Чувствительные вставочные двигательные нейроны таблица. Передние мотонейроны спинного мозга

Функцией нервной системы является

1)управление деятельностью различных систем составляющих целостный организм,

2)координирова­ние протекающих в нем процессов,

3)установление взаимосвязей организма с внешней средой.

Деятельность нервной системы носит реф­лекторный характер. Рефлекс (лат. reflexus - отраженный) - это ответ­ная реакция организма на любое воздействие. Это может быть внешнее или внутрен­нее воздействие (со стороны внешней среды или со стороны собственного организма).

Структурно-функциональной единицей нервной системы является нейрон (нервная клетка, нейроцит). Нейрон состоит из двух частей - тела и отростков . Отростки у нейрона в свою очередь двух видов – дендриты и аксоны . Отростки, по которым нервный импульс приносится к телу нервной клетки, полу­чили название дендритов . Отросток, по которому от тела нейрона нервный импульс направляется к другой нерв­ной клетке или к рабочей ткани, на­зывают аксоном . Нерв­ ная клетка способна пропускать нервный импульс только в одном направле­ нии - от дендрита через тело клетки к аксону.

Нейроны в нервной системе, обра­зуют цепи, по которым передаются (движутся) нервные импульсы. Пере­дача нервного импульса от одного нейрона к другому происходит в местах их контактов и обеспечивается особого рода анатомическими структурами, получив­шими название межнейронных синап­ сов .

В нервной цепочке различные ней­роны выполняют разные функции. В свя­зи с этим выделяют три следую­щих основных типа нейронов:

1. чувствительный (афферентный) нейрон .

2. вставочный нейрон.

3. эффекторный (эфферентный) нейрон .

Чувствительные, (рецепторные, или афферентные) нейроны . Основные характеристики чувствительных нейронов:

а) т ела чувствительных нейронов лежат всегда узлах (спиномозговых), вне голов­ного или спинного мозга ;

б) чувствительный нейрон имеет два отростка – один дендрит и один аксон;

в) дендрит чувствительного нейрона следует на периферию к тому или иному ор­гану и заканчивается там чувствительным окончанием - рецептором. Рецептор это орган, который способен преобразовать энергию внешнего воз­действия (раздражения) в нервный импульс;

г) аксон чувствительного нейрона направля­ется в центральную нервную систему, в спинной мозг или в стволовую часть головного мозга, в составе задних корешков спинномозговых нер­вов или соответствующих черепных нервов.

Рецептор это орган, который способен преобразовать энергию внешнего воз­действия (раздражения) в нервный импульс. Он расположен на конце дендрита чувствительного нейрона

Различают следующие виды рецеп­ торов в зависимости от локализации:

1) Экстероцепторы воспринимают раздражение из внешней среды. Они расположены в наружных покровах тела, в коже и слизистых оболочках, в органах чувств;

2) Интероцепторы получают раздра­жение от внутренней среды организма, они расположены во внутренних органах;

3) Проприоцепторы воспринимают раздражения от опорно-двигательного аппарата (в мышцах, сухожилиях, связ­ках, фасциях, суставных капсулах.

Функция чувствительного нейрона – восприятие импульса от рецептора и передача его в центральную нервную систему. Это явление И. П. Павлов от­носил к началу процесса анализа.

Вставочный , (ас­социативный, замыкательный, или кондукторный, ней­рон) осуществляет передачу возбужде­ния с чувствительного (афферентного) нейрона на эфферентные. Замыкательные (вставочные) нейроны лежат в пределах центральной нерв­ной системы.

Эффекторный, (эфферентный) нейрон . Выделяют два вида эфферентных нейронов. Это дви гательный нейрон, и секреторный нейрон. Основные свойства двигательных нейронов:

    (nerve cell) - основная структурно-функциональная единица нервной системы; нейрон генерирует, воспринимает и передает нервные импульсы, передавая таким образом информацию от одной части тела к другой (см. рис.). Каждый нейрон имеет крупное тело (cell body) (или перикарион (...

    Психологическая энциклопедия

    Нервная клетка , основная структурная и функциональная единица нервной системы. Хотя они отличаются большим разнообразием форм и размеров и участвуют в осуществлении широкого ряда функций, все нейроны состоят из тела клетки, или сомы, содержащей ядро и нервные отростки : аксон и...

    Вообще, в зависимости возложенных на нейроны задач и обязанностей, они делятся на три категории:

    - Сенсорные (чувствительные) нейроны принимают и передают импульсы от рецепторов «в центр», т.е. центральную нервную систему. Причем сами рецепторы - это специально обученные клетки органов чувств, мышц, кожи и суставов умеющие обнаруживать физические или химические изменения внутри и снаружи нашего организма, преобразовывать их в импульсы и радостно передавать их сенсорным нейронам. Таким образом, сигналы идут от периферии к центру.

    Следующий тип:

    - Моторные (двигательные) нейроны, которые урча, фырча и бибикая, несут сигналы, выходящие из головного или спинного мозга, к исполнительным органам, коими являются мышцы, железы и т.д. Ага, значит, сигналы идут от центра к периферии.

    Ну а промежуточные (вставочные) нейроны, попросту говоря, являются «удлинителями», т.е. получают сигналы от сенсорных нейронов и посылают эти импульсы дальше к другим промежуточным нейронам, ну или сразу к моторным нейронам.

    В общем и целом вот что получается: у сенсорных нейронов дендриты соединены с рецепторами, а аксоны - с другими нейронами (вставочными). У двигательных нейронов наоборот, дендриты соединены с другими нейронами (вставочными), а аксоны - с каким-нибудь эффектором, т.е. стимулятором сокращения какой-нибудь мышцы или секреции железы. Ну а, соответственно, у вставочных нейронов и дендриты и аксоны соединяются с другими нейронами.

    Получается что самый простой путь, по которому может идти нервный импульс, будет состоять из трех нейронов: одного сенсорного, одного вставочного и одного моторного.

    Ага, а давайте теперь вспомним дядьку - очень «нервного патолога», с ехидной улыбкой стучащего своим «волшебным» молоточком по колену. Знакомо? Вот, это и есть простейший рефлекс : когда он ударяет по коленному сухожилию , прикрепленная к нему мышца растягивается и сигнал от находящихся в ней чувствительных клеток (рецепторов) передается по сенсорным нейронам в спинной мозг. А уже в нем сенсорные нейроны контактируют либо через вставочные, либо непосредственно с моторными нейронами, которые в ответ посылают импульсы назад в ту же самую мышцу, заставляя ее сокращаться, а ногу - распрямляться.

    Сам же спинной мозг удобно примостился внутри нашего позвоночника. Он мягкий и ранимый, потому и прячется в позвонках. Спинной мозг всего 40-45 сантиметров в длину, с мизинец толщиной (около 8 мм) и весит каких-то 30 грамм! Но, несмотря на всю свою тщедушность, спинной мозг является управляющим центром сложной сети нервов, раскинутой по телу. Практически как центр управлениями полетами! :) Без него ни опорно-двигательный аппарат , ни основные жизненные органы ну никак не могут действовать и работать.

    Свое начало спинной мозг берет на уровне края затылочного отверстия черепа, а заканчивается на уровне первого-второго поясничных позвонков. А вот уже ниже спинного мозга в позвоночном канале находится такой густой пучок нервных корешков, прикольно именуемый конским хвостом, видимо за сходство с ним. Так вот, конский хвост – это продолжение нервов, выходящих из спинного мозга. Они отвечают за иннервацию нижних конечностей и органов таза, т.е. передают сигналы от спинного мозга к ним.

    Спинной мозг окружен тремя оболочками: мягкой, паутинной и твердой. А пространство между мягкой и паутинной оболочками заполнено еще и большим количеством спинномозговой жидкости . Через межпозвоночные отверстия от спинного мозга отходят спинномозговые нервы: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 или 2 копчиковых. Почему пар? Да потому, что спинномозговой нерв выходит двумя корешками: задним (чувствительным) и передним (двигательным), соединенными в один ствол. Так вот, каждая такая пара контролирует определенную часть тела. Т.е., например, если вы нечаянно схватились за горячую кастрюлю (не дай бог! Тьфу-тьфу-тьфу!), то в окончаниях чувствительного нерва тут же возникает болевой сигнал, сразу же поступающий в спинной мозг, и уже оттуда - в парный двигательный нерв, который и передает приказ: «Ахтунг-ахтунг! Немедленно убрать руку!» Причем, поверьте, это происходит очень быстро - еще до того, как головной мозг зарегистрирует болевой импульс. В итоге, вы успеваете отдернуть руку от кастрюли еще до того, как почувствуете боль. Конечно же, такая реакция спасает нас от тяжелых ожогов или других повреждений.

    Вообще, практически все наши автоматические и рефлекторные действия контролируются спинным мозгом, ну за исключением тех, за которыми следит сам головной мозг. Ну, вот, например: мы воспринимаем увиденное с помощью глазного нерва идущего в головной мозг, и в то же время обращаем свой взор в разные стороны при помощи глазных мышц , которые управляются уже спинным мозгом. Да и плачем мы то же по приказу спинного мозга, который «заведует» слезными железами.

    Можно сказать, что наши сознательные действия идут от головного мозга, но как только эти действия мы начинаем выполнять уже автоматически и рефлекторно - они передаются в ведение спинного мозга. Так что, когда мы только учимся что-то делать, то, конечно же, сознательно обдумываем и продумываем и осмысливаем каждое движение, а значит, используем головной мозг, но со временем мы уже можем делать это автоматически, и это значит, что головной мозг передает «бразды правления» этим действием спинному, просто ему уже стало скучно и неинтересно….потому как, наш головной мозг очень пытливый, любознательный и любит учиться!

    Ну вот, пришло и нам время полюбопытствовать……

    Периферическая нервная система (systerna nervosum periphericum) условно выделяемая часть нервной системы, структуры которой находятся вне головного и спинного мозга. Периферическая нервная система включает в себя 12 пар черепных нервов, направляющихся от спинного и головного мозга к периферии и 31 пару спинномозговых нервов.
    К черепным нервам относятся: Обонятельный нерв (nervus olfactorius) - 1-я пара, относится к нервам специальной чувствительности. Начинается от обонятельных рецепторов слизистой оболочки полости носа в верхней носовой раковине. Представляет собой 15 - 20 тонких нервных нитей, образуемых безмякотными волокнами. Нити не образуют общего ствола, а проникают в полость черепа через решетчатую пластинку решетчатой кости, где прикрепляются к клеткам обонятельной луковицы. Волокна обонятельного пути проводят импульс к подкорковым, или первичным, центрам обоняния, откуда часть волокон направляется к коре головного мозга. Глазодвигательный нерв (nervus oculomotorius) - 3-я пара, является смешанным нервом. Нервные волокна выходят из мозгового ствола на внутренние поверхности ножек мозга и образуют сравнительно крупный нерв, который идёт вперёд в наружной стенке кавернозного синуса. По пути к нему присоединяются нервные волокна симпатического сплетения внутренней сонной артерии. Ветви глазодвигательного нерва подходят к поднимающей верхнее веко, верхней, внутренней и нижней прямым мышцам и к нижней косой мышце глазного яблока.
    Блоковый нерв (nervus trochlearis) - 4-я пара, относится к двигательным нервам . Ядро блокового нерва располагается в среднем мозге. Огибая ножку мозга с латеральной стороны, нерв выходит на основание мозга, проходя между ножкой и височной долей . Затем вместе с глазодвигательным нервом проходит из черепа в глазницу и иннервирует верхнюю косую мышцу глазного яблока.

Нервная ткань — основной структурный элемент нервной системы. В состав нервной ткани входят высокоспециализированные нервные клетки — нейроны , и клетки нейроглии , выполняющие опорную, секреторную и защитную функции.

Нейрон — это основная структурно-функциональная единица нервной ткани. Эти клетки способны принимать, обрабатывать, кодировать, передавать и хранить информацию, устанавливать контакты с другими клетками. Уникальными особенностями нейрона являются способность генерировать биоэлектрические разряды (импульсы) и передавать информацию по отросткам с одной клетки на другую с помощью специализированных окончаний — .

Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков — нейромедиаторов: ацетилхолина, катехоламинов и др.

Число нейронов мозга приближается к 10 11 . На одном нейроне может быть до 10 000 синапсов. Если эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 10 19 ед. информации, т.е. способна вместить практически все знания, накопленные человечеством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из всю информацию, которая в нем хранится.

Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, регулирующие единую функцию, образуют так называемые группы, ансамбли, колонки, ядра.

Нейроны различаются по строению и функции.

По строению (в зависимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные ) нейроны, несущие возбуждение от рецепторов в , эфферентные , двигательные , мотонейроны (или центробежные), передающие возбуждение из ЦНС к иннервируемому органу, и вставочные , контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные нейроны.

Афферентные нейроны относятся к униполярным, их тела лежат в спинномозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в ЦНС и выполняет функцию аксона, а другая подходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относятся к мультиполярным (рис. 1). Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, а также находятся и во всех других отделах ЦНС. Они могут быть и биполярными, например нейроны сетчатки, имеющие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Рис. 1. Строение нервной клетки:

1 — микротрубочки; 2 — длинный отросток нервной клетки (аксон); 3 — эндоплазматический ретикулум; 4 — ядро; 5 — нейроплазма; 6 — дендриты; 7 — митохондрии; 8 — ядрышко; 9 — миелиновая оболочка; 10 — перехват Ранвье; 11 — окончание аксона

Нейроглия

Нейроглия , или глия , — совокупность клеточных элементов нервной ткани, образованная специализированными клетками различной формы.

Она обнаружена Р. Вирховым и названа им нейроглией, что обозначает «нервный клей». Клетки нейроглии заполняют пространство между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3-4 раза меньше нервных клеток; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Установлено, что нейроглия имеет отношение к обмену веществ в нервной ткани. Некоторые клетки нейроглии выделяют вещества, влияющие на состояние возбудимости нейронов. Отмечено, что при различных психических состояниях изменяется секреция этих клеток. С функциональным состоянием нейроглии связывают длительные следовые процессы в ЦНС.

Виды глиальных клеток

По характеру строения глиальных клеток и их расположению в ЦНС выделяют:

  • астроциты (астроглия);
  • олигодендроциты (олигодендроглия);
  • микроглиальные клетки (микроглия);
  • шванновские клетки.

Глиальные клетки выполняют опорную и защитную функции для нейронов. Они входят в структуру . Астроциты являются самыми многочисленными глиальными клетками, заполняющими пространства между нейронами и покрывающими . Они предотвращают распространение в ЦНС нейромедиаторов, диффундирующих из синаптической щели. В астроцитов имеются рецепторы к нейромедиаторам, активация которых может вызывать колебания мембранной разности потенциалов и изменения метаболизма астроцитов.

Астроциты плотно окружают капилляры кровеносных сосудов мозга, располагаясь между ними и нейронами. На этом основании предполагают, что астроциты играют важную роль в метаболизме нейронов, регулируя проницаемость капилляров для определенных веществ .

Одной из важных функций астроцитов является их способность поглотать избыток ионов К+, которые могут накапливаться в межклеточном пространстве при высокой нейронной активности. В областях плотного прилегания астроцитов формируются каналы щелевых контактов, через которые астроциты могут обмениваться различными ионами небольшого размера и, в частности, ионами К+ Это увеличивает возможности поглощения ими ионов К+ Неконтролируемое накопление ионов К+ в межнейронном пространстве приводило бы к повышению возбудимости нейронов. Тем самым астроциты, поглощая избыток ионов К+ из интерстициальной жидкости, предотвращают повышение возбудимости нейронов и формирование очагов повышенной нейронной активности. Появление таких очагов в мозге человека может сопровождаться тем, что их нейроны генерируют серии нервных импульсов, которые называют судорожными разрядами.

Астроциты принимают участие в удалении и разрушении нейромедиаторов, поступающих во внесинаптические пространства. Тем самым они предотвращают накопление в межнейрональных пространствах нейромедиаторов, которое могло бы привести к нарушению функций мозга.

Нейроны и астроциты разделены межклеточными щелями 15-20 мкм, называемыми интерстициальным пространством. Интерстициальные пространства занимают до 12-14% объема мозга. Важным свойством астроцитов является их способность поглощать из внеклеточной жидкости этих пространств СО2, и тем самым поддерживать стабильной рН мозга .

Астроциты участвуют в формировании поверхностей раздела между нервной тканью и сосудами мозга, нервной тканью и оболочками мозга в процессе роста и развития нервной ткани.

Олигодендроциты характеризуются наличием небольшого числа коротких отростков. Одной из их основных функций является формирование миелиновой оболочки нервных волокон в пределах ЦНС . Эти клетки располагаются также в непосредственной близости от тел нейронов, но функциональное значение этого факта неизвестно.

Клетки микроглии составляют 5-20% от общего количества глиальных клеток и рассеяны по всей ЦНС. Установлено, что антигены их поверхности идентичны антигенам моноцитов крови. Это свидетельствует об их происхождении из мезодермы, проникновении в нервную ткань во время эмбрионального развития и последующей трансформации в морфологически распознаваемые клетки микроглии. В связи с этим принято считать, что важнейшей функцией микроглии является защита мозга. Показано, что при повреждении нервной ткани в ней возрастает число фагоцитирующих клеток за счет макрофагов крови и активации фагоцитарных свойств микроглии. Они удаляют погибшие нейроны, глиальные клетки и их структрурные элементы, фагоцитируют инородные частицы.

Шванновские клетки формируют миелиновую оболочку периферических нервных волокон за пределами ЦНС. Мембрана этой клетки многократно обертывается вокруг , и толщина образующейся миелиновой оболочки может превысить диаметр нервного волокна. Длина миелинизированных участков нервного волокна составляет 1-3 мм. В промежутках между ними (перехваты Ранвье) нервное волокно остается покрытым только поверхностной мембраной, обладающей возбудимостью.

Одним из важнейших свойств миелина является его высокое сопротивление электрическому току. Оно обусловлено высоким содержанием в миелине сфингомиелина и других фосфолипидов, придающих ему токоизолирующие свойства. На участках нервного волокна, покрытых миелином, процесс генерации нервных импульсов невозможен. Нервные импульсы генерируются только на мембране перехватов Ранвье, что обеспечивает более высокую скорость проведения нервных импульсов но миелинизированным нервным волокнам в сравнении с немиелинизированными.

Известно, что структура миелина может легко нарушаться при инфекционных, ишемических, травматических, токсических повреждениях нервной системы. При этом развивается процесс демиелинизации нервных волокон. Особенно часто демиелинизация развивается при заболевании рассеянным склерозом. В результате демиелинизации скорость проведения нервных импульсов по нервным волокнам уменьшается, скорость доставки в мозг информации от рецепторов и от нейронов к исполнительным органам падает. Это может вести к нарушениям сенсорной чувствительности, нарушениям движений, регуляции работы внутренних органов и другим тяжелым последствиям.

Структура и функции нейронов

Нейрон (нервная клетка) является структурной и функциональной единицей .

Анатомическая структура и свойства нейрона обеспечивают выполнение его основных функций : осуществление метаболизма, получение энергии, восприятие различных сигналов и их обработка, формирование или участие в ответных реакциях, генерация и проведение нервных импульсов, объединение нейронов в нейронные цепи, обеспечивающие как простейшие рефлекторные реакции, так и высшие интегративные функции мозга.

Нейроны состоят из тела нервной клетки и отростков — аксона и дендритов.

Рис. 2. Строение нейрона

Тело нервной клетки

Тело (перикарион, сома) нейрона и его отростки на всем протяжении покрыты нейрональной мембраной. Мембрана тела клетки отличается от мембраны аксона и дендритов содержанием различных , рецепторов, наличием на ней .

В теле нейрона расположена нейроплазма и отграниченные от нее мембранами ядро, шероховатый и гладкий эндоплазматический ретикулум, аппарат Гольджи, митохондрии. В хромосомах ядра нейронов содержится набор генов, кодирующих синтез белков, необходимых для формирования структуры и осуществления функций тела нейрона, его отростков и синапсов. Это белки, выполняющие функции ферментов, переносчиков, ионных каналов, рецепторов и др. Некоторые белки выполняют функции, находясь в нейроплазме, другие — встраиваясь в мембраны органелл, сомы и отростков нейрона. Часть из них, например ферменты, необходимые для синтеза нейромедиаторов, путем аксонального транспорта доставляются в аксонную терминаль. В теле клетки синтезируются пептиды, необходимые для жизнедеятельности аксонов и дендритов (например, ростовые факторы). Поэтому при повреждении тела нейрона его отростки дегенерируют, разрушаются. Если же тело нейрона сохранено, а поврежден отросток, то происходит его медленное восстановление (регенерация) и восстановление иннервации денервированных мышц или органов.

Местом синтеза белков в телах нейронов является шероховатый эндоплазматический ретикулум (тигроидные гранулы или тела Ниссля) или свободные рибосомы. Содержание их в нейронах выше, чем в глиальных или других клетках организма. В гладком эндоплазматическом ретикулуме и аппарате Гольджи белки приобретают свойственную им пространственную конформацию, сортируются и направляются в транспортные потоки к структурам тела клетки, дендритов или аксона.

В многочисленных митохондриях нейронов в результате процессов окислительного фосфорилирования образуется АТФ, энергия которой используется для поддержания жизнедеятельности нейрона, работы ионных насосов и поддержания асимметрии ионных концентраций но обе стороны мембраны. Следовательно, нейрон находится в постоянной готовности не только к восприятию различных сигналов, но и к ответной реакции на них — генерации нервных импульсов и их использованию для управления функциями других клеток.

В механизмах восприятия нейронами различных сигналов принимают участие молекулярные рецепторы мембраны тела клетки, сенсорные рецепторы, образованные дендритами, чувствительные клетки эпителиального происхождения. Сигналы от других нервных клеток могут поступать к нейрону через многочисленные синапсы, образованные на дендритах или на геле нейрона.

Дендриты нервной клетки

Дендриты нейрона формируют дендритное дерево, характер ветвления и размер которого зависят от числа синаптических контактов с другими нейронами (рис. 3). На дендритах нейрона имеются тысячи синапсов, образованных аксонами или дендритами других нейронов.

Рис. 3. Синаптические контакты интернейрона. Стрелками слева показано поступление афферентных сигналов к дендритам и телу интернейрона, справа — направление распространения эфферентных сигналов интернейрона к другим нейронам

Синапсы могут быть гетерогенными как по функции (тормозные, возбуждающие), так и по типу используемого нейромедиатора. Мембрана дендритов, участвующая в образовании синапсов, является их постсинаптической мембраной, в которой содержатся рецепторы (лигандзависимые ионные каналы) к нейромедиатору, используемому в данном синапсе.

Возбуждающие (глутаматергические) синапсы располагаются преимущественно на поверхности дендритов, где имеются возвышения, или выросты (1-2 мкм), получившие название шипиков. В мембране шипиков имеются каналы, проницаемость которых зависит от трансмембранной разности потенциалов. В цитоплазме дендритов в области шипиков обнаружены вторичные посредники внутриклеточной передачи сигналов, а также рибосомы, на которых синтезируется белок в ответ на поступление синаптических сигналов. Точная роль шипиков остается неизвестной, но очевидно, что они увеличивают площадь поверхности дендритного дерева для образования синапсов. Шипики являются также структурами нейрона для получения входных сигналов и их обработки. Дендриты и шипики обеспечивают передачу информации от периферии к телу нейрона. Мембрана дендритов в покос поляризована благодаря асимметричному распределению минеральных ионов, работе ионных насосов и наличию в ней ионных каналов. Эти свойства лежат в основе передачи по мембране информации в виде локальных круговых токов (электротонически), которые возникают между постсинаптическими мембранами и граничащими с ними участками мембраны дендрита.

Локальные токи при их распространении по мембране дендрита затухают, но оказываются достаточными по величине для передачи на мембрану тела нейрона сигналов, поступивших через синаптические входы к дендритам. В мембране дендритов пока не выявлено потенциалзависимых натриевых и калиевых каналов. Она не обладает возбудимостью и способностью генерировать потенциалы действия. Однако известно, что по ней может распространяться потенциал действия, возникающий на мембране аксонного холмика. Механизм этого явления неизвестен.

Предполагается, что дендриты и шипики являются частью нейронных структур, участвующих в механизмах памяти. Количество шипиков особенно велико в дендритах нейронов коры мозжечка, базальных ганглиев, коры мозга. Площадь дендритного дерева и число синапсов уменьшаются в некоторых полях коры мозга пожилых людей.

Аксон нейрона

Аксон - отросток нервной клетки, не встречающийся в других клетках. В отличие от дендритов, число которых у нейрона различно, аксон у всех нейронов один. Его длина может достигать до 1,5 м. В месте выхода аксона из тела нейрона имеется утолщение — аксонный холмик, покрытый плазматической мембраной, которая вскоре покрывается миелином. Участок аксонного холмика, непокрытый миелином, называют начальным сегментом. Аксоны нейронов вплоть до своих конечных разветвлений покрыты миелиновой оболочкой, прерываемой перехватами Ранвье — микроскопическими безмиелиновыми участками (около 1 мкм).

На всем протяжении аксон (миелинизированного и немиелинизированного волокна) покрыт бислойной фосфолипидной мембраной со встроенными в нее белковыми молекулами, которые выполняют функции транспорта ионов, потенциалзависимых ионных каналов и др. Белки распределены равномерно в мембране немиелинизированного нервного волокна, а в мембране миелинизированного нервного волокна они располагаются преимущественно в области перехватов Ранвье. Поскольку в аксоплазме нет шероховатого ретикулума и рибосом, то очевидно, что эти белки синтезируются в теле нейрона и доставляются в мембрану аксона посредством аксонального транспорта.

Свойства мембраны, покрывающей тело и аксон нейрона , различны. Это различие касается прежде всего проницаемости мембраны для минеральных ионов и обусловлено содержанием различных типов . Если в мембране тела и дендритов нейрона превалирует содержание лигандзависимых ионных каналов (в том числе постсинаптических мембран), то в мембране аксона, особенно в области перехватов Ранвье, имеется высокая плотность потенциалзависимых натриевых и калиевых каналов.

Наименьшей величиной поляризации (около 30 мВ) обладает мембрана начального сегмента аксона. В более удаленных от тела клетки участках аксона величина трансмембранного потенциала составляет около 70 мВ. Низкая величина поляризации мембраны начального сегмента аксона обусловливает то, что в этой области мембрана нейрона обладает наибольшей возбудимостью. Именно сюда и распространяются по мембране тела нейрона с помощью локальных круговых электрических токов постсинаптические потенциалы, возникшие на мембране дендритов и тела клетки в результате преобразования в синапсах информационных сигналов, поступивших к нейрону. Если эти токи вызовут деполяризацию мембраны аксонного холмика до критического уровня (Е к), то нейрон ответит на поступление к нему сигналов от других нервных клеток генерацией своего потенциала действия (нервного импульса). Возникший нервный импульс далее проводится по аксону к другим нервным, мышечным или железистым клеткам.

На мембране начального сегмента аксона имеются шипики, на которых образуются ГАМК-ергические тормозные синапсы. Поступление сигналов по этим от других нейронов может предотвращать генерацию нервного импульса.

Классификация и виды нейронов

Классификация нейронов проводится как по морфологическим, так и по функциональным признакам.

По количеству отростков различают мультиполярные, биполярные и псевдоуниполярные нейроны.

По характеру связей с другими клетками и выполняемой функции различают сенсорные, вставочные и двигательные нейроны. Сенсорные нейроны называют также афферентными нейронами, а их отростки — центростремительными. Нейроны, выполняющие функцию передачи сигналов между нервными клетками, называют вставочными , или ассоциативными. Нейроны, аксоны которых образуют синапсы на эффекторных клетках (мышечных, железистых), относят к двигательным, или эфферентным , их аксоны называют центробежными.

Афферентные (чувствительные) нейроны воспринимают информацию сенсорными рецепторами, преобразуют ее в нервные импульсы и проводят к головного и спинного мозга. Тела чувствительных нейронов находятся в спинальных и черепно-мозговых . Это псевдоуниполярные нейроны, аксон и дендрит которых отходят от тела нейрона вместе и затем разделяются. Дендрит следует на периферию к органам и тканям в составе чувствительных или смешанных нервов, а аксон в составе задних корешков входит в дорсальные рога спинного мозга или в составе черепных нервов — в головной мозг.

Вставочные , или ассоциативные, нейроны выполняют функции переработки поступающей информации и, в частности, обеспечивают замыкание рефлекторных дуг. Тела этих нейронов располагаются в сером веществе головного и спинного мозга.

Эфферентные нейроны также выполняют функцию переработки поступившей информации и передачи эфферентных нервных импульсов от головного и спинного мозга к клеткам исполнительных (эффекторных) органов.

Интегративная деятельность нейрона

Каждый нейрон получает огромное количество сигналов через многочисленные синапсы, расположенные на его дендритах и теле, а также через молекулярные рецепторы плазматических мембран, цитоплазмы и ядра. В передаче сигналов используется множество различных типов нейромедиаторов, нейромодуляторов и других сигнальных молекул. Очевидно, что для формирования ответной реакции на одновременное поступление множества сигналов, нейрон должен обладать способностью их интегрировать.

Совокупность процессов, обеспечивающих обработку поступающих сигналов и формирование на них ответной реакции нейрона, входит в понятие интегративной деятельности нейрона.

Восприятие и обработка сигналов, поступающих к нейрону, осуществляется при участии дендритов, тела клетки и аксонного холмика нейрона (рис. 4).

Рис. 4. Интеграция сигналов нейроном.

Одним из вариантов их обработки и интеграции (суммирования) является преобразование в синапсах и суммирование постсинаптических потенциалов на мембране тела и отростков нейрона. Воспринятые сигналы преобразуются в синапсах в колебание разности потенциалов постсинаптической мембраны (постсинаптические потенциалы). В зависимости от типа синапса полученный сигнал может быть преобразован в небольшое (0,5-1,0 мВ) деполяризующее изменение разности потенциалов (ВПСП — синапсы на схеме изображены в виде светлых кружков) либо гиперполяризующее (ТПСП — синапсы на схеме изображены в виде черных кружков). К разным точкам нейрона могут поступать одновременно множество сигналов, часть из которых трансформируется в ВПСП, а другие — в ТПСП.

Эти колебания разности потенциалов распространяются с помощью локальных круговых токов по мембране нейрона в направлении аксонного холмика в виде волн деполяризации (на схеме белого цвета) и гиперполяризации (на схеме черного цвета), накладывающихся друг на друга (на схеме участки серого цвета). При этом наложении амплитуды волны одного направления суммируются, а противоположных — уменьшаются (сглаживаются). Такое алгебраическое суммирование разности потенциалов на мембране получило название пространственного суммирования (рис. 4 и 5). Результатом этого суммирования может быть либо деполяризация мембраны аксонного холмика и генерация нервного импульса (случаи 1 и 2 на рис. 4), либо ее гиперполяризация и предотвращение возникновения нервного импульса (случаи 3 и 4 на рис. 4).

Для того чтобы сместить разность потенциалов мембраны аксонного холмика (около 30 мВ) до Е к, ее надо деполяризовать на 10-20 мВ. Это приведет к открытию имеющихся в ней потенциалзависимых натриевых каналов и генерации нервного импульса. Поскольку при поступлении одного ПД и его преобразовании в ВПСП деполяризация мембраны может достигать до 1 мВ, а се распространение к аксонному холмику идет с затуханием, то для генерации нервного импульса требуетсяодновременное поступление к нейрону через возбуждающие синапсы 40-80 нервных импульсов от других нейронов и суммирование такого же количества ВПСП.

Рис. 5. Пространственная и временная суммация ВПСП нейроном; а — BПСП на одиночный стимул; и — ВПСП на множественную стимуляцию от разных афферентов; в — ВПСП на частую стимуляцию через одиночное нервное волокно

Если в это время к нейрону поступит некоторое количество нервных импульсов через тормозные синапсы, то его активация и генерация ответного нервного импульса будет возможной при одновременном увеличении поступления сигналов через возбуждающие синапсы. В условиях, когда сигналы, поступающие через тормозные синапсы вызовут гиперполяризацию мембраны нейрона, равную или превышающую по величине деполяризацию, вызванную сигналами, поступающими через возбуждающие синапсы, деполяризация мембраны аксонного холмика будет невозможна, нейрон не будет генерировать нервные импульсы и станет неактивным.

Нейрон осуществляет также временное суммирование сигналов ВПСП и ТПСП, поступающих к нему почти одновременно (см. рис. 5). Вызываемые ими изменения разности потенциалов в околосинаптических областях также могут алгебраически суммироваться, что и получило название временного суммирования.

Таким образом, каждый генерируемый нейроном нервный импульс, равно как и период молчания нейрона, заключает информацию, поступившую от множества других нервных клеток. Обычно чем выше частота поступающих к нейрону сигналов от других клеток, тем с большей частотой он генерирует ответные нервные импульсы, посылаемые им по аксону к другим нервным или эффекторным клеткам.

В силу того что в мембране тела нейрона и даже его дендритов имеются (хотя и в небольшом числе) натриевые каналы, потенциал действия, возникший на мембране аксонного холмика, может распространяться на тело и некоторую часть дендритов нейрона. Значение этого явления недостаточно ясно, но предполагается, что распространяющийся потенциал действия на мгновение сглаживает все имевшиеся на мембране локальные токи, обнуляет потенциалы и способствует более эффективному восприятию нейроном новой информации.

В преобразовании и интеграции сигналов, поступающих к нейрону, принимают участие молекулярные рецепторы. При этом их стимуляция сигнальными молекулами может вести через инициированные (G-белками, вторыми посредниками) изменения состояния ионных каналов, трансформации воспринятых сигналов в колебание разности потенциалов мембраны нейрона, суммированию и формированию ответной реакции нейрона в виде генерации нервного импульса или его торможению.

Преобразование сигналов метаботропными молекулярными рецепторами нейрона сопровождается его ответом в виде запуска каскада внутриклеточных превращений. Ответной реакцией нейрона в этом случае может быть ускорение общего метаболизма, увеличение образования АТФ, без которых невозможно повышение его функциональной активности. С использованием этих механизмов нейрон интегрирует полученные сигналы для улучшения эффективности своей собственной деятельности.

Внутриклеточные превращения в нейроне, инициированные полученными сигналами, часто ведут к усилению синтеза белковых молекул, выполняющих в нейроне функции рецепторов, ионных каналов, переносчиков. Увеличивая их количество, нейрон приспосабливается к характеру поступающих сигналов, усиливая чувствительность к более значимым из них и ослабляя — к менее значимым.

Получение нейроном ряда сигналов может сопровождаться экспрессией или репрессией некоторых генов, например контролирующих синтез нейромодуляторов пептидной природы. Поскольку они доставляются в аксонные терминали нейрона и используются в них для усиления или ослабления действия его нейромедиаторов на другие нейроны, то нейрон в ответ на полученные им сигналы может в зависимости от получаемой информации оказывать более сильное или более слабое влияние на контролируемые им другие нервные клетки. С учетом того что модулирующее действие нейропептидов способно продолжаться в течение длительного времени, влияние нейрона на другие нервные клетки также может продолжаться долго.

Таким образом, благодаря способности интегрировать различные сигналы нейрон может тонко реагировать на них широким спектром ответных реакций, позволяющих эффективно приспосабливаться к характеру поступающих сигналов и использовать их для регуляции функций других клеток.

Нейронные цепи

Нейроны ЦНС взаимодействуют друг с другом, образуя в месте контакта разнообразные синапсы. Возникающие при этом нейронные пени многократно увеличивают функциональные возможности нервной системы. К наиболее распространенным нейронным цепям относят: локальные, иерархические, конвергентные и дивергентные нейронные цепи с одним входом (рис. 6).

Локальные нейронные цепи образуются двумя или большим числом нейронов. При этом один из нейронов (1) отдаст свою аксонную коллатераль нейрону (2), образуя на его теле аксосоматический синапс, а второй — образует аксоном синапс на теле первого нейрона. Локальные нейронные сети могут выполнять функцию ловушек, в которых нервные импульсы способны длительно циркулировать по кругу, образованному несколькими нейронами.

Возможность длительной циркуляции однажды возникшей волны возбуждения (нервного импульса) за счет передачи но кольцевой структуре, экспериментально показал профессор И.А. Ветохин в опытах на нервном кольце медузы.

Круговая циркуляция нервных импульсов по локальным нейронным цепям выполняет функцию трансформации ритма возбуждений, обеспечивает возможность длительного возбуждения после прекращения поступления к ним сигналов, участвует в механизмах запоминания поступающей информации.

Локальные цепи могут выполнять также тормозную функцию. Примером ее является возвратное торможение, которое реализуется в простейшей локальной нейронной цепи спинного мозга, образуемой а-мотонейроном и клеткой Реншоу.

Рис. 6. Простейшие нейронные цепи ЦНС. Описание в тексте

При этом возбуждение, возникшее в мотонейроне, распространяется по ответвлению аксона, активирует клетку Реншоу, которая тормозит а-мотонейрон.

Конвергентные цепи образуются несколькими нейронами, на один из которых (обычно эфферентный) сходятся или конвергируют аксоны ряда других клеток. Такие цепи широко распространены в ЦНС. Например, на пирамидные нейроны первичной моторной коры конвергируют аксоны многих нейронов чувствительных полей коры. На моторные нейроны вентральных рогов спинного мозга конвергируют аксоны тысяч чувствительных и вставочных нейронов различных уровней ЦНС. Конвергентные цепи играют важную роль в интеграции сигналов эфферентными нейронами и осуществлении координации физиологических процессов.

Дивергентные цепи с одним входом образуются нейроном с ветвящимся аксоном, каждая из ветвей которого образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Это достигается за счет сильного ветвления (образования нескольких тысяч веточек) аксона. Такие нейроны часто встречаются в ядрах ретикулярной формации ствола мозга. Они обеспечивают быстрое повышение возбудимости многочисленных отделов мозга и мобилизацию его функциональных резервов.

Для чего они нужны? Почему их так много? Что собой представляет чувствительный нейрон? Какую функцию выполняют вставочные и исполнительные нейроны? Давайте познакомимся поближе с этими потрясающими клетками.

Функции

Ежесекундно через наш головной мозг проходит множество сигналов. Процесс не останавливается даже во сне. Организму нужно воспринимать окружающий мир, совершать движения, обеспечивать работу сердца, дыхательной, пищеварительной, мочеполовой системы и т.д. В организации всей этой деятельности участвуют две основные группы нейронов – чувствительные и двигательные.

Когда мы притрагиваемся к холодному или горячему и чувствуем температуру предмета – это заслуга именно чувствительных клеток. Они мгновенно передают полученную с периферии организма информацию. Так обеспечивается рефлекторная деятельность.

Нейроны формируют всю нашу ЦНС. Главные их задачи:

  1. получить информацию;
  2. передать ее по нервной системе.

Эти уникальные клетки способны мгновенно передавать электрические импульсы.

Чтобы обеспечить процесс жизнедеятельности, организм должен обрабатывать огромное количество информации, которая поступает к нему из окружающего мира, реагировать на любой признак изменения условий среды. Чтобы сделать этот процесс максимально эффективным, нейроны делятся по своим функциям на:

  • Чувствительные (афферентные) – это наши проводники в окружающий мир. Именно они воспринимают информацию извне, от органов чувств, и передают их в ЦНС. Особенность в том, что благодаря их контактной деятельности, мы чувствуем температуру, боль, давление, имеем другие чувства. Чувствительные клетки узкой специализации осуществляют передачу вкуса, запаха.
  • Двигательные (моторные, эфферентные, мотонейроны). Двигательные нейроны передают информацию через электрические импульсы от ЦНС к мышечным группам, железам.
  • Промежуточные (ассоциативные, интеркалярные, вставочные). Теперь подробнее разберемся, какую функцию выполняют вставочные нейроны, для чего они вообще нужны, в чем их отличие. Они располагаются между чувствительными и двигательными нейронами. Вставочные нейроны передают нервные импульсы от чувствительных волокон к двигательным. Они обеспечивают «общение» между эфферентными и афферентными нервными клетками. К ним нужно относиться, как к своеобразным природным «удлинителям», длинным полостям, которые помогают транслировать сигнал от сенсорного нейрона к двигательному. Без их участия это было бы невозможно сделать. В этом и заключается их функция.

Сами рецепторы – это специально отведенные для данной функции клетки кожи, мышц, внутренних органов, суставов. Рецепторы могут начинаться еще в клетках эпидермиса, слизистой. Они умеют точно улавливать мельчайшие изменения, как снаружи организма, так и внутри него. Такие изменения могут быть физическими или химическими. Затем они молниеносно преображаются в специальные биоэлектрические импульсы и отправляются непосредственно к сенсорным нейронам. Так сигнал проходит путь от периферии к центру организма, где мозг расшифровывает его значение.

Импульсы от органа в мозг проводят все три группы нейронов – двигательные, чувствительные и промежуточные. Из этих групп клеток и состоит нервная система человека. Такое строение позволяет реагировать на сигналы из окружающего мира. Они обеспечивают рефлекторную деятельность организма.

Если человек перестает чувствовать вкус, запах, снижается слух, зрение, это может указывать на нарушения в ЦНС. В зависимости от того, какие органы чувств задеты, невропатолог может определить, в каком отделе мозга возникли проблемы.

1) Соматическая. Это сознательное управление мышцами скелета.

2) Вегетативная (автономная). Это неконтролируемое сознанием управление внутренними органами. Работа этой системы происходит, даже если человек находится в состоянии сна.

Сенсорные нейроны чаще всего униполярные. Это означает, что они снабжены лишь одним раздваивающимся отростком. Он выходит из тела клетки (сомы) и выполняет сразу функции и аксона, и дендрита. Аксон – это вход, а дендрит чувствительного нейрона – выход. После возбуждения чувствительных сенсорных клеток по аксону и дендриту проходит биоэлектрический сигнал.

Встречаются и биполярные нервные клетки, которые имеют соответственно два отростка. Их можно обнаружить, например, в сетчатке, структурах внутреннего уха.

Тело чувствительной клетки по своей форме напоминает веретено. От тела отходит 1, а чаще 2 отростка (центральный и периферический).

Периферический по своей форме очень напоминает толстую длинную палочку. Он достигает поверхности слизистой или кожи. Такой отросток похож на дендрит нервных клеток.

Второй, противоположный отросток, отходит от противоположной части тела клетки и по форме напоминает тонкую нить, покрытую вздутиями (их называют варикозности). Это аналог нервного отростка нейрона. Данный отросток направлен в определенный отдел ЦНС и так разветвляется.

Чувствительные клетки еще называют периферическими. Их особенность в том, что они непосредственно находятся за периферической нервной системой и ЦНС, но без них работа данных систем немыслима. Например, обонятельные клетки размещены в эпителии слизистой носа.

Как они работают

Функция чувствительного нейрона состоит в приеме сигнала от специальных рецепторов, расположенных на периферии организма, определении его характеристик. Импульсы воспринимаются периферическими отростками чувствительных нейронов, затем они передаются к их телу, а потом по центральным отросткам следуют непосредственно к ЦНС.

Дендриты сенсорных нейронов соединяются с различными рецепторами, а их аксоны – с остальными нейронами (вставочными). Для нервного импульса самым простым путем становится следующий – он должен пройти по трем нейронам: сенсорному, вставочному, моторному.

Самый типичный пример прохождения импульса – когда невропатолог стучит молоточком по коленному суставу. При этом моментально срабатывает простой рефлекс: коленное сухожилие после удара по нему приводит в движение мышцу, которая к нему прикреплена; чувствительные клетки от мышцы передают сигнал по чувствительным нейронам непосредственно в спинной мозг. Там сенсорные нейроны устанавливают контакт с двигательными, а те посылают импульсы обратно в мышцу, приводя ее в сокращение, нога при этом выпрямляется.

Кстати, в спинном мозге у каждого отдела (шейный, грудной, поясничный, крестцовый, копчиковый) находится сразу пара корешков: чувствительный задний, двигательный передний. Они образовывают единый ствол. Каждая из этих пар контролирует свою определенную часть тела и посылает центробежный сигнал, что делать дальше, как располагать конечность, туловище, что делать железе и т.д.

Чувствительные нейроны принимают участие в работе рефлекторной дуги. Она состоит из 5 элементов:

  1. Рецептор. Преобразует в нервный импульс раздражение.
  2. Импульс по нейрону следует от рецептора в ЦНС.
  3. Вставочный нейрон, который расположен в мозге, передает сигнал от нейрона чувствительного к исполнительному.
  4. По двигательному (исполнительному) нейрону основной импульс от мозга проводится к органу.
  5. Орган (исполнительный) – это мышца, железа и т.д. Он реагирует на полученный сигнал сокращением, выделением секрета и т.д.

Вывод

Биология человеческого организма очень продумана и совершенна. Благодаря деятельности множества чувствительных нейронов мы можем взаимодействовать с этим удивительным миром, реагировать на него. Наш организм очень восприимчивый, развитие его рецепторов и чувствительных нервных клеток достигло высочайшего уровня. Благодаря такой продуманной организации ЦНС наши органы чувств могут воспринимать и передавать мельчайшие оттенки вкуса, запаха, тактильных ощущений, звука, цвета.

Нередко мы считаем, что главное в нашем сознании и деятельности организма – это кора и полушария мозга. При этом мы забываем, какие колоссальные возможности обеспечивает мозг спинной. Именно функционирование спинного мозга обеспечивает получение сигналов от всех рецепторов.

Трудно назвать предел этих возможностей. Наш организм очень пластичен. Чем больше человек развивается, тем больше возможностей предоставляется в его распоряжение. Такой простой принцип позволяет нам быстро приспособиться к изменениям окружающего мира.

Вставочные нейроны (также интернейроны, кондукторные или промежуточные, interneuron) – тип , которые обычно расположены в интегральных частях , чьи (выходные элементы) и (отростки) ограничены одной областью мозга.

Эта особенность отличает их от иных , которые часто имеют аксональные проекции вне области мозга, где расположены их клеточные тела и дендриты.

В то время, как на основные сети нейронов возложены функции обработки и хранения информации, а также образование основных источников вывода информации с любой области мозга, то кондукторные нейроны по определению имеют местные аксоны, управляющие активностью.

В качестве нейротрансмиттера сенсорные и моторные нейроны используют глютамат, а кондукторные чаще используют гамма-аминомасляную кислоту () для ингибирования.

Интернейроны работают посредством гиперполяризации больших групп основных клеток. Промежуточные нейроны спинного мозга могут использовать глицин или ГАМК и глицин для ингибирования основных клеток, тогда как вставочные нейроны кортикальных областей или базальных ганглиев могут выделять различные пептиды (холецистокинин, соматостатин, вазоактивный кишечный полипептид, энкефалины, нейпопептид Y, галанин и др.) и ГАМК.

Их разнообразие, как по структуре, так и по функциональности, возрастает со сложностью локальных сетей в обусловленной области мозга, что, вероятно, коррелируется со сложностью функций, выполняемых областью мозга. Соответственно, шестислойный (новая кора больших полушарий), как центр высших психических функций, таких как сознательное восприятие или познание, имеет наибольшее количество типов вставочных нейронов.

Видео о принципе строения и работы interneuron (на английском языке):

Роль вставочных нейронов в работе спинного мозга

Интеграция сигналов обратной сенсорной связи и центральных моторных команд на нескольких уровнях центральной нервной системы играет решающую роль в управлении движением.

Исследования спинного мозга кошки показали, что рецепторные афференты и нисходящие двигательные пути на этом уровне сходятся в общих спинных интернейронах.

Исследования и человека зафиксировали, как интеграция моторных команд и сигналов рецепторных откликов используются для контроля активности мышц во время движения. Во время перемещения совокупность конвергентных входящих сигналов от центрального генератора упорядоченной активности (нейронная сеть, подающая ритмически упорядоченные моторные сигналы без обратной связи), сенсорной обратной связи, нисходящих команд и других присущих свойств, вызванных различными нейромедиаторами, приводит к активности кондукторных нейронов.

Нейротрансмиттеры

Сенсорная информация, передающаяся в спинной мозг, модулируется сложной сетью возбуждающих и ингибирующих вставочных нейронов. Различные нейротрансмиттеры выделяются из различных интернейронов, но два наиболее распространенных нейромедиатора – это ГАМК, — первичный ингибирующий нейротрансмиттер, и глютамат, — первичный возбуждающий нейротрансмиттер. – , активирующий интернейроны путем связывания с рецептором на мембране.

Ингибирующий интернейрон

Суставы контролируются двумя противоположными наборами мышц, называемыми экстензорами и сгибателями, которые должны синхронно работать для обеспечения правильного заданного движения. Когда нервно-мышечное веретено растягивается, а рефлекс растягивания активируется, противоположные мышцы необходимо блокировать, чтобы предотвратить работу мышцы-агониста. Спинной интернейрон ответственный за ее ингибирование. Таким образом, во время умышленного движения ингибирующие вставочные нейроны используются для координации сокращения мышц.

Афферентная иннервация мышц-антагонистов не возможна без работы интернейронов

Вопрос 1.

МЕСТОМ ЛОКАЛИЗАЦИИ ЦЕНТРА ЗРИТЕЛЬНОГО АНАЛИЗАТОРА ЯВЛЯЮТСЯ

б. ЗРИТЕЛЬНЫЕ НЕРВЫ

в. РЕЦЕПТОРНЫЕ КЛЕТКИ СЕТЧАТКИ

г. ЗРИТЕЛЬНЫЕ ТРАКТЫ

Вопрос 2.

ВЫПОЛНЯЮЩИМ ПРОВОДНИКОВУЮ ФУНКЦИЮ, ОТНОСЯТСЯ

а. ЗАТЫЛОЧНЫЕ ДОЛИ КОРЫ КОНЕЧНОГО МОЗГА

б. РЕЦЕПТОРНЫЕ КЛЕТКИ СЕТЧАТКИ

в. ЗРИТЕЛЬНЫЕ НЕРВЫ

г. ЗРИТЕЛЬНЫЕ ТРАКТЫ

Вопрос 3.

К СТРУКТУРАМ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА,

ВЫПОЛНЯЮЩИМ ФОТОЧУВСТВИТЕЛЬНУЮ ФУНКЦИЮ, ОТНОСЯТСЯ

а. ЗАТЫЛОЧНЫЕ ДОЛИ КОРЫ КОНЕЧНОГО МОЗГА

б. ЗРИТЕЛЬНЫЕ НЕРВЫ

в. ЗРИТЕЛЬНЫЕ ТРАКТЫ

г. РЕЦЕПТОРЫ СЕТЧАТКИ

Вопрос 4.

ГОРМОНЫ НАДПОЧЕЧНИКОВ

а. ПОЛОВЫЕ

б. ГЛЮКАГОН

в. ФОЛЛИКУЛОСТИМУЛИРУЮЩИЙ

г. ГЛЮКОКОРТИКОИДЫ

Вопрос 5.

ГОРМОНЫ ЯИЧКА

а. МЕЛАНОТРОПНЫЙ

б. АНДРОГЕНЫ

в. ТИРЕОТРОПНЫЙ

г. СЕРОТОНИН

Вопрос 6.

ГОРМОНЫ ЭПИФИЗА

а. АНДРОГЕНЫ

б. МЕЛАТОНИН

в. ТИРЕОТРОПНЫЙ

Вопрос 7.

НЕРВНЫЕ ЦЕНТРЫ ОБОНЯТЕЛЬНОГО АНАЛИЗАТОРА РАСПОЛОЖЕНЫ

а. В ОБОНЯТЕЛЬНЫХ НЕРВАХ

б. В ОБОНЯТЕЛЬНЫХ ЛУКОВИЦАХ

в. В ЛИМБИЧЕСКОЙ СТРУКТУРЕ ГОЛОВНОГО МОЗГА

г. В РЕЦЕПТОРНЫХ КЛЕТКАХ СЛИЗИСТОЙ НОСА

Вопрос 8.

а. КОНЕЧНЫЙ МОЗГ

б. ПРОМЕЖУТОЧНЫЙ МОЗГ

в. СПИННОЙ МОЗГ

г. ШЕЙНОЕ СПЛЕТЕНИЕ

Вопрос 9.

ПРЕЛОМЛЯЮЩАЯ СИЛА ХРУСТАЛИКА УМЕНЬШАЕТСЯ

а. ПРИ СОКРАЩЕНИИ РЕСНИЧНОЙ МЫШЦЫ

в. ПРИ РАССЛАБЛЕНИИ РЕСНИЧНОЙ МЫШЦЫ

г. ПРИ СОКРАЩЕНИИ СФИНКТЕРА ЗРАЧКА

Вопрос 10.

ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ БАЗАЛЬНЫХ ЯДЕР ГОЛОВНОГО МОЗГА

б. ВЕГЕТАТИВНЫЙ ПОДКОРКОВЫЙ ЦЕНТР

в. РЕГУЛЯЦИЯ СЛОЖНЫХ АВТОМАТИЧЕСКИХ ДВИГАТЕЛЬНЫХ АКТОВ

г. ОРИЕНТИРОВОЧНЫЙ ЗРИТЕЛЬНЫЙ РЕФЛЕКС

Вопрос 11.

ВСТАВОЧНЫЕ НЕЙРОНЫ ЛОКАЛИЗОВАНЫ

а. В БОКОВЫХ РОГАХ СПИННОГО МОЗГА

б. В ПЕРЕДНИХ РОГАХ СПИННОГО МОЗГА

в. В ЗАДНИХ РОГАХ СПИННОГО МОЗГА

г. В СПИНАЛЬНЫХ ГАНГЛИЯХ

Вопрос 12.

МИМИЧЕСКИЕ МЫШЦЫ ИННЕРВИРУЮТСЯ

а. ЯЗЫКОГЛОТОЧНЫМ НЕРВОМ

б. ЛИЦЕВЫМ НЕРВОМ

в. ТРОЙНИЧНЫМ НЕРВОМ

г. БЛУЖДАЮЩИМ НЕРВОМ

Вопрос 13.

К ГИПОФИЗНЕЗАВИСИМЫЕ ЭНДОКРИННЫЕ ЖЕЛЕЗЫ:

б. ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА

в. ЩИТОВИДНАЯ

г. ПАРАЩИТОВИДНЫЕ

д. ПОЛОВЫЕ

Вопрос 14.

ПРИ ГИПЕРФУНКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ ЕЕ ВЛИЯНИЕ НА ОСНОВНОЙ ОБМЕН

а. УСИЛИВАЕТСЯ

б. ПРЕКРАЩАЕТСЯ

в. ОСЛАБЕВАЕТ

Вопрос 15.

ОБОНЯТЕЛЬНУЮ ИНФОРМАЦИЮ ПРОВОДЯТ:

а. РЕЦЕПТОРНЫЕ КЛЕТКИ СЛИЗИСТОЙ НОСА

б. ОБОНЯТЕЛЬНЫЕ НЕРВЫ

в. ОБОНЯТЕЛЬНЫЕ ЛУКОВИЦЫ

г. КРЮЧОК, ПАРАГИППОКАМП

Вопрос 16.

ГОРМОНЫ ВЫРАБАТЫВАЕМЫЕ а-КЛЕТКАМИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ:

а. ИНСУЛИН

б. ГЛЮКОКОРТИКОИД


в. ТРИПСИНОГЕН

г. ГЛЮКАГОН

Вопрос 17.

РЕЦЕПТОРЫ РАВНОВЕСИЯ РАСПОЛОЖЕНЫ

а. КОРТИЕВОМ ОРГАНЕ

б. В ВЕСТИБУЛЯРНОМ АППАРАТЕ

в. В СЛИЗИСТОЙ СРЕДНЕГО УХА

Вопрос 18.

ГОРМОНЫ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

а. ГЛЮКОКОРТИКОИДЫ

б. ИНСУЛИН

в. ЭСТРОГЕНЫ

г. ГЛЮКАГОН

Вопрос 19.

ФАКТОРЫ ВЛИЯЮЩИЕ НА ФУНКЦИЮ ЩИТОВИДНОЙ ЖЕЛЕЗЫ:

а. КОЛИЧЕСТВО ЙОДА ПОСТУПАЮЩЕГО С ПИЩЕЙ

б. УРОВЕНЬ ТТГ(ТИРЕОТРОПНОГО ГОРМОНА) В КРОВИ

в. УВЕЛИЧЕНИЕ ЙОДА В КРОВИ

г. СОСТОЯНИЕ ГИПОФИЗА

Вопрос 20.

ВЫРАБОТКА КАКОГО ГОРМОНА СТИМУЛИРУЕТСЯ ПРИ НЕДОСТАТКЕ

Са+ В КРОВИ:

а. ПАРАТГОРМОНА

б. ИНУЛИНА

в. ТИРЕРЕОКАЛЬЦИОТАНИНА

г. АЛЬДЛСТЕРОНА

Вопрос 21.

ПРИ УМЕНЬШЕНИИ СЕКРЕЦИИ ВАЗОПРЕССИНА (АДГ) ДИУРЕЗ

а. ОТСУТСТВУЕТ

б. УМЕНЬШЕН

в. УВЕЛИЧЕН

Вопрос 22.

ГОРМОНЫ ПЕРЕДНЕЙ ДОЛИ ГИПОФИЗА:

а. ПРОЛАКТИН

б. СОМАТОТРОПНЫЙ

в. ВАЗОПРЕССИН

г. ТИРЕОТРОПНЫЙ

Вопрос 23.

К ГИПОФИЗЗАВИСИМЫЕ ЭНДОКРИННЫЕ ЖЕЛЕЗЫ:

а. ПАРАЩИТОВИДНЫЕ

б. ЩИТОВИДНАЯ

в. ПОЛОВЫЕ

г. НАДПОЧЕЧНИКИ

Вопрос 24.

К МЕЖОБОЛОЧЕЧНЫМ ПРОСТРАНСТВАМ ГОЛОВНОГО МОЗГА ОТНОСЯТСЯ

а. ЭПИДУРАЛЬНОЕ

б. ПАУТИННОЕ

в. СУБАРАХНОИДАЛЬНОЕ

г. СУБДУРАЛЬНОЕ

Вопрос 25.

СПИННОЙ МОЗГ РАСПОЛОЖЕН В КАНАЛЕ

а. СПИННОМОЗГОВОМ

б. ПОЗВОНОЧНОМ

в. КОСТНОМОЗГОВОМ

г. ЧЕРЕПНОМ

Вопрос 26.

КРУГЛОЕ ОКНО ЯВЛЯЕТСЯ ОБРАЗОВАНИЕ СТЕНКИ БАРАБАННОЙ ПОЛОСТИ

а. ПЕРЕДНЕЙ

б. МЕДИАЛЬНОЙ

в. ЛАТЕРАЛЬНОЙ

г. ЗАДНЕЙ

Вопрос 27.

ДЛЯ КОРРЕКЦИИ БЛИЗОРУКОСТИ ИСПОЛЬЗУЮТСЯ ЛИНЗЫ

а. ДВОЯКОВОГНУТЫЕ

б. ПРОСТЫЕ

в. ДВОЯКОВЫПУКЛЫЕ

г. СЛОЖНЫЕ

Вопрос 28.

ГОРМОНАМИ ЗАДНЕЙ ДОЛИ ГИПОФИЗА ЯВЛЯЮТСЯ

а. ВАЗОПРЕССИН

б. ПРОЛАКТИН

в. МЕЛАНОТРОПИН

г. ОКСИТОЦИН

Вопрос 29.

БАРАБАННАЯ ПЕРЕПОНКА ОДЕЛЯЕТ

а. СРЕДНЕЕ ОТ ВНУТРЕННЕГО

б. НАРУЖНОЕ УХО ОТ СРЕДНЕГО

в. НАРУЖНОЕОТ ВНУТРЕННЕГО

Вопрос 30.

ГЛАДКИЕ МЫШЦЫ СОСУДОВ И ВНУТРЕННИХ ОРГАНОВ ИННЕРВИРУЕТ

а. ЯЗЫКОГЛОТОЧНЫЙ НЕРВ

б. БЛУЖДАЮЩИЙ НЕРВ

в. ЛИЦЕВОЙ НЕРВ

г. ТРОЙНИЧНЫЙ НЕРВ

Вопрос 31.

В СРЕДНЕМ МОЗГЕ НАХОДИТСЯ

а. БОКОВЫЕ ЖЕЛУДОЧКИ

б. ЧЕТВЕРТЫЙ ЖЕЛУДОЧЕК

в. ТРЕТИЙ ЖЕЛУДОЧЕК

г. СИЛЬВИЕВ ВОДОПРОВОД

Вопрос 32.

ГОРМОНАМИ ЯИЧНИКОВ

а. АНДРОГЕНЫ

б. ФОЛЛИКУЛОСТИМУЛИРУЮЩИЙ

в. ЭСТРОГЕНЫ

г. ГЛЮКОКОРТИКОИДЫ

Вопрос 33.

ПРЕЛОМЛЯЮЩАЯ СИЛА ХРУСТАЛИКА УВЕЛИЧИВАЕТСЯ

а. ПРИ РАССЛАБЛЕНИИ РЕСНИЧНОЙ МЫШЦЫ

б. ПРИ СОКРАЩЕНИИ ДИЛАТАТОРА ЗРАЧКА

в. ПРИ СОКРАЩЕНИИ СФИНКТЕРА ЗРАЧКА

г. ПРИ СОКРАЩЕНИИ РЕСНИЧНОЙ МЫШЦЫ

Вопрос 34.

ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ЭКСТРАПИРАМИДНОГО ПРОВОДЯЩЕГО ПУТИ

б. БОЛЕВАЯ ЧУВСТВИТЕЛЬНОСТЬ

в. МЫШЕЧНО-СУСТАВНОЕ ЧУВСТВО

Вопрос 35.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ ВЕРХНИХ БУГРОВ ЧЕТВЕРОХОЛМИЯ ГОЛОВНОГО МОЗГА

а. РЕГУЛЯЦИЯ СЛОЖНЫХ АВТОМАТИЧЕСКИХ ДВИГАТЕЛЬНЫХ АКТОВ

Вопрос 36.

РОСТКОВЫЙ СЛОЙ КОЖИ

а. СЕТЧАТЫЙ

б. СОСОЧКОВЫЙ

в. ШИПОВАТЫЙ

г. РОГОВОЙ

Вопрос 37.

ПРИ ДАЛЬНОЗОРКОСТИ ПРЕЛОМЛЯЮЩАЯ СИЛА ХРУСТАЛИКА

а. АДЕКВАТНАЯ

б. В НОРМЕ

в. СЛАБАЯ

г. СИЛЬНАЯ

Вопрос 38.

ПОВЫШЕНИЕ УРОВНЯ ГЛЮКОЗЫ В КРОВИ ХАРАКТЕРНО ПРИ:

а. СНИЖЕНИЕ ФИЛЬТРУЮЩЕЙ СПОСОБНОСТИ ПОЧЕК

б. ПОВЫШЕНИЯ УРОВНЯ ИНСУЛИНА

в. ПОНИЖЕНИИ УРОВНЯ ИНСУЛИНА

г. ПОВЫЩЕНИЯ УРОВНЯ ГЛЮКОГОНА

д. УВЕЛИЧЕНИИ ПОТРЕБЛЕНИЯ САХАРОСОДЕРЖАЩИХ ПРОДУКТОВ

Вопрос 39.

БЕЗ КАКОГО ГОРМОНА НЕВОЗМОЖЕН ТРАНСПОРТ ГЛЮКОЗЫ ИЗ КРОВИ В КЛЕТКИ:

а. ИНСУЛИН

б. ГЛИКОКОРТИКОИДЫ

в. ИНУЛИН

г. ГЛЮКОГОН

Вопрос 40.

ШЕЙНОГО СПЛЕТЕНИЯ ИННЕРВИРУЕТ:

б. ДИАФРАГМУ И ПЕРИКАРД

в. КОЖУ И МЫШЦЫ РУК

г. КОЖУ И МЫШЦЫ ЖИВОТА

Вопрос 41.

ЧУВСТВИТЕЛЬНЫЕ НЕЙРОНЫ ЛОКАЛИЗОВАНЫ

а. В ЗАДНИХ РОГАХ СПИННОГО МОЗГА

б. В СПИНАЛЬНЫХ ГАНГЛИЯХ

в. В БОКОВЫХ РОГАХ СПИННОГО МОЗГА

г. В ПЕРЕДНИХ РОГАХ СПИННОГО МОЗГА

Вопрос 42.

ЗОНА КОЖНОЙ ЧУВСТВИТЕЛЬНОСТИ ЛОКАЛИЗОВАНА

а. В ЗАТЫЛОЧНОЙ ДОЛЕ

в. В ТЕМЕННОЙ ДОЛЕ

Вопрос 43.

ПРИ БЛИЗОРУКОСТИ ПРЕЛОМЛЯЮЩАЯ СИЛА ХРУСТАЛИКА

а. СЛАБАЯ

б. В НОРМЕ

в. АДЕКВАТНАЯ

г. СИЛЬНАЯ

Вопрос 44.

РЕЦЕПТОРЫ СЛУХА РАСПОЛОЖЕНЫ

а. В АМПУЛЯРНЫХ КРИСТАХ

б. В СЛИЗИСТОЙ СРЕДНЕГО УХА

в. В ОТОЛИТОВОМ АППАРАТЕ

г. В КОРТИЕВОМ ОРГАНЕ

Вопрос 45.

ДВИГАТЕЛЬНАЯ ЗОНА КОРЫ ГОЛОВНОГО МОЗГА РАСПОЛОЖЕНА

а. В ЗАДНЕЙ ЦЕНТРАЛЬНОЙ ИЗВИЛИНЕ

б. В ВЕРХНЕЙ ВИСОЧНОЙ ИЗВИЛИНЕ

г. В НИЖНЕЙ ЛОБНОЙ ИЗВИЛИНЕ

Вопрос 46.

ГОРМОНЫ ВЫРАБАТЫВАЕМЫЕ в-КЛЕТКАМИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ:

а. ГЛЮКАГОН

б. ИНСУЛИН

в. ГЛЮКОКОРТИКОИД

г. ТРИПСИНОГЕН

Вопрос 47.

АДРЕНОКОРТИКОТРОНЫЙ (АКТГ) ГОРМОН СТИМУЛИРУЕТ РАБОТУ:

а. ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

б. ТИМУСА

в. НАДПОЧЕЧНИКОВ

г. ПОЛОВЫХ ЖЛЕЗ

Вопрос 48.

ОСНОВНЫЕ ФАКТОРЫ ОПРЕДЕЛЯЮЩИЕ ЭНДОКРИННУЮ АКТИВНОСТЬ:

ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

а. ГИПЕРФУНКЦИЯ ГИПОФИЗА

б. УРОВЕНЬ САХАРА В КРОВИ

в. УРОВЕНЬ МЫШЕЧНЙ РАБОТЫ

Вопрос 49.

ПРОДОЛГОВАТЫЙ МОЗГ ОБРАЗУЕТ

а. ТРЕТИЙ ЖЕЛУДОЧЕК

б. СИЛЬВИЕВ ВОДОПРОВОД

в. ЧЕТВЕРТЫЙ ЖЕЛУДОЧЕК

г. БОКОВЫЕ ЖЕЛУДОЧКИ

Вопрос 50.

ДВИГАТЕЛЬНЫЕ НЕЙРОНЫ ЛОКАЛИЗОВАНЫ

в. В СПИНАЛЬНЫХ ГАНГЛИЯХ

Вопрос 51.

В КОНЕЧНОМ ОТДЕЛЕ ГОЛОВНОГО МОЗГА НАХОДЯТСЯ

а. ЧЕТВЕРТЫЙ ЖЕЛУДОЧЕК

б. СИЛЬВИЕВ ВОДОПРОВОД

в. ТРЕТИЙ ЖЕЛУДОЧЕК

г. БОКОВЫЕ ЖЕЛУДОЧКИ

Вопрос 52.

ОТДЕЛЫ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

а. СПИННОМОЗГОВЫЕ ГАНГЛИИ

б. СРЕДНИЙ МОЗГ

в. ПРОДОЛГОВАТЫЙ МОЗГ

г. КОНЕЧНЫЙ МОЗГ

Вопрос 53.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ ГИПОТАЛАМУСА

а. ОРИЕНТИРОВОЧНЫЙ ЗРИТЕЛЬНЫЙ РЕФЛЕКС

в. ВЕГЕТАТИВНЫЙ ПОДКОРКОВЫЙ ЦЕНТР

г. ОРИЕНТИРОВОЧНЫЙ СЛУХОВОЙ РЕФЛЕКС

Вопрос 54.

ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ПРОВОДЯЩЕГО ПУТИ ГЛУБОКОЙ

ЧУВСТВИТЕЛЬНОСТИ

а. НЕПРОИЗВОЛЬНЫЕ МЫШЕЧНЫЕ СОКРАЩЕНИЯ

б. ПРОИЗВОЛЬНЫЕ МЫШЕЧНЫЕ СОКРАЩЕНИЯ

в. БОЛЕВАЯ ЧУВСТВИТЕЛЬНОСТЬ

г. МЫШЕЧНО-СУСТАВНОЕ ЧУВСТВО

Вопрос 55.

ПЛЕЧЕВОЕ СПЛЕТЕНИЕ ИННЕРВИРУЕТ

а. КОЖУ ЛИЦА И МИМИЧЕСКИЕ МЫШЦЫ

б. КОЖУ И МЫШЦЫ ЖИВОТА

в. ДИАФРАГМУ И ПЕРИКАРД

г. КОЖУ И МЫШЦЫ РУК

Вопрос 56.

ЗАПАХ ВОСПРИНИМАЮТ:

а. ОБОНЯТЕЛЬНЫЕ ЛУКОВИЦЫ

б. ОБОНЯТЕЛЬНЫЕ НЕРВЫ

в. РЕЦЕПТОРНЫЕ КЛЕТКИ СЛИЗИСТОЙ НОСА

Вопрос 57.

ПОНИЖЕНИЕ УРОВНЯ ГЛЮКОЗЫ В КРОВИ ХАРАКТЕРНО ПРИ:

а. ПОВЫЩЕНИЯ УРОВНЯ ГЛЮКОГОНА

б. УВЕЛИЧЕНИИ ПОТРЕБЛЕНИЯ САХАРОСОДЕРЖАЩИХ ПРОДУКТОВ:

в. ПОНИЖЕНИИ УРОВНЯ ИНСУЛИНА

г. ПОВЫШЕНИЯ УРОВНЯ ИНСУЛИНА

Вопрос 58.

СУЖЕНИЕ ЗРАЧКА ОБЕСПЕЧИВАЕТ

а. ЛАТЕРАЛЬНАЯ КОСАЯ МЫШЦА

б. РЕСНИЧНАЯ МЫШЦА

в. ДИЛАТАТОР ЗРАЧКА

г. СФИНКТЕР ЗРАЧКА

Вопрос 59.

СИМПАТИЧЕСКИЕ ЦЕНТРЫ ЛОКАЛИЗУЮТСЯ

в. В ГРУДНЫХ СЕГМЕНТАХ СПИННОГО МОЗГА

г. В ПРОДОЛГОВАТОМ МОЗГЕ

Вопрос 60.

ГОРМОНЫ ВЛИЯЮЩИЕ НА АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ:

б. АЛЬДОСТЕРОН

в. АДРЕНАЛИН

г. ЭСТРОГЕН

д. ПАРАТГОРМОН

Вопрос 61.

К СТРУКТУРАМ КОНЕЧНОГО МОЗГА ОТНОСЯТСЯ

а. ЧЕТВЕРОХОЛМИЕ

б. МОЗЖЕЧОК

в. БАЗАЛЬНЫЕ ЯДРА

г. ТАЛАМУС

Вопрос 62.

СЛОЙ КОЖИ, ОПРЕДЕЛЯЮЩИЙ ЕЕ ЦВЕТ

а. БЛЕСТЯЩИЙ

б. СОСОЧКОВЫЙ

в. ЗЕРНИСТЫЙ

г. ШИПОВАТЫЙ

Вопрос 63.

ПРИ ГИПОФУНКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ ЕЕ ВЛИЯНИЕ НА ОСНОВНОЙ ОБМЕН

а. УСИЛИВАЕТСЯ

б. ПРЕКРАЩАЕТСЯ

в. ОСЛАБЕВАЕТ

Вопрос 64.

ПРИ УВЕЛИЧЕНИИ СЕКРЕЦИИ ВАЗОПРЕССИНА (АДГ) ДИУРЕЗ

а. УМЕНЬШЕН

б. ОТСУТСТВУЕТ

в. УВЕЛИЧЕН

Вопрос 65.

ВЕГЕТАТИВНЫЕ НЕЙРОНЫ ЛОКАЛИЗОВАНЫ

а. В ПЕРЕДНИХ РОГАХ СПИННОГО МОЗГА

б. В ЗАДНИХ РОГАХ СПИННОГО МОЗГА

в. В СПИНАЛЬНЫХ ГАНГЛИЯХ

г. В БОКОВЫХ РОГАХ СПИННОГО МОЗГА

Вопрос 66.

НИЖНЯЯ ГРАНИЦА СПИННОГО МОЗГА СООТВЕТСТВУЕТ ВЕРХНЕМУ КРАЮ ПОЯСНИЧНОГО

ПОЗВОНКА

а. ВТОРОГО

б. ТРЕТЬЕГО

в. ЧЕТВЕРТОГО

г. ПЕРВОГО

Вопрос 67.

СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА

а. ЗАМЕДЛЯЕТ СЕРДЕЧНЫЙ РИТМ

б. УСКОРЯЕТ СЕРДЕЧНЫЙ РИТМ

в. УВЕЛИЧИВАЕТ МИНУТНЫЙ ОБЪЕМ СЕРДЦА

г. УВЕЛИЧИВАЕТ СИЛУ СОКРАЩЕНИЙ МИОКАРДА

Вопрос 68.

ДЛЯ КОРРЕКЦИИ ДАЛЬНОЗОРКОСТИ ИСПОЛЬЗУЮТСЯ ЛИНЗЫ

а. СЛОЖНЫЕ

б. ДВОЯКОВОГНУТЫЕ

в. ДВОЯКОВЫПУКЛЫЕ

г. ПРОСТЫЕ

Вопрос 69.

ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ МЕДИАЛЬНЫХ КОЛЕНЧАТЫХ ТЕЛ ГОЛОВНОГО МОЗГА

а. РЕГУЛЯЦИЯ СЛОЖНЫХ АВТОМАТИЗИРОВАННЫХ ДВИГАТЕЛЬНЫХ АКТОВ

б. ОРИЕНТИРОВОЧНЫЙ СЛУХОВОЙ РЕФЛЕКС

в. ОРИЕНТИРОВОЧНЫЙ ЗРИТЕЛЬНЫЙ РЕФЛЕКС

г. ВЕГЕТАТИВНЫЙ ПОДКОРКОВЫЙ ЦЕНТР

Вопрос 70.

ЗРИТЕЛЬНАЯ ЗОНА ЛОКАЛИЗОВАНА

а. В ЗАТЫЛОЧНОЙ ДОЛЕ

б. В ТЕМЕННОЙ ДОЛЕ

в. В ПЕРЕДНЕЙ ЦЕНТРАЛЬНОЙ ИЗВИЛИНЕ

г. В ЗАДНЕЙ ЦЕНТРАЛЬНОЙ ИЗВИЛИНЕ

Вопрос 71.

ОБЛАСТЬЮ ИННЕРВАЦИИ КРЕСТЦОВОГО СПЛЕТЕНИЯ ЯВЛЯЮТСЯ

а. КОЖА И МЫШЦЫ СПИНЫ

б. КОЖА И МЫШЦЫ ЗАДНЕЙ ПОВЕРХНОСТИ БЕДРА И ГОЛЕНИ

в. КОЖА И МЫШЦЫ ПЕРЕДНЕЙ ПОВЕРХНОСТИ БЕДРА И ГОЛЕНИ

г. КОЖА И МЫШЦЫ ЖИВОТА

Вопрос 72.

ПРИ ГИПОФУНКЦИИ ПАРАЩИТОВИДНЫХ ЖЕЛЕЗ НАБЛЮДАЕТСЯ

а. ГИПЕРКАЛЬЦИЕМИЯ

б. НОРМОКАЛЬЦИЕМИЯ

в. АКАЛЬЦИЕМИЯ

г. ГИПОКАЛЬЦИЕМИЯ

Вопрос 73.

ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ПРОВОДЯЩЕГО ПУТИ ПОВЕРХНОСТНОЙ

ЧУВСТВИТЕЛЬНОСТИ

а. ПРОИЗВОЛЬНЫЕ МЫШЕЧНЫЕ СОКРАЩЕНИЯ

б. НЕПРОИЗВОЛЬНЫЕ МЫШЕЧНЫЕ СОКРАЩЕНИЯ

в. МЫШЕЧНО-СУСТАВНОЕ ЧУВСТВО

г. БОЛЕВАЯ ЧУВСТВИТЕЛЬНОСТЬ

Вопрос 74.

К СТРУКТУРАМ ПРОМЕЖУТОЧНОГО МОЗГА ОТНОСЯТСЯ

б. ГИПОТАЛАМУС

в. ЧЕТВЕРОХОЛМИЕ

Вопрос 75.

К ОПТИЧЕСКОЙ СИСТЕМЕ ГЛАЗА ОТНОСЯТСЯ СТРУКТУРЫ

а. СТЕКЛОВИДНОЕ ТЕЛО

б. РОГОВИЦА

в. ХРУСТАЛИК

г. ВОДЯНИСТАЯ ВЛАГА

Вопрос 76.

ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ НИЖНИХ БУГРОВ ЧЕТВЕРОХОЛМИЯ ГОЛОВНОГО МОЗГА

а. ОРИЕНТИРОВОЧНЫЙ СЛУХОВОЙ РЕФЛЕКС

б. РЕГУЛЯЦИЯ СЛОЖНЫХ АВТОМАТИЗИРОВАННЫХ ДВИГАТЕЛЬНЫХ АКТОВ

в. ОРИЕНТИРОВОЧНЫЙ ЗРИТЕЛЬНЫЙ РЕФЛЕКС

г. ВЕГЕТАТИВНЫЙ ПОДКОРКОВЫЙ ЦЕНТР

Вопрос 77.

ГОРМОНЫ ГИПОФИЗА

а. АНДРОГЕНЫ

б. СЕРОТОНИН

в. ТИРЕОТРОПНЫЙ

Вопрос 78.

ЧУВСТВИТЕЛЬНЫЕ ВОЛОКНА ТРОЙНИЧНОГО НЕРВА ОБРАЗОВАНЫ ДЕНДРИТАМИ

НЕЙРОНОВ

а. ГИПОТАЛАМУСА

б. ЗРИТЕЛЬНОГО БУГРА

в. РОМБОВИДНОЙ ЯМКИ

г. УЗЛА ТРОЙНИЧНОГО НЕРВА

Вопрос 79.

В ПРОМЕЖУТОЧНОМ ОТДЕЛЕ ГОЛОВНОГО МОЗГА НАХОДЯТСЯ

а. ЧЕТВЕРТЫЙ ЖЕЛУДОЧЕК

б. ТРЕТИЙ ЖЕЛУДОЧЕК

в. БОКОВЫЕ ЖЕЛУДОЧКИ

г. СИЛЬВИЕВ ВОДОПРОВОД

Вопрос 80.

ГОРМОНЫ МОЗГОВОГО СЛОЯ НАДПОЧЕЧНИКОВ

а. НОРАДРЕНАЛИН

б. АДРЕНАЛИН

в. ГЛЮКОКОРТИКОИДЫ

Вопрос 81.

ПРИ ГИПЕРФУНКЦИИ ПАРАЩИТОВИДНЫХ ЖЕЛЕЗ НАБЛЮДАЕТСЯ

а. ГИПОКАЛЬЦИЕМИЯ

б. ГИПЕРКАЛЬЦИЕМИЯ

в. НОРМОКАЛЬЦИЕМИЯ

г. АКАЛЬЦИЕМИЯ

Вопрос 82.

ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА

а. УСКОРЯЕТ СЕРДЕЧНЫЙ РИТМ

б. УМЕНЬШАЕТ СИЛУ СОКРАЩЕНИЯ МИОКАРДА

в. УМЕНЬШАЕТ МИНУТНЫЙ ОБЪЕМ СЕРДЦА

г. ЗАМЕДЛЯЕТ СЕРДЕЧНЫЙ РИТМ

Вопрос 83.

КОРТИЕВ ОРГАН РАСПОЛОЖЕН В:

а. БАРАБАННОЙ ПОЛОСТИ

б. ПОЛУКРУЖНЫХ КАНАЛАХ

в. УЛИТКЕ

г. ПРЕДДВЕРИИ

Вопрос 84.

ОБЛАСТЬЮ ИННЕРВАЦИИ ПОЯСНИЧНОГО СПЛЕТЕНИЯ ЯВЛЯЮТСЯ

а. КОЖА И МЫШЦЫ ПЕРЕДНЕЙ ПОВЕРХНОСТИ БЕДРА И ГОЛЕНИ

б. КОЖА И МЫШЦЫ СПИНЫ

в. КОЖА И МЫШЦЫ ЖИВОТА

г. КОЖА И МЫШЦЫ ЗАДНЕЙ ПОВЕРХНОСТИ БЕДРА И ГОЛЕНИ

Вопрос 85.

ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ПИРАМИДНОГО ПРОВОДЯЩЕГО ПУТИ

а. ПРОИЗВОЛЬНЫЕ МЫШЕЧНЫЕ СОКРАЩЕНИЯ

б. БОЛЕВАЯ ЧУВСТВИТЕЛЬНОСТЬ

в. МЫШЕЧНО-СУСТАВНОЕ ЧУВСТВО

г. НЕПРОИЗВОЛЬНЫЕ МЫШЕЧНЫЕ СОКРАЩЕНИЯ

Вопрос 86.

СЛУХОВАЯ ЗОНА ЛОКАЛИЗОВАНА В ИЗВИЛИНЕ КОРЫ

а. В НИЖНЕЙ ЛОБНОЙ ИЗВИЛИНЕ

б. В ЗАДНЕЙ ЦЕНТРАЛЬНОЙ ИЗВИЛИНЕ

в. В ВЕРХНЕЙ ВИСОЧНОЙ ИЗВИЛИНЕ

г. В ПЕРЕДНЕЙ ЦЕНТРАЛЬНОЙ ИЗВИЛИНЕ

Вопрос 87.

ГОРМОНОМ, СПОСОБСТВУЮЩИМ РАСЩЕПЛЕНИЮ ГЛИКОГЕНА, ЯВЛЯЕТСЯ

а. ИНТЕРМЕДИН

б. АЛЬДОСТЕРОН

в. ИНСУЛИН

г. ГЛЮКАГОН

Вопрос 88.

К СТРУКТУРАМ СЛЕЗНОГО АППАРАТА ОТНОСЯТСЯ

а. СЛЕЗНЫЙ МЕШОК

б. СЛЕЗНЫЕ КАНАЛЬЦЫ

в. НОСОСЛЕЗНЫЙ ПРОТОК

г. СЛЕЗНАЯ ЖЕЛЕЗА

Вопрос 89.

ЧУВСТВИТЕЛЬНЫЕ ВОЛОКНА ЛИЦЕВОГО НЕРВА ОБРАЗОВАНЫ ДЕНДРИТАМИ НЕЙРОНОВ

а. ЗРИТЕЛЬНОГО БУГРА

б. ГИПОТАЛАМУСА

в. РОМБОВИДНОЙ ЯМКИ

г. УЗЛА ЛИЦЕВОГО НЕРВА

Вопрос 90.

К ОБОЛОЧКАМ ГОЛОВНОГО МОЗГА ОТНОСЯТСЯ

а. ПАУТИННАЯ

б. МЯГКАЯ

в. ТВЕРДАЯ

г. ЭПИДУРАЛЬНАЯ

Вопрос 91.

ВИТАМИН УЧАСТВУЮЩИЙ В ОБМЕНЕ Са+

а. ВИТАМИН A

б. ВИТАМИН D

в. ВИТАМИН B

г. ВИТАМИН C

Вопрос 92.

ОТОЛИТОВЫЙ АППАРАТ РАСПОЛОЖЕН В:

а. БАРАБАННОЙ ПОЛОСТИ

б. УЛИТКЕ

в. ПОЛУКРУЖНЫХ КАНАЛАХ

г. ПРЕДДВЕРИИ

Вопрос 93.

ПАРАСИМПАТИЧЕСКИЕ ЦЕНТРЫ ЛОКАЛИЗУЮТСЯ

а. В ШЕЙНЫХ СЕГМЕНТАХ СПИННОГО МОЗГА

б. В КРЕСТЦОВЫХ СЕГМЕНТАХ СПИННОГО МОЗГА

в. В ПРОДОЛГОВАТОМ МОЗГЕ

Вопрос 94.

ТОКСИЧЕСКИЙ ЗОБ, ЭКЗОФТАЛЬМ, ПОХУДАНИЕ - СИМПТОМЫ:

а. ГИПЕРФУНКЦИИ ПАРАЩИТОВИДНОЙ ЖЕЛЕЗЫ

б. ГОПОФУНКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

в. ГИПЕРФУНКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

г. ГИПОФУНКЦИИ ПАРАЩИТОВИДНОЙ ЖЕЛЕЗЫ

Вопрос 95.

К СТРУКТУРАМ СРЕДНЕГО МОЗГА ОТНОСИТСЯ

а. ЧЕТВЕРОХОЛМИЕ

б. МОЗЖЕЧОК

в. ТАЛАМУС

г. БАЗАЛЬНЫЕ ЯДРА


Шаблон ответов по теме "А-Ф. НЕРВНАЯ,ЭНДОКРИННАЯ,ОР.ЧУВСТВ"

2 ВГ 52 БВГ

19 АБВГ 69 Б

25 Б 75 АБВГ