервных импульсов в окружающей нейроны среде (включая и удаление избытка нейротрансмиттеров и ионов, высвобождаемых нейронами во время импульсации), поможет ответить на этот вопрос. В 1990 г. Стивен Смит из Йельского университета показал, что если в культуру астроцитов добавить нейротрансмиттер глутамат, концентрация кальция в клетках резко возрастает. Клетки ведут себя так, словно только что произошёл выброс нейротрансмиттера из нейрона и они горячо обсуждают друг с другом вызвавшую его импульсацию нейронов.

Некоторые нейробиологи пытались выяснить, не явилось ли общение глиальных клеток следствием простого перемещения ионов кальция или связанных с ним сигнальных молекул из одного астроцита в соседний через соединяющие их открытые ворота. В 1996 г. Бен Кейтер (Ben Kater) из Университета штата Юта опроверг это предположение. С помощью острого микроэлектрода он разрезал слой астроцитов в культуре на две части, оставив между ними зазор, не содержавший клеток и разделявший популяцию астроцитов. Когда концентрация кальция в клетках по одну сторону разреза возрастала, то же происходило и по другую сторону. Таким образом выяснилось, что астроциты посылали друг другу сигналы через внеклеточную среду.

АТФ как химический посредник

Выявленные закономерности привели исследователей в замешательство. Коммуникация глиальных клеток, как и нейронов, контролируется токами кальция. Однако если изменения его уровня в нейронах вызывают электрические импульсы, то в глии - нет. Возникает вопрос: не было ли инициировано перемещение ионов кальция в глию каким-то другим электрическим феноменом? А если нет, то какова природа механизма?

Когда учёные экспериментировали с глией, в поле зрения им постоянно попадала знакомая всем молекула аденозинтрифосфата (АТФ). Будучи основным источником энергии в живых клетках, АТФ обладает многими признаками, благодаря которым прекрасно подходит на роль химического посредника между клетками. В окружающей среде он содержится в больших количествах, а во внеклеточном пространстве его мало. Благодаря небольшим размерам молекула способна к быстрой диффузии и легко разрушается ферментами. Более того, АТФ присутствует в аксонных терминалях, где обычно и хранятся молекулы нейротрансмиттеров, и может высвобождаться в синаптическую щель.

В 1999 г. Питер Гатри (Peter B. Guthrie) и его сотрудники из Университета штата Юта показали, что при возбуждении астроциты выбрасывают в окружающую среду АТФ. Затем он связывается рецепторами на соседних астроцитах, заставляя открываться ионные каналы и способствуя перемещению кальция внутрь клеток. В свою очередь, повышение уровня кальция в клетках заставляет их высвобождать во внеклеточную среду новые порции АТФ - так в популяции астроцитов инициируется цепная реакция, связанная с изменением внутриклеточного уровня кальция и опосредованная АТФ.


Как общаются глиальные клетки? В культуральную среду, содержавшую кальций, помещались астроциты (а) и сенсорные нейроны. После того как под влиянием электрической стимуляции нейроны принялись генерировать распространяющиеся по аксонам (зигзаги молний) (b) импульсы (потенциалы действия), глия начала флуоресцировать - признак того, что глиальные клетки отреагировали на это событие поглощением кальция. Спустя 10 и 12,5 секунд (с и d) по всей популяции астроцитов прокатились две огромные волны проникновения кальция внутрь клеток. О росте концентрации кальция в астроцитах свидетельствует изменение их цвета: вначале они были зелёными, затем стали синими и наконец красными.

В результате наблюдений родилась модель, позволившая объяснить способность околоаксонной глии распознавать нейронную активность, и передавать затем сообщения другим глиальным клеткам, окружающим синапс. Импульсация нейронов побуждает глиальные клетки, окружающие аксон, высвобождать АТФ, который вызывает поглощение кальция соседними глиальными клетками. Это стимулирует выброс новых порций АТФ, что активирует передачу сообщения по длинной цепочке глиальных клеток иногда на значительное расстояние от нейрона, инициировавшего всю последовательность данных событий. Но каким образом глиальным клеткам, участвовавшим в нашем эксперименте, удавалось распознавать импульсацию нейронов - ведь аксоны не образуют с глией синаптических контактов и в области синапсов не было никаких глиальных клеток? Участием нейротрансмиттеров феномен объяснить нельзя: из аксонов они не диффундируют. Быть может, его причиной был АТФ, способный каким-то образом просачиваться из аксонов?

Для проверки гипотезы мы решили провести электрическую стимуляцию чистых культур аксонов ДКГ и последующий химический анализ культуральной среды. Воспользовавшись ферментом, ответственным за свечение брюшка у жуков-светляков (эта реакция требует участия АТФ), мы наблюдали свечение среды во время распространения импульса по аксонам, что свидетельствовало о высвобождении из них АТФ. Затем мы добавили в культуру шванновские клетки, также начинавшие светиться после того, как по аксонам пробегали потенциалы действия. Но когда мы добавили в среду фермент апиразу, быстро разрушающую АТФ и не дающую ему достигнуть шванновских клеток, глия во время импульсации аксонов оставалась тёмной. Таким образом, содержание кальция в шванновских клетках не менялось, т. к. они не получали АТФ-сигнала.

АТФ, высвободившийся из аксонов, на самом деле стимулировал транспорт кальция внутрь шванновских клеток. С помощью биохимического анализа и цифровой микроскопии нам удалось показать, что в результате этого события сигнальные молекулы перемещаются от клеточной мембраны к ядру и включают здесь различные гены. Таким образом, мы обнаружили поразительный факт: генерируя импульсы, призванные обеспечить общение с другими нейронами, нервная клетка и её аксон могут влиять на считывание генов в глиальной клетке и изменять тем самым её поведение.

Аксоны определяют судьбу глиальных клеток

Какие функции глии могут контролировать гены, включённые АТФ? Приказывают ли они глиальным клеткам действовать таким образом, чтобы повлиять на окружающие их нейроны? Стивенс попытался ответить на вопрос, обратив внимание на процесс, способствующий образованию миелиновой изолирующей оболочки вокруг аксонов. Благодаря ей аксоны способны проводить нервные импульсы с огромной скоростью на значительные расстояния. Её образование позволяет малышу всё крепче удерживать голову в вертикальном положении, а разрушение вследствие некоторых болезней (например, рассеянного склероза) превращает человека в инвалида.

Мы решили выяснить, как незрелая шванновская клетка, расположенная на аксоне в периферической нервной системе плода или младенца, узнаёт, нуждается ли отросток в миелинизации и когда нужно приступить к его «пеленанию» миелином. Или, напротив, следует ли ей превратиться в клетку, которая не будет сооружать миелиновую оболочку? Вообще говоря, в миелине нуждаются только аксоны большого диаметра. Могут ли аксональные нервные импульсы или высвобождение АТФ влиять на выбор шванновской клетки? Мы обнаружили, что шванновские клетки в культуре пролиферировали медленнее в том случае, когда окружали импульсирующие, а не молчащие аксоны. Более того, они приостанавливали своё развитие и прекращали выработку миелина. Добавление АТФ вызывало такие же эффекты.

А Витторио Галло (Vittorio Gallo) из соседней лаборатории НИЗ, изучая олигодендроциты, образующие миелиновые оболочки вокруг аксонов в головном мозге, обнаружил совершенно иную картину. АТФ не угнетал пролиферацию клеток, но аденозин (вещество, в которое превращается молекула АТФ после отщепления от неё остатков фосфорной кислоты) стимулировал созревание клеток и выработку миелина.

Понимание механизмов миелинизации имеет важнейшее значение. Болезни, сопровождающиеся разрушением миелиновой оболочки, каждый год уносят тысячи человеческих жизней и вызывают паралич и слепоту. Неизвестно, какой фактор инициирует миелинизацию, но аденозин стал первым веществом «аксонального происхождения», у которого была выявлена способность стимулировать этот процесс. Тот факт, что аденозин высвобождается из аксонов в ответ на распространение импульсов, означает, что электрическая активность мозга действительно влияет на процесс миелинизации. Подобные открытия помогут учёным вести поиск средств для лечения болезней демиелинизации. Возможно, эффективными окажутся лекарства, напоминающие своей химической структурой аденозин. И не исключено, что добавление аденозина в культуру стволовых клеток превратит их в миелинизирующие глиальные клетки, которые можно будет использовать в качестве трансплантатов.

Вырываясь из путнейронных сетей

Ограничивается ли участие глии в регуляции нейронных функций образованием вокруг аксонов миелиновой оболочки? По-видимому, нет. Ришар Робитайль (Richard Robitaille) из Монреальского университета обнаружил, что величина электрического потенциала, возникающего в мышце лягушки под влиянием стимуляции синапса, увеличивалась или уменьшалась в зависимости от того, какие химические вещества он вводил в шванновские клетки, окружающие этот синапс. Когда Эрик Ньюман (Eric A. Newman) из Миннесотского университета прикасался к сетчатке крысы, посылаемые глией «кальциевые сигналы» изменяли частоту импульсации зрительных нейронов. А Майкен Недергард (Maiken Nedergaard) из Нью-Йоркского медицинского колледжа, изучавший срезы гиппокампа крысы (эта область мозга принимает участие в процессах памяти), наблюдал усиление электрической активности синапсов в то время, когда окружающие астроциты увеличивали поглощение кальция. Подобные изменения эффективности синапсов учёные рассматривают в качестве главного фактора пластичности нервной системы, т. е. её способности изменять реакции на основании прошлого опыта, и глия, таким образом, может играть важную роль в клеточных процессах обучения и памяти.

Бен Баррес из Стэнфордского университета обнаружил, что если выращивать нейроны из сетчатки крысы в лабораторной культуре, не содержавшей астроцитов, синапсов на нейронах образуется очень мало. Когда же учёный добавил в культуру астроциты или просто среду, в которой прежде находились астроциты, синапсы появились в большом количестве. Затем он обнаружил присутствие в среде двух химических веществ, высвобождаемых астроцитами для стимуляции образования синапсов, - жировой комплекс под названием ароЕ/холестерин и белок тромбоспондин.

Немного позднее Ле Тиан и Уэсли Томпсон из Техасского университета в Остине изучали мышей, которым вводились вещества, заставлявшие флуоресцировать шванновские клетки. Это позволило им воочию наблюдать за деятельностью глиальных клеток в области контактов нервов с мышечными волокнами. После того как учёные перерезали подходящий к мышце аксон, нервно-мышечный синапс исчезал, но на его «мышечной стороне» оставалась группа рецепторов нейротрансмиттера. Исследователям, конечно, было известно, что аксон вновь сможет прорасти к покинутым им рецепторам. Но как он найдёт к ним путь?

Следя за флуоресценцией, Томпсон увидел, что шванновские клетки, окружавшие интактные синапсы, почувствовали, что синапс-сосед оказался в беде. Тогда они дружно выпустили в его сторону отростки, дотянулись ими до повреждённого синапса и образовали своего рода мостик, по которому аксон мог послать к своему синапсу новую проекцию (см. фото). Эти данные указывают на то, что глия помогает нейронам определить место, где нужно образовывать синаптические соединения. Сегодня учёные пытаются использовать эту способность глии для лечения повреждений спинного мозга: они трансплантируют шванновские клетки в повреждённые участки спинного мозга лабораторных животных.

В связи с описанными выше наблюдениями остро встаёт одна проблема. Поглощение кальция распространяется по всей популяции астроцитов, подобно прокатывающимся по стадиону волнам взявшихся за руки болельщиков. Такая дружная реакция эффективна для управления работой всей группы клеток, но она слишком груба для передачи сложных сообщений. Принцип «все как один!» может оказаться полезным для координации общей активности мозга во время цикла сон-бодрствование, но чтобы входить во все тонкости переработки информации, глиальные клетки должны уметь «переговариваться» и со своими непосредственными соседями.

Стивен Смит предполагает, что нейроны и клетки глии способны вести друг с другом беседы и более «интимного свойства». Экспериментальные методы, которыми располагали в то время учёные, не позволяли им апплицировать нейротрансмиттеры в таких ничтожно малых дозах, которые могли бы воспроизвести истинные «переживания» астроцита, находящегося рядом с синапсом. Филипу Хейдону (Philip G. Haydon) из Пенсильванского университета удалось добиться этого только в 2003 г. с помощью современного лазерного метода аппликации нейротрансмиттеров. Учёный стимулировал в срезах гиппокампа выброс такого ничтожного количества глутамата, которое мог обнаружить только один-единственный астроцит. Хейдон наблюдал при этом, что астроцит посылает специфические кальциевые сигналы лишь небольшому числу окружающих его астроцитов. Исследователь предположил, что наряду с «кальциевыми волнами», оказывающими широкомасштабное воздействие, «между астроцитами существуют и близкодействующие связи». Иными словами, разрозненные цепочки астроцитов в головном мозге координируют свою активность в соответствии с активностью нейронных цепей.

Описанные выше открытия позволили Хейдону, автору этой статьи, сформулировать рабочую гипотезу, согласно которой обмен сигналами помогает астроцитам активировать нейроны, чьи аксоны оканчиваются на сравнительно большом от них расстоянии. А также утверждать, что эта активация способствует высвобождению нейротрансмиттеров из отдалённых синапсов. Это позволяет астроцитам регулировать готовность отдалённых синапсов к изменению своей силы (эффективности), что является клеточной основой процессов памяти и обучения.

Результаты исследований, представленные на ежегодном съезде Общества нейробиологии в ноябре 2003 г., подкрепляют эту гипотезу и даже свидетельствуют об участии глии в образовании новых синапсов. Следует упомянуть выполненную два года назад работу Бена Барреса (Ben A. Barres) и Фрэнка Фрайгера (Frank W. Pfrieger) из Стэнфордского университета, сообщивших, что выращенные в культуре нейроны крысы в присутствии астроцитов образуют большее количество синапсов. Впоследствии сотрудники из лаборатории Барреса обнаружили, что белок тромбоспондин, предположительно астроцитарного происхождения, выполняет функцию химического посредника и стимулирует образование синапсов. Чем большее количество этого белка учёные добавляли в культуру астроцитов, тем больше синапсов появлялось на нейронах. Возможно, тромбоспондин отвечает за связывание белков и других соединений, необходимых для образования синапсов во время роста молодых нервных сетей и, следовательно, может участвовать в модификации синапсов, когда эти сети подвергаются старению.

Будущие исследования расширят наши представления о влиянии глии на нейронную часть головного мозга. Возможно, учёным удастся доказать, что наша память (или её клеточный аналог - такой, как долговременная потенциация) зависит от функционирования синаптических астроцитов. Не исключено также, что будет установлено, каким образом сигналы, передаваемые по цепочкам астроцитов, оказывают влияние на отдалённые синапсы.

Сравнение головного мозга показывает, что чем более высокое положение занимают животные на «эволюционной лестнице», тем выше у них соотношение между числом глиальных клеток и нейронов. Хейдон предполагает, что увеличение связности астроцитов может повышать способности животных к обучению. Эта гипотеза проверяется сегодня экспериментально. Не исключено, что высокие концентрации глиальных клеток в мозге, а возможно, и наличие в нём более «действенной» глии, и превращает некоторых людей в гениев. Эйнштейн учил нас думать нетрадиционно. Его примеру последовали учёные, дерзнувшие «выпутаться» из нейронных сетей и решившие наконец выяснить, какое участие в переработке информации принимает нейроглия.

Об авторе:
Дуглас Филдз
(R. Douglas Fields) - заведующий отделением развития и пластичности нервной системы Национального института охраны здоровья ребёнка и развития человека, а также адъюнкт-профессор Мэрилендского университета (руководитель Программы развития нейробиологии и когнитивных наук). После защиты докторской диссертации работал в Йельском и Стэнфордском университетах.

Деятельность клеток в организме многоклеточные животные координируется «химическими посредниками» и нервными клетками. В течение последние несколькие лет удалось в значительной мере выяснить природу возникновения и передачи нервного импульса.

Чем более высокое место занимает организм в царстве животных, тем важнее становится роль системы клеток, предназначенной для координации его деятельности. Природа создала две различные координирующие системы. Одна из них основана на выделении и распространении по организму «химических посыльных» - гормонов, вырабатываемых некоторыми специализированными клетками и способных регулировать деятельность клеток, находящихся в других частях тела. Вторая система, способная к гораздо более быстрому и к тому же избирательному действию, представляет собой специализированную систему нервных клеток, или нейронов, функция которых состоит в том, чтобы получать и передавать распоряжения при помощи электрических импульсов, распространяющихся по определенным путям. Обе эти координирующие системы возникли в процессе эволюции очень давно, причем вторая из них, а именно нервная система, претерпела особенно значительное эволюционное развитие, завершившееся созданием удивительного и загадочного органа - человеческого мозга.

Наши знания относительно работы миллионов клеток в нашем головном мозге находятся в самом зачаточном состоянии. Однако этих знаний в общем достаточно для того, чтобы выполнить поставленную здесь задачу - описать, а отчасти и объяснить, каким образом отдельные клетки (нейроны) генерируют и передают электрические импульсы, составляющие основной элемент того кода, по которому действует внутренняя система связи человеческого организма.

Большую часть нервных клеток составляют нейроны двух типов - чувствительные и двигательные. Чувствительные нейроны собирают и передают высшим центрам нервной системы импульсы, возникающие в специальных рецепторных областях, функция которых состоит в инспектировании внешней и внутренней среды организма. Двигательные нейроны передают импульсы от высших центров к «рабочим» клеткам (обычно мышечным клеткам), т. е. клеткам, от которых непосредственно зависит реакция организма на изменения в обеих этих средах. В простых рефлекторных реакциях передача сигналов от чувствительных нейронов к двигательным происходит автоматически и обеспечивается относительно простыми системами синапсов, которые довольно хорошо изучены.

В процессе эмбрионального развития из тела нервной клетки - будь то чувствительная или двигательная клетка - вырастает длинный отросток аксон, который каким-то неизвестным образом растет к предназначенной ему точке на периферии, с тем чтобы вступить в контакт с мышцей или кожей. У взрослого человека длина аксона может достигать 1-1,5 метра при толщине менее 0,025 миллиметра. Аксон образует своего рода миниатюрный телеграфный провод для передачи сообщений от периферии к телу нервной клетки, которая лежит в спинном или в головном мозге под защитой позвоночника или черепа. Изолированные периферические нервные волокна изучали, вероятно, более интенсивно, чем любую другую ткань, несмотря на то, что эти волокна представляют собой лишь фрагменты клеток, отсеченные как от своих клеточных ядер, так и от своих периферических окончаний. Тем не менее такие изолированные нервные волокна довольно долго сохраняют способность передавать нервные импульсы и могут обычно передать не один десяток тысяч импульсов, прежде чем перестанут действовать. Это наблюдение вместе с рядом других убеждает нас в том, что тело нервной клетки и заключенное в нем ядро, по-видимому, каким-то образом «заботятся» о своем отростке, управляют его ростом и, если понадобится, восстанавливают повреждения, хотя и не принимают непосредственного участия в передаче сигналов.

Долгие годы шли споры по вопросу о том, приложимо ли представление о клетке как основной структурной единице к нервной системе и ее функциональным связям. Некоторые исследователи полагали, что развивающаяся нервная клетка буквально врастает в цитоплазму всех тех клеток, с которыми она вступает в функциональное взаимодействие. Этот вопрос нельзя было решить окончательно до появления электронного микроскопа, обладающего высокой разрешающей способностью. Оказалось, что нервная клетка на большей части своей поверхности, включая и поверхность всех ее отростков, действительно плотно обернута другими клетками, однако цитоплазма этих клеток отделена от цитоплазмы нервной клетки ясно выраженными мембранами. Кроме того, между мембранами нервной клетки и окружающих ее других клеток имеется небольшой зазор, обычно толщиной 100-200 ангстремов.

Часть этих клеточных контактов представляет собой синапсы - точки, в которых происходит передача сигналов от одной клетки к следующему звену цепи. Однако синапсы встречаются только на теле нейрона или близ него, а также у периферических окончаний аксона. Большая часть покрывающих клеток, в частности клетки, облекающие аксон, вообще не относится к нервным клеткам. Их функция все еще остается загадкой. Некоторые из этих сопутствующих клеток называются шванновскими клетками, другие - глиальными клетками. Эти клетки, по-видимому, не играют никакой роли в самом процессе передачи импульса: возможно, что они участвуют в нем лишь косвенно, оказывая влияние на электрическое поле вокруг аксона. Весьма знаменательно, например, что на поверхности изолированных мышечных волокон (которые очень близки к нервным волокнам по своей способности ^передавать электрические импульсы) таких клеток-сателлитов очень немного.

Одна из функций сателлитов аксона заключается в образовании так называемой мякотной оболочки - сегментированного изолирующего футляра, покрывающего периферические нервные волокна позвоночных животных и улучшающего их проводящую способность. Благодаря электронно-микроскопическим исследованиям Б. Бен-Герен-Узман и Ф. Шмитта мы теперь знаем, что каждый сегмент мякотной оболочки образован шванновской клеткой, которая содержит ядро; цитоплазма шванновской клетки плотно закручивается в спираль вокруг аксона, образуя многослойный футляр. Отдельные сегменты оболочки разделены промежутками, так называемыми перехватами Ранвье, в которых происходит регенерация электрического сигнала.

Существуют и нервные волокна других типов, лишенные мякотной оболочки, но даже эти волокна покрыты одним слоем шванновских клеток. Возможно, именно потому, что аксон отходит так далеко от ядра нервной клетки, ему необходимо это тесное соприкосновение с имеющими ядро клетками-сателлитами. Мышечные волокна, в отличие от изолированных аксонов, представляют собой вполне самостоятельные клетки, в цитоплазме которых содержатся ядра; с наличием ядра и связана, возможно, их способность обходиться без клеток-сателлитов. Какова бы ни была функция этих сателлитов, они во всяком случае не могут в течение сколько-нибудь значительного времени поддерживать жизнь аксона после того, как его отсекли от тела клетки; спустя несколько дней такой отсеченный отросток неизменно разрушается и погибает. Каким образом ядро нервной клетки в течение всей жизни служит центром, восстанавливающим повреждения, и как именно оно распространяет свое влияние на самые отдаленные участки аксона, до сих пор остается тайной (ведь если бы, например, это влияние распространялось за счет обычной диффузии, то для покрытия такого расстояния понадобились бы годы).

Методы экспериментальной физиологии оказались гораздо более плодотворными в применении к исследованию процессов непосредственного проведения импульсов по нерву, чем к изучению не менее важных, но гораздо труднее поддающихся исследованию длительных процессов. Мы очень мало знаем относительно химического взаимодействия между нервом и его сателлитами или относительно сил, которые направляют растущий нерв по определенному пути и побуждают его к образованию синаптических связей с другими клетками. Ничего не известно нам также и о том, каким образом клетки накапливают информацию, т. е. в чем состоит механизм памяти. Поэтому всю остальную часть этой статьи мы посвятим почти исключительно нервным импульсам и способу их передачи через узкие синаптические щели, отделяющие одну нервную клетку от другой.

Большая часть наших сведений относительно нервной клетки получена при изучении гигантского аксона кальмара, достигающего в толщину почти миллиметра. К этому волокну очень легко прикладывать микроэлектроды или наблюдать за поступлением и выходом из него веществ, меченных радиоактивными изотопами. Оболочка волокна разделяет два водных раствора, которые обладают почти одинаковой электропроводностью и содержат примерно одинаковое число электрически заряженных частиц, или ионов. Однако химический состав этих двух растворов совершенно различен. Во внешнем растворе более 90% заряженных частиц составляют ионы натрия (заряженные положительно) и ионы хлора (заряженные отрицательно). В растворе, находящемся внутри клетки, совокупность этих ионов составляет менее 10% растворенных веществ; здесь основную часть положительно заряженных ионов образуют ионы калия, а отрицательные ионы представлены разнообразными органическими частицами (которые, несомненно, синтезируются в самой клетке), слишком крупными для того, чтобы диффундировать сквозь мембрану аксона. Поэтому концентрация ионов натрия снаружи примерно в 10 раз выше, чем внутри аксона; концентрация же ионов калия, напротив, внутри аксона в 30 раз выше, чем снаружи. Хотя проницаемость мембраны аксона для всех этих ионов невелика, тем не менее она неодинакова для разных ионов; ионы калия и хлора проходят сквозь эту мембрану гораздо легче, чем ионы натрия и крупные органические ионы. В результате возникает разность потенциалов, достигающая 60-90 милливольт, причем внутреннее содержимое клетки оказывается заряженным отрицательно по отношению к внешнему раствору.

Для поддержания этих различий в концентрации ионов нервная клетка располагает своего рода насосом, который выкачивает ионы натрия через мембрану наружу с такой же скоростью, с какой они проникают в клетку в направлении электрохимического градиента. Проницаемость поверхности покоящейся клетки для натрия обычно столь низка, что проникновение в клетку ионов натрия очень невелико; поэтому на совершение работы, связанной с процессом выкачивания, затрачивается лишь небольшая часть той энергии, которая непрерывно освобождается в процессе метаболизма клетки. Мы не знаем подробностей относительно работы этого насоса, однако она, по-видимому, связана с обменом ионов натрия на ионы калия; иными словами, на каждый ион натрия, выбрасываемый через мембрану, клетка принимает один ион калия. Попав внутрь аксона, ионы калия перемещаются в нем так же свободно, как обычно перемещаются ионы в любом простом солевом растворе. Когда клетка находится в состоянии покоя, ионы калия просачиваются сквозь мембрану наружу, но довольно медленно.

Мембрана аксона похожа на мембраны других клеток. Она имеет примерно 50-100 ангстремов в толщину и снабжена тонким изолирующим слоем, состоящим из жировых веществ. Ее удельное сопротивление прохождению электрического тока примерно в 10 миллионов раз выше, чем сопротивление солевых растворов, омывающих ее снаружи и изнутри. Вместе с тем аксон был бы совершенно бесполезен, если бы он использовался просто в роли электрического провода. Сопротивление жидкости внутри аксона примерно в 100 миллионов раз выше, чем сопротивление медной проволоки, а мембрана его допускает в миллион раз более сильную утечку тока, чем обмотка хорошего провода. Если раздражать аксон электрическим током, слишком слабым, для того чтобы вызвать нервный импульс, то электрический сигнал становится расплывчатым и затухает, пройдя по волокну всего лишь несколько миллиметров.

Каким же образом аксон передает первичный импульс на расстояние свыше метра без затухания и без искажения?

Если повышать интенсивность электрического сигнала, приложенного к мембране нервной клетки, то в какой-то момент достигается уровень, на котором сигнал уже не затухает и не исчезает. При этом (если взято напряжение нужного знака) преодолевается некий порог и клетка становится «возбужденной». Аксон клетки уже не ведет себя как пассивный провод, а генерирует свой собственный импульс, который усиливает первоначально приложенный импульс. Усилившийся таким образом импульс, или пик, передается от одной точки к другой, не теряя своей силы, и распространяется с постоянной скоростью по всему аксону. Скорость распространения импульса по нервным волокнам позвоночных колеблется от нескольких метров в секунду (для тонких безмякотных волокон) до примерно 100 метров в секунду (для самых толстых мякотных волокон). Наибольшую скорость проведения - более 300 километров в час - мы встречаем в чувствительных и двигательных волокнах, управляющих поддержанием равновесия тела и быстрыми рефлекторными движениями. После передачи импульса нервное волокно на короткое время теряет способность возбуждаться, впадая в рефрактерное состояние, но спустя 1-2 тысячных секунды оно вновь оказывается готовым генерировать импульсы.

Электрохимические процессы, лежащие в основе нервного импульса, или, как его называют, потенциала действия, в течение последних 15 лет удалось в значительной мере выяснить. Как мы видели, разность потенциалов между внутренней и наружной поверхностью мембраны определяется главным образом различной проницаемостью мембраны для ионов; натрия и калия. Такая избирательная проницаемость свойственна многим мембранам, как природным, так и искусственным. Однако особенность, мембраны нервного волокна состоит в том, что степень ее проницаемости зависит в свою очередь от разности потенциалов между ее внутренней и наружной поверхностью, и в основе всего процесса проведения импульсов лежит, в сущности, это чрезвычайно своеобразное взаимное влияние.

А. Ходжкин и А. Хаксли установили, что искусственное понижение разности потенциалов между внутренней и наружной поверхностью мембраны немедленно вызывает повышение проницаемости мембраны для ионов натрия. Мы не знаем, почему происходит такое специфическое изменение проницаемости мембраны, однако последствия этого изменения чрезвычайно значительны. Когда ионы натрия, заряженные положительно, проникают сквозь мембрану, они вызывают локальное погашение части избыточного отрицательного заряда внутри аксона, что приводит к дальнейшему уменьшению разности потенциалов. Таким образом, это самоусиливающийся процесс, ибо проникновение нескольких ионов натрия сквозь мембрану дает возможность другим ионам последовать их примеру. Когда разность потенциалов между внутренней и наружной поверхностью мембраны понижается до порогового значения, ионы натрия проникают внутрь в таком количестве, что отрицательный заряд внутреннего раствора меняется на положительный; происходит как бы внезапное «воспламенение», в результате чего возникает нервный импульс, или потенциал действия. Этот импульс, регистрируемый осциллографом в виде пика, изменяет проницаемость мембраны аксона на участке, лежащем впереди той точки, через которую в данный момент проходит импульс, и создает условия, обеспечивающие проникновение натрия внутрь аксона; благодаря этому процесс, многократно повторяясь, распространяется вдоль аксона до тех пор, пока потенциал действия не пройдет по всей его длине.

Непосредственно позади движущегося импульса разыгрываются другие события. «Натриевая дверца», отворившаяся во время подъема пика, вновь затворяется, и теперь ненадолго оказывается отпертой «калиевая дверца». Это вызывает быстрое вытекание положительно заряженных ионов калия, что приводит к восстановлению первоначального отрицательного заряда внутри аксона. В течение нескольких тысячных секунды после того, как разность потенциалов между внутренней и наружной поверхностью мембраны вернулась к исходному уровню, сдвинуть эту разность потенциалов и вызвать возникновение нового импульса трудно. Однако проницаемость мембраны для разных ионов быстро возвращается к первоначальному уровню, после чего клетка оказывается готовой к генерации следующего импульса.

Поступление ионов натрия в аксон и следующий за ним выход ионов калия наружу происходят столь недолго и затрагивают столь незначительное число частиц, что процессы эти едва ли могут влиять на состав содержимого аксона в целом. Даже без пополнения запас ионов калия внутри аксона достаточно велик, чтобы обеспечить прохождение десятков импульсов. В живом организме ферментная система, управляющая работой натриевого насоса, без труда поддерживает клетки в состоянии готовности к генерации импульсов.

Этот сложный процесс - проведение сигнала (который должен был бы очень быстро затухнуть вследствие утечки в цепи) при участии многочисленных усилителей, располагающихся вдоль линии передачи, - обеспечивает условия, необходимые нашей нервной системе для осуществления связи на относительно большие расстояния в пределах организма. Он создает известную стереотипную систему кодирования для наших каналов связи - короткие импульсы, почти постоянные по силе и следующие друг за другом с различными интервалами, величина которых зависит исключительно от длительности рефрактерного периода нервной клетки. Для восполнения недостатков этой простой системы кодирования в организме имеются многочисленные, расположенные параллельно друг другу каналы связи (аксоны), каждый из которых представляет собой отросток отдельной нервной клетки. Например, в стволе зрительного нерва, отходящего от глаза, содержится более миллиона каналов, которые тесно соприкасаются друг с другом; все они способны передавать различные импульсы высшим центрам головного мозга.

Вернемся теперь к вопросу о том, что же происходит в синапсе - в точке, где импульс доходит до конца одной клетки и сталкивается с другой нервной клеткой. Самоусиливающийся процесс передачи импульса, действующий в пределах каждой отдельной клетки, не обладает способностью автоматически «перескакивать» через границы данной клетки на соседние клетки. И это вполне естественно. Ведь если бы сигналы, идущие по отдельным каналам в нервном пучке, могли бы перескакивать из одного канала в другой, то вся такая система связи не годилась бы просто никуда. Правда, в месте функциональных синаптических контактов промежуток между клеточными мембранами составляет обычно не более нескольких сот ангстремов. Однако на основании всего того, что нам известно о размерах области соприкосновения и об изолирующих свойствах клеточных мембран, трудно представить себе, чтобы между окончанием одной нервной клетки и внутренним содержимым другой существовала эффективная телеграфная связь. Убедительным опытом в этом

смысле может служить попытка передать подпороговый импульс - т. е. импульс, не вызывающий возникновения пика, - через синапс, отделяющий один из двигательных нервов от мышечного волокна. Если к такому двигательному нерву вблизи от синапса приложить слабый ток, то отводящий электрод, введенный непосредственно в мышечное волокно, не зарегистрирует никаких импульсов. Очевидно, в синапсе телеграфная связь, осуществлявшаяся нервным волокном, прерывается, и дальнейшая передача сообщений происходит при помощи какого-то иного процесса.

Природа этого процесса была открыта примерно 25 лет назад Г. Дэйлом и его сотрудниками. В некоторых отношениях он напоминает гормональный механизм, упомянутый в начале нашей статьи. Окончания двигательного нерва действуют, подобно железам, секретируя некий химический фактор (посредник, или медиатор). В ответ на переданный им импульс эти окончания выделяют особое вещество - ацетилхолин, которое быстро и эффективно диффундирует сквозь узкую синаптическую щель. Молекулы ацетилхолина соединяются с молекулами рецептора в области контакта с мышечным волокном и каким-то образом отворяют «ионные дверцы» этого волокна, давая возможность натрию проникнуть внутрь и вызвать генерацию импульса. Тех же результатов можно достигнуть при экспериментальном нанесении ацетилхолина на область контакта с мышечным волокном. Возможно, что подобные химические медиаторы участвуют в создании большинства контактов между клетками в нашей центральной нервной системе. Однако вряд ли можно думать, что ацетилхолин служит универсальным медиатором, действующим во всех этих случаях; поэтому многочисленные ученые ведут интенсивные исследования в поисках других естественных химических медиаторов.

Проблема передачи в синапсах распадается на два круга вопросов: 1) каким именно образом нервный импульс вызывает секрецию химического медиатора? 2) каковы те физико-химические факторы, которые определяют способность химического медиатора стимулировать соседнюю клетку к генерации импульса в одних случаях или тормозить эту генерацию - в других?

До сих пор мы ничего не сказали относительно торможения, хотя оно широко распространено в нервной системе и представляет собой одно из наиболее интересных проявлений нервной деятельности. Торможение происходит в тех случаях, когда нервный импульс служит для близлежащей клетки тормозом, препятствуя ее активации под влиянием возбуждающих сигналов, поступающих в нее в это же время по другим каналам. Импульс, проходящий по тормозному аксону, неотличим по своим электрическим характеристикам от импульса, проходящего по возбуждающему аксону. Однако, по всей вероятности, физико-химическое воздействие, которое он оказывает на синапс, носит иной характер. Возможно, что торможение происходит в результате процесса, который в какой-то степени стабилизирует мембранный потенциал (электризацию) воспринимающей клетки и препятствует доведению этой клетки до порога неустойчивости или до «точки воспламенения».

Существует несколько процессов, которые могли бы привести к такой стабилизации. Об одном из них мы уже упоминали: он возникает во время рефрактерного периода, наблюдающегося тотчас же после генерации импульса. В этот период мембранный потенциал стабилизируется на высоком уровне (отрицательный заряд внутреннего содержимого клетки составляет 80-90 милливольт), потому что «калиевая дверца» широко открыта, а «натриевая дверца» плотно прикрыта. Если медиатор может вызвать одно из этих состояний или даже оба, то его действие, несомненно, носит характер торможения. Можно с полным правом считать, что именно таким способом импульсы, поступающие от блуждающего нерва, уменьшают частоту сердечных сокращений; кстати сказать, медиатор, вырабатываемый блуждающим нервом, - это все тот же ацетилхолин, как это было обнаружено В. Леви 40 лет назад. Сходные эффекты наблюдаются в различных тормозных синапсах, расположенных в спинном мозге, однако химический характер участвующих в этом медиаторов до сих пор установить не удалось.

Торможение может также возникнуть в том случае, если два «антагонистических» аксона, принадлежащих двум разным клеткам, встретятся на одном и том же участке третьей клетки и выделят какие-либо химические вещества, способные конкурировать друг с другом. Хотя примеров подобного торможения в природе еще не обнаружено, однако в химии и фармакологии явление конкурентного торможения хорошо известно. (Например, парализующее действие яда кураре основано на его конкуренции с ацетилхолином. Молекулы кураре обладают способностью присоединяться к той области мышечного волокна, которая обычно свободна и вступает во взаимодействие с ацетилхолином.) Возможно также и обратное, т. е. что какое-то вещество, выделяемое окончанием тормозного нерва, действует на окончание возбуждающего нерва, понижая его секреторную функцию, а тем самым и количество выделяемого возбуждающего медиатора.

Итак, мы вновь упираемся в тот же вопрос: каким образом нервный импульс вызывает выделение медиатора? Проведенные недавно эксперименты показали, что действие нервных импульсов в месте соединения нерва с мышцей состоит не в том, чтобы вызвать процесс секреции медиатора, а в том, чтобы, изменяя мембранный потенциал, изменить скорость этого процесса, который происходит непрерывно. Даже при отсутствии какой бы то ни было стимуляции определенные участки нервных окончаний выделяют с неравномерными интервалами порции ацетилхолина, причем каждая такая порция содержит множество - возможно, тысячи - молекул.

Всякий раз при спонтанном выделении порции молекул медиатора в мышечном волокне, лежащем по другую сторону синапса, можно зарегистрировать внезапную небольшую местную реакцию. По прошествии одной тысячной секунды потенциал мышечной мембраны понижается на 0,5 милливольта, а затем в течение 20 тысячных секунды происходит восстановление потенциала. Систематически изменяя мембранный потенциал нервного окончания, удалось выявить определенную зависимость между этим мембранным потенциалом и скоростью секреции отдельных порций медиатора. По-видимому, скорость секреции возрастает примерно в 100 раз при понижении мембранного потенциала на каждые 30 милливольт. В состоянии покоя выделяется по одной порции медиатора в секунду на каждый синапс. Однако при кратковременном изменении потенциала «на 120 милливольт во время прохождения нервного импульса частота выделения порций медиатора на короткое время возрастает почти в миллион раз, в результате чего в течение долей миллисекунды одновременно выделяется несколько сот порций медиатора.

Чрезвычайно существенно, что медиатор всегда выделяется в виде мультимолекулярных порций определенного размера. Это, вероятно, объясняется какими-то особенностями микроскопической структуры нервных окончаний. Эти нервные окончания содержат своеобразное скопление так называемых пузырьков диаметром около 500 ангстремов каждый, в которых, возможно, и содержится медиатор, уже «расфасованный» и готовый к выделению. Можно предполагать, что когда эти пузырьки сталкиваются с мембраной аксона, как это, вероятно, часто происходит, то такое столкновение иногда приводит к выплескиванию содержимого пузырьков в синаптическую щель. Подобные предположения необходимо еще подтвердить прямыми данными, однако они позволяют дать разумное объяснение всему тому, что нам известно относительно спонтанного выделения дискретных порций ацетилхолина и ускорения этого выделения при различных естественных и экспериментальных условиях. Во всяком случае, эти предположения позволяют свести воедино функциональный и морфологический подход к одной и той же проблеме.

Ввиду скудности сведений, которыми мы располагаем, мы совершенно не коснулись многих интереснейших проблем длительных взаимодействий и приспособительных модификаций, которые, несомненно, происходят в нервной системе. Для изучения этих проблем физиологии, вероятно, придется разработать совершенно новые методы, не похожие на прежние. Возможно, что наша приверженность методам, позволившим столь успешно исследовать кратковременные реакции возбудимых клеток, помешала нам глубже проникнуть в проблемы обучения, памяти, выработки условных рефлексов, а также структурных и функциональных взаимодействий между нервными клетками и их соседями.