Индексы периферического сопротивления. Периферическое сосудистое сопротивление Снижение периферического сосудистого сопротивления

Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол. Однако изменения тонуса в различных отделах сердечнососудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других -- вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических нарушений.

Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта -- бесконечно большое ОПСС и отсутствие его току крови. При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС. При нулевом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5--6 раз и более. Однако в живом организме ОПСС никогда не может стать равным 0, как и бесконечно большим. В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.

Деление сосудов по их функциональному значению. Все сосуды организма можно разделить на две группы: сосуды сопротивления и емкостные сосуды. Первые регулируют величину ОПСС, АД и степень кровоснабжения отдельных органов и систем организма; вторые, вследствие большой емкости, участвуют в поддержании венозного возврата к сердцу, а следовательно, и МОС.

Сосуды «компрессионной камеры» -- аорта и ее крупные ветви -- поддерживают градиент давления вследствие растяжимости во время систолы. Это смягчает пульсирующий выброс и делает поступление крови на периферию более равномерным. Прекапиллярные сосуды сопротивления -- мелкие артериолы и артерии -- поддерживают гидростатическое давление в капиллярах и тканевый кровоток. На их долю выпадает большая часть сопротивления кровотоку. Прекапиллярные сфинктеры, изменяя число функционирующих капилляров, меняют площадь обменной поверхности. В них находятся а-рецепторы, которые при воздействии катехоламинов вызывают спазм сфинктеров, нарушение кровотока и гипоксию клеток. а-адреноблокаторы являются фармакологическими средствами, снижающими раздражение а-рецепторов и снимающими спазм в сфинктерах.

Капилляры являются наиболее важными сосудами обмена. Они осуществляют процесс диффузии и фильтрации -- абсорбции. Растворенные вещества проходят через их стенку в обоих направлениях. Они относятся к системе емкостных сосудов и в патологических состояниях могут вмещать до 90 % объема крови. В нормальных условиях они содержат до 5--7 % крови.

Посткапиллярные сосуды сопротивления -- мелкие вены и венулы -- регулируют гидростатическое давление в капиллярах, вследствие чего осуществляется транспорт жидкой части крови и межтканевой жидкости. Гуморальный фактор является основным регулятором микроциркуляции, но нейрогенные раздражители также оказывают действие на пре- и посткапиллярные сфинктеры.

Венозные сосуды, вмещающие до 85 % объема крови, не играют значительной роли в сопротивлении, а выполняют функцию емкости и наиболее подвержены симпатическим влияниям. Общее охлаждение, гиперадреналинемия и гипервентиляция приводят к венозному спазму, что имеет большое значение в распределении объема крови. Изменение емкости венозного русла регулирует венозный возврат крови к сердцу.

Шунтовые сосуды -- артериовенозные анастомозы -- во внутренних органах функционируют только в патологических состояниях, в коже выполняют терморегулирующую функцию.

Глава 4.
Расчетные показатели сосудистого тонуса и тканевого кровотока в большом круге кровообращения

Определение тонуса артериальных сосудов большого круга кровообращения является необходимым элементом анализа механизмов изменения системной гемодинамики. При этом следует помнить, что тонус различных артериальных сосудов оказывает неодинаковые влияния на особенности системного кровообращения. Так, тонус артериoл и прекапилляров оказывает наибольшее сопротивление току крови, почему эти сосуды и получили название резистивных, или сосудов сопротивления. Меньшее влияние на периферическое сопротивление кровотоку оказывает тонус крупных артериальных сосудов.

Уровень среднего артериального давления с известными оговорками можно представить себе как произведение сердечного выброса на общее сопротивление резистивных сосудов. В ряде случаев, например при артериальных гипертензиях или гипотензиях, существенно важным является выявление вопроса, от чего зависит сдвиг уровня системного давления крови - от изменений производительности сердца или сосудистого тонуса в целом. С целью анализа вклада сосудистого тонуса в отмеченные сдвиги артериального давления принято рассчитывать общее периферическое сосудистое сопротивление.

4.1. Общее периферическое сопротивление сосудов

Эта величина показывает суммарное сопротивление прекапиллярного русла и зависит как от сосудистого тонуса, так и от вязкости крови. На общее периферическое сопротивление сосудов (ОПСС) влияет характер ветвления сосудов и их длина, поэтому обычно чем больше масса тела, тем меньше ОПСС. Ввиду того, что для выражения ОПСС в абсолютных единицах требуется перевод давления в дин/см 2 (система СИ), формула расчета ОПСС выглядит следующим образом:

Единицы измерения ОПСС - дин·см -5

К числу методов оценки тонуса крупных артериальных стволов относится определение скорости распространения пульсовой волны. При этом оказывается возможным характеризовать упруго-вязкие свойства стенки сосудов как преимущественно мышечного, так и эластического типов.

4.2. Скорость распространения пульсовой волны и модуль упругости сосудистой стенки

Скорость распространения пульсовой волны по сосудам эластического (С э) и мышечного (С м) типов рассчитывается на основании либо синхронной регистраций сфигмограмм (СФГ) сонной и бедренной, сонной и лучевой артерий, либо синхронной записи ЭКГ и СФГ соответствующих сосудов. Возможно определение С э и С м при синхронной регистрации реограмм конечностей и ЭКГ. Расчет скорости очень прост:

С э = Л э /Т э; С м = Л м /Т м

где Т э - время запаздывания пульсовой волны по артериям эластического типа (определяется, например, по запаздыванию подъема СФГ бедренной артерии относительно подъема СФГ сонной артерии или от зубца R или S ЭКГ до подъема бедренной СФГ); Т м - время запаздывания пульсовой волны по сосудам мышечного типа (определяется, например, по запаздыванию СФГ лучевой артерии относительно СФГ сонной артерии или зубца К ЭКГ); Л э - расстояние от яремной ямки до пупка + расстояние от пупка до приемника пульса на бедренной артерии (при использовании методики двух СФГ из этого расстояния следует вычесть расстояние от яремной ямки до датчика на сонной артерии); Л м - расстояние от датчика на лучевой артерии до яремной ямки (как и при измерении Л э из этой величины нужно вычесть длину до пульсодатчика сонной артерии, если применяется методика двух СФГ).

Модуль упругости сосудов эластического типа (Е э) рассчитывается по формуле:

где Е 0 - общее эластическое сопротивление, w - ОПСС. Е 0 находится по формуле Вецлера:

где Q - площадь сечения аорты; Т - время основного колебания пульса бедренной артерии (см.рис.2); С э - скорость распространения пульсовой волны по сосудам эластического типа. Е 0 может быть рассчитана и но Брезмеру и Банке:

где ПИ - длительность периода изгнания. Н.Н.Савицкий, принимая Е 0 как суммарное упругое сопротивление сосудистой системы или модуль объемной ее упругости, предлагает следующее равенство:

где ПД - пульсовое давление; Д - продолжительность диастолы; СДД -среднее артериальное давление. Выражение Е 0 /w может с известной погрешностью быть названо также общим упругим сопротивлением стенки аорты,и в таком случае более подходит формула:

где Т - длительность сердечного цикла, МД - механическая диастола.

4.3. Показатель регионарного кровотока

В клинической и экспериментальной практике нередко появляется необходимость изучения периферического кровотока для диагностики или дифференциальной диагностики заболеваний сосудов. В настоящее время разработано достаточно большое количество методов исследования периферического кровотока. В то же время ряд методов характеризует лишь качественные особенности состояния тонуса периферических сосудов и кровотока в них (сфигмо- и флебография), другие требуют сложного специального оборудования (электромагнитные и ультразвуковые преобразователи, радиоактивные изотопы и др.) или выполнимы только в экспериментальных исследованиях (резистография).

В связи с этим представляют значительный интерес косвенные, достаточно информативные и легко выполнимые методы, позволяющие количественно изучать периферический артериальный и венозный кровоток. К числу последних относятся плетизмографические методы (В.В.Орлов, 1961).

При анализе оклюзионной плетизмограммы можно рассчитать объемную скорость кровотока (ОСК) в см 3 /100 ткани/мин:

где ΔV - прирост объема кровотока (см 3) за время Т.

При медленном дозированном повышении давления в окклюзионной манжете (от 10 до 40 мм рт.ст.) имеется возможность определения венозного тонуса (ВТ) в мм рт.ст./см 3 на 100 см 3 ткани по формуле:

где САД - среднее артериальное давление.

Для суждения о функциональных возможностях сосудистой стенки (преимущественно артериол) предложен расчет показателя спазма (ПС), устраняемого определенным (например, 5-минутной ишемией) вазодиляторным воздействием (Н.М.Мухарлямов с соавт., 1981):

Дальнейшая разработка метода привела к использованию венозной окклюзионной тетраполярной электроплетизмографии, что позволило детализировать рассчитываемые показатели с учетом величин артериального притока и венозного оттока (Д.Г.Максимов с соавт.; Л.Н. Сазонова с соавт.). Согласно разработанной комплексной методике предложен ряд формул расчета показателей регионарного кровообращения:

При расчете показателей артериального притока и венозного оттока величины K 1 и К 2 находят путем предварительного сравнения данных импедансометрического метода с данными прямых или косвенных количественных методов исследования, ранее уже проверенных и метрологически обоснованных.

Исследование периферического кровотока в большом круге кровообращения возможно и методом реографии. Принципы расчета показателей реограммы подробно описаны ниже.

Источник : Брин В.Б., Зонис Б.Я. Физиология системного кровообращения. Формулы и расчеты. Издательство Ростовского университета, 1984. 88 с.

Литература [показать]

  1. Александров А.Л., Гусаров Г.В., Егурнов Н.И., Семенов А.А. Некоторые косвенные методы измерения сердечного выброса и диагностики легочной гимертензии. - В кн.: Проблемы пульмонологии. Л., 1980, вып. 8, с.189.
  2. Амосов Н.М., Лшцук В.А., Пацкина С.А. и др. Саморегуляция сердца. Киев, 1969.
  3. Андреев Л.Б., Андреева Н.Б. Кинетокардиография. Ростов н/Д: Изд-во Рост, у-та, 1971.
  4. Брин В.Б. Фазовая структура систолы левого желудочка при деафферентации синокаротидных рефлексогенных зон у взрослых собак и щенков. - Пат. физиол, и экспер. терап., 1975, №5, с.79.
  5. Брин B.Б. Возрастные особенности реактивности синокаротидного прессорного механизма. - В кн.: Физиология и биохимия онтогенеза. Л., 1977, с.56.
  6. Брин В.Б. Влияние обзидана на системную гемодинамику у собак в онтогенезе. - Фармакол. и токсикол., 1977, №5, с.551.
  7. Брин В.Б. Влияние альфа-адреноблокатора пирроксана на системную гемодинамику при вазоренальной гипертензии у щенков и собак. - Бюл. экспер. биол. и мед., 1978, №6, с.664.
  8. Брин В.Б. Сравнительно-онтогенетический анализ патогенеза артериальных гипертензий. Автореф. на соиск. уч. ст. док. мед. наук, Ростов н/Д, 1979.
  9. Брин В.Б., Зонис Б.Я. Фазовая структура сердечного цикла у собак в постнатальнал отногенезе. - Бюл. экспер. биол. и мед., 1974, №2, с. 15.
  10. Брин В.Б., Зонис Б.Я. Функциональное состояние сердца и гемодинамика малого круга при дыхательной недостаточности. - В кн.: Дыхательная недостаточность в клинике и эксперименте. Тез. докл. Всес. конф. Куйбышев, 1977, с.10.
  11. Брин В.Б., Сааков Б.А., Кравченко А.Н. Изменения системной гемодинамики при экспериментальной реноваскулярной гипертонии у собак разного возраста. Cor et Vasa, Ed.Ross, 1977, т.19, №6, с.411.
  12. Вейн А.М., Соловьева А.Д., Колосова О.А. Вегетно-сосудистая дистония. М., 1981.
  13. Гайтон А. Физиология кровообращения. Минутный объем сердца и его регуляция. М., 1969.
  14. Гуревич М.И., Берштейн С.А. Основы гемодинамики. - Киев, 1979.
  15. Гуревич М.И., Берштейн С.А., Голов Д.А. и др. Определение сердечного выброса методом термодилюции. - Физиол. журн. СССР, 1967, т.53, №3, с.350.
  16. Гуревич М.И., Брусиловский Б.М., Цирульников В.А., Дукин Е.А. Количественная оценка величины сердечного выброса реографическим методом. - Врачебное дело, 1976, № 7, с.82.
  17. Гуревич М.И., Фесенко Л.Д., Филиппов М.М. О надежности определения сердечного выброса методом тетраполярной грудной импедансной реографии. - Физиол. журн. СССР, 1978, т.24, № 18, с.840.
  18. Дастан Х.П. Методы исследования гемодинамики у больных гипертензией. - В кн.: Артериальные гипертензии. Материалы советско-американского симпозиума. М., 1980, с.94.
  19. Дембо А.Г., Левина Л.И, Суров Е.Н. Значение определения давления в малом круге кровообращения у спортсменов. - Теория и практика физической культуры, 1971, № 9, с.26.
  20. Душанин С.А., Морев А.Г., Бойчук Г.К. О легочной гипертензии при циррозе печени и определении ее графическими методами. - Врачебное дело, 1972, №1, с.81.
  21. Елизарова Н.А., Битар С., Алиева Г.Э., Цветков А.А. Изучение регионарного кровообращения с помощью импедансометрии. - Терап.архив, 1981, т.53, № 12, с.16.
  22. Заславская P.M. Фармакологические воздействия на легочное кровообращение. М., 1974.
  23. Зернов Н.Г., Кубергер М.Б., Попов А.А. Легочная гипертензия в детском возрасте. М., 1977.
  24. Зонис Б.Я. Фазовая структура сердечного цикла по данным кинетокардиографии у собак в постнатальном онтогенезе. - Журн. эволюцион. биохимии и физиол., 1974, т.10, № 4, с.357.
  25. Зонис Б.Я. Электромеханическая деятельность сердца у собак различного возраста в норме и при развитии реноваскулярной гипертонии, Автореф. дис. на соиск. уч.ст. канд.мед.наук, Махачкала, 1975.
  26. Зонис Б.Я., Брин В.Б. Влияние однократного приема альфа-адренергического блокатора пирроксана на кардио- и гемодинамку у здоровых людей и больных артериальными гипертензиями, - Кардиология, 1979, т.19, № 10, с.102.
  27. Зонис Я.М., Зонис Б.Я. О возможности определения давления в малом круге кровообращения по кинетокардиограмме при хронических заболеваниях легких. - Терап. архив, 4977, т.49, № 6, с.57.
  28. Изаков В.Я., Иткин Г.П., Мархасин B.C. и др. Биомеханика сердечной мышцы. М., 1981.
  29. Карпман В.Л. Фазовый анализ сердечной деятельности. М., 1965
  30. Кедров А.А. Попытка количественной оценки центрального и периферического кровообращения электрометрическим путем. - Клиническая медицина, 1948, т.26, № 5, с.32.
  31. Кедров А.А. Электроплетизмография как метод объективной оценки кровообращения. Автореф. дис. на соиск. уч. ст. канд. мед. наук, Л., 1949.
  32. Клиническая реография. Под ред. проф. В.Т.Шершнева, Киев, 4977.
  33. Коротков Н.С. К вопросу о методах исследования кровяного давления. - Известия ВМА, 1905, № 9, с.365.
  34. Лазарис Я.А., Серебровская И.А. Легочное кровообращение. М., 1963.
  35. Лериш Р. Воспоминания о моей минувшей жизни. М., 1966.
  36. Мажбич Б.И., Иоффе Л.Д., Замещений М.Е. Клинико-физиологические аспекты регионарной электроплетизмографии легких. Новосибирск, 1974.
  37. Маршалл Р.Д., Шефферд Дж. Функция сердца у здоровых и бальных. М., 1972.
  38. Меерсон Ф.З. Адаптация сердца к большой нагрузке и сердечная недостаточность. М., 1975.
  39. Методы исследования кровообращения. Под общей редакцией проф. Б.И.Ткаченко. Л., 1976.
  40. Мойбенко А.А., Повжитков М.М., Бутенко Г.М. Цитотоксические повреждения сердца и кардиогенный шок. Киев, 1977.
  41. Мухарлямов Н.М. Легочное сердце. М., 1973.
  42. Мухарлямов Н.М., Сазонова Л.Н., Пушкарь Ю.Т. Исследование периферического кровообращения с помощью автоматизированной окклюзионной плетизмографии, - Терап. архив, 1981, т.53, № 12, с.3.
  43. Оранский И.Е, Акселерационная кинетокардиография. М., 1973.
  44. Орлов В.В. Плетизмография. М.-Л., 1961.
  45. Осколкова М.К., Красина Г.А. Реография в педиатрии. М., 1980.
  46. Парин В.В., Меерсон Ф.З. Очерки клинической физиологии кровообращения. М., 1960.
  47. Парин В.В. Патологическая физиология малого круга кровообращения В кн.: Руководство по патологической, физиологии. М., 1966, т.3, с. 265.
  48. Петросян Ю.С. Катетеризация сердца при ревматических пороках. М., 1969.
  49. Повжитков М.М. Рефлекторная регуляция гемодинамики. Киев, 1175.
  50. Пушкарь Ю.Т., Большов В.М., Елизаров Н.А. и др. Определение сердечного выброса методом тетраполярной грудной реографии его метрологические возможности. - Кардиологии, 1977, т.17, №17, с.85.
  51. Радионов Ю.А. Об исследовании гемодинамики методом разведения красителя. - Кардиология, 1966, т.6, №6, с.85.
  52. Савицкий Н.Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики. Л., 1974.
  53. Сазонова Л.Н., Больнов В.М., Максимов Д.Г. и др. Современные методы изучения в клинике состояния резистивных и емкостных сосудов. -Терап. архив, 1979, т.51, №5, с.46.
  54. Сахаров M.П., Орлова Ц.Р., Васильева А.В., Трубецкой А.З. Два компонента сократимости желудочков сердца и их определение на основе неинвазивной методики. - Кардиология, 1980, т.10, №9, с.91.
  55. Селезнев С.А.., Вашетина С.М., Мазуркевич Г.С. Комплексная оценка кровообращения в экспериментальной патологии. Л., 1976.
  56. Сывороткин М.Н. Об оценке сократительной функции миокарда. - Кардиология, 1963, т.З, №5, с.40.
  57. Тищенко М.И. Биофизические и метрологические основы интегральных методов определения ударного объема крови человека. Автореф. дис. на соиск. уч. ст. докт. мед. наук, М., 1971.
  58. Тищенко М.И., Сеплен М.А., Судакова З.В. Дыхательные изменения ударного объема левого желудочка здорового человека. - Физиол. журн. СССР, 1973, т.59, №3, с.459.
  59. Тумановекий М.Н., Сафонов К.Д. Функциональная диагностика заболеваний сердца. М., 1964.
  60. Уигерс К. Динамика кровообращения. М., 1957.
  61. Фельдман С.Б. Оценка сократительной функции миокарда по длительности фаз систолы. М., 1965.
  62. Физиология кровообращения. Физиология сердца. (Руководство по физиологии), Л., 1980.
  63. Фолков Б., Нил Э. Кровообращение. М., 1976.
  64. Шершевский Б.М. Кровообращение в малом круге. М., 1970.
  65. Шестаков Н.М. 0 сложности и недостатках современных методов определения объема циркулирующей крови и о возможности более простого и быстрого метода его определения. - Терап. архив, 1977, №3, с.115. И.устер Л.А., Бордюженко И.И. О роли компонентов формулы определения ударного объема крови методом интегральной реографии тела. -Терап. зрхив, 1978, т.50, ?4, с.87.
  66. Agress С.M., Wegnes S., Frement В.P. et al. Measurement of strolce volume by the vbecy. Aerospace Med., 1967, Dec, p.1248
  67. Blumberger K. Die Untersuchung der Dinamik des Herzens bein Menshen. Ergebn.Med., 1942, Bd.62, S.424.
  68. Bromser P., Hanke С. Die physikalische Bestimiung des Schlagvolumes der Herzens. - Z.Kreislaufforsch., 1933, Bd.25, № I, S.II.
  69. Burstin L. -Determination of pressure in the pulmonary by external graphic recordings. -Brit.Heart J., 1967, v.26, p.396.
  70. Eddleman E.E., Wilis K., Reeves T.J., Harrison Т.К. The kinetocardiogram. I. Method of recording precardial movements. -Circulation, 1953, v.8, p.269
  71. Fegler G. Measurement of cardiac output in anaesthetized animals by a thermodilution method. -Quart.J.Exp.Physiol., 1954, v.39, P.153
  72. Fick A. Über die ilessung des Blutquantums in den Herzventrikeln. Sitzungsbericht der Würzburg: Physiologisch-medizinischer Gesellschaft, 1970, S.36
  73. Frank M.J., Levinson G.E. An index of the contractile state of the myocardium in man. -J.Clin.Invest., 1968, v.47, p.1615
  74. Hamilton W.F. The physiology of the cardiac output. -Circulation, 1953, v.8, p.527
  75. Hamilton W.F., Riley R.L. Comparison of the Fick and dye-dilution method of measurement the cardiac output in man. -Amer.J. Physiol., 1948, v.153, p.309
  76. Kubicek W.G., Patterson R.P.,Witsoe D.A. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. -Ann.N.Y.Acad. Sci., 1970, v.170, p.724.
  77. Landry A.B.,Goodyex A.V.N. Hate of rise left ventricular pressure. Indirect measurement and physiologic significance. -Acer. J.Cardiol., 1965, v.15, p.660.
  78. Levine H.J., McIntyre K.M., Lipana J.G., Qing O.H.L. Force-velocity relations in failing and nonfailing hearts of subjects with aortic stenosis. -Amer.J.Med.Sci., 1970, v.259, P.79
  79. Mason D.T. Usefulness and limitation of the rate of rise of intraventricular pressure (dp/dt) in the evaluation of iqyocardial contractility in man. -Amer.J.Cardiol., 1969, v.23, P.516
  80. Mason D.T., Spann J.F., Zelis R. Quantification of the contractile state of the intact human heat. -Amer.J.Cardiol., 1970, v.26, p. 248
  81. Riva-Rocci S. Un nuovo sfigmomanometro. -Gas.Med.di Turino, 1896, v.50, №51, s.981.
  82. Ross J., Sobel В.E. Regulation of cardiac contraction. -Amer. Rev.Physiol., 1972, v.34, p.47
  83. Sakai A.,Iwasaka T., Tauda N. et al. Evaluation of the determination by impedance cardiography. -Soi et Techn.Biomed., 1976, NI, p.104
  84. Sarnoff S.J.,Mitchell J.H. The regulation of the performence of the heart. -Amer.J.Med.,1961, v.30, p.747
  85. Siegel J.H., Sonnenblick E.Н. Isometric Time-tension relationship as an index of ocardial contractility. -Girculat.Res., 1963, v.12, р.597
  86. Starr J. Studies made by simulating systole at necropsy. -Circulation, 1954, v.9, p.648
  87. Veragut P., Krayenbuhl H.P. Estimation and quantification of myocardial contractility in the closed-chest dog. -Cardiologia (Basel), 1965, v.47, № 2, p.96
  88. Wezler K., Böger A. Der Feststellung und Beurteilung der Flastizitat zentraler und peripherer Arterien am Lebenden. -Schmied.Arch., 1936, Bd.180, S.381.
  89. Wezler K., Böger A. Über einen Weg zur Bestimmung des absoluten Schlagvolumens der Herzens beim Menschen auf Grund der Windkesseltheorie und seine experimentalle Prafung. -N.Schmied. Arch., 1937, Bd.184, S.482.

Сопротивления кровеносных сосудов увеличено тогда, когда уменьшен просвет сосуда. Уменьшение просвета сосуда происходит при:

  1. сокращении мышечного слоя кровеносных сосудов;
  2. отёке эндотелиальных клеток сосудов;
  3. при некоторых заболеваниях (атеросклероз, сахарный диабет, облитерирующий эндартериит);
  4. при возрастных изменениях в сосудах.

Оболочка кровеносного сосуда состоит из нескольких слоёв.

Изнутри кровеносный сосуд покрыт эндотелиальными клетками. Они непосредственно контактируют с кровью. При увеличении в крови ионов натрия (избыточное употребление с пищей поваренной соли, нарушение выведения натрия из крови почками), натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри. Увеличение концентрации натрия в клетке приводит к увеличению количества воды в клетке. Эндотелиальные клетки увеличиваются в объёме (набухают, «отекают»). Это приводит к сужению просвета сосуда.

Средний слой оболочки сосудов – мышечный. Он состоит из гладкомышечных клеток, которые размещены в виде спирали, которая опутывает сосуд. Гладкомышечные клетки способны сокращаться. Их направление противоположно продольной оси сосуда (направлению движения крови по сосуду). При их сокращении сосуд сжимается, внутренний диаметр сосуда уменьшается. При их расслаблении сосуд расширяется, внутренний диаметр сосуда увеличивается.

Чем более выражен мышечный слой кровеносного сосуда, тем более выражена способность сосуда сокращаться и расширяться. Отсутствует возможность к сокращению и расслаблению в артериях эластичного типа (аорта, лёгочной ствол, лёгочная и общая сонная артерии), в капиллярах, в посткапилярных и собирательных венулах, в венах волокнистого типа (вены мозговых оболочек, сетчатки глаза, яремные и внутренняя грудная вены, вены верхней части туловища, шеи и лица, верхняя полая вена, вены костей, селезенки, плаценты). Наиболее выражена эта возможность в артериях мышечного типа (артерии мозга, позвоночные, плечевые, лучевые, подколенные артерии и другие), менее – в артериях мышечно-эластичного типа (подключичные, брыжеечные артерии, чревный ствол, подвздошные, бедренные артерии и другие), в венах верхних и нижних конечностей, частично – в артериолах в виде прекапилярных сфинктеров (гладкомышечные клетки размещены в виде кольца в местах перехода артериол в капилляры), слабо – в венах пищеварительного тракта, мышечных венулах, в артериоло-венулярных анастомозах (шунтах) и других.

В гладкомышечных клетках есть белковые соединения в виде нитей, которые называются филаментами. Филаменты состоящие из белка миозина, называются миозиновыми филаментами, из актина – актиновыми филаментами. В клетке миозиновые филаменты фиксированы к плотным тельцам, которые находятся на оболочке клетки и в цитоплазме. Актиновые филаменты находятся между ними. Актиновые и миозиновые филаменты взаимодействуют друг с другом. Взаимодействие между актиновыми филаментами и миозиновыми филаментами приводит гладкомышечную клетку в состояние сокращения (сжатия) или расслабления (расширения). Этот процесс регулируется двумя внутриклеточными ферментами киназой лёгких цепей миозина (ЛЦМ) и фосфатазой ЛЦМ. При активации киназы ЛЦМ происходит сокращение гладкомышечной клетки, при активации фосфатазы ЛЦМ – расслабление. Активация обеих ферментов зависит от количества ионов кальция внутри клетки. При увеличении количества ионов кальция в клетке активируется киназа ЛЦМ, при уменьшении количества ионов кальция внутри клетки – фосфатаза ЛЦМ.

Внутри клетки (в цитоплазме клетки) ионы кальция вступают в соединение с внутриклеточным белком кальмодулином. Это соединение активирует киназу ЛЦМ и инактивирует фосфатазу ЛЦМ. Киназа ЛЦМ фосфорилирует легкие цепи миозина (способствует присоединению фосфатной группы от аденозинтрифосфата (АТФ) к ЛЦМ. После этого миозин приобретает сродство к актину. Образуются поперечные актиномиозиновые молекулярные мостики. При этом актиновые и миозиновые филаменты смещаются по отношению друг к другу. Это смещение приводит к уменьшению длины гладкомышечной клетки. Это состояние называется сокращением гладкомышечной клетки.

При уменьшении количества ионов кальция внутри гладкомышечной клетки происходит активация фосфатазы ЛЦМ и инактивация киназы ЛЦМ. Фосфатаза ЛЦМ дефосфорилирует (отсоединяет фосфатные группы от ЛЦМ). Миозин теряет сродство к актину. Поперечные актиномиозиновые мостики разрушаются. Гладкомышечная клетка расслабляется (длина гладкомышечной клетки увеличивается).

Количество ионов кальция внутри клетки регулируется кальциевыми каналами на мембране (оболочке) клетки и на оболочке внутриклеточного ретикулума (внутриклеточного депо кальция). Кальциевые каналы могут изменять свою полярность. При одной полярности ионы кальция поступают в цитоплазму клетки, при противоположной – покидают цитоплазму клетки. Полярность кальциевых каналов зависит от количества цАМФ (циклического аденозинмонофосфата) внутри клетки. При увеличении количества цАМФ внутри клетки ионы кальция поступают в цитоплазму клетки. При уменьшении цАМФ в цитоплазме клетки, ионы кальция покидают цитоплазму клетки. цАМФ синтезируется из АТФ (аденозинтрифосфата) под влиянием мембранного фермента аденилатциклазы, который находится в неактивном состоянии на внутренней поверхности мембраны.

При соединении катехоламинов (адреналина, норадреналина) к α1- гладкомышечных клеток сосудов происходит активация аденилатциклазы, далее взаимосвязано – увеличивается количество цАМФ внутри клетки – изменяется полярность клеточной мембраны – ионы кальция поступают в цитоплазму клетки – количество ионов кальция внутри клетки увеличивается – увеличивается количество кальмодулина связанного с кальцием – активируется киназа ЛЦМ, инактивруется фосфатаза ЛЦМ – происходит фосфорилирование легких цепей миозина (присоединение фосфатных групп от АТФ к ЛЦМ) – миозин приобретает сродство к актину – образуются поперечные актиномиозиновые мостики. Гладкомышечная клетка сокращается (длина гладкомышечной клетки уменьшается) – суммарно в масштабах кровеносного сосуда – кровеносный сосуд сокращается, просвет сосуда (внутренний диаметр сосуда) сужается – суммарно в масштабах сосудистой системы – сопротивление сосудов увеличивается, повышается. Так повышение тонуса симпатической (ВНС) приводит к спазму сосудов, увеличению сосудистого сопротивления и к связанному с этим, .

Избыточному поступлению ионов кальция в цитоплазму клетки препятствует фермент кальций-зависимая фосфодиэстераза. Этот фермент активизируется при определённом (избыточном) количестве ионов кальция в клетке. Активированная кальций-зависимая фосфодиэстераза гидролизует (расщепляет) цАМФ, что приводит к уменьшению количества цАМФ в цитоплазме клетки и взаимосвязано изменяет полярность кальциевых каналов в противоположную сторону – поступление ионов кальция в клетку уменьшается или прекращается.

Работа кальциевых каналов регулируется многими веществами как внутреннего и внешнего происхождения, которые влияют на кальциевые каналы через соединение с определёнными белками (рецепторами) на поверхности гладкомышечной клетки. Так, при соединении медиатора парасимпатической ВНС ацетилхолина с холинорецептором гладкомышечной клетки происходит дезактивация аденилатциклазы, что взаимосвязано приводит к уменьшению количества цАМФ и, в конечном итоге – к расслаблению гладкомышечной клетки – суммарно в масштабах кровеносного сосуда – кровеносный сосуд расширяется, просвет сосуда (внутренний диаметр сосуда) увеличивается – суммарно в масштабах сосудистой системы – сопротивление сосудов уменьшается. Так повышение тонуса парасимпатической ВНС приводит к расширению сосудов, уменьшению сосудистого сопротивления, уменьшает влияние симпатической ВНС на кровеносные сосуды.

Примечание: Аксоны (отростки) ганглионарных нейронов (нервных клеток) ВНС имеют многочисленные разветвления в толще гладкомышечных клеток сосудов. На этих разветвлениях имеются многочисленные утолщения, которые выполняют функцию синапсов – участков через которые нейрон выделяет медиатор при возбуждении.

При соединении белка (АГ2) с гладкомышечной клетки сосуда происходит её сокращение. Если уровень АТ2 в крови продолжительное время увеличен (артериальная гипертензия), кровеносные сосуды продолжительное время находятся в спазмированном состоянии. Высокий уровень АТ2 в крови поддерживает длительное время гладкомышечные клетки кровеносных сосудов в состоянии сокращения (сжатия). В результате этого развивается гипертрофия (утолщение) гладкомышечных клеток и избыточное образование коллагеновых волокон, стенки сосудов утолщаются, внутренний диаметр сосудов уменьшается. Таким образом, гипертрофия мышечного слоя кровеносных сосудов, развившаяся под влиянием избыточного количества АТ2 в крови, становится ещё одним фактором поддерживающим повышенное сопротивление сосудов, а, значит, – повышенное артериальное давление.

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:

Используется для расчета величины этого параметра или его изменений. Для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистыхотделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем.

На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

Сопротивление, разность давления и поток связаны основным уравнением гидродинамики: Q=AP/R. Так как поток (Q) должен быть идентичен в каждом из последовательно расположенных отделов сосудистой системы, то падение давления, которое происходит на протяжении каждого из этих отделов, является прямым отражением сопротивления, которое существует в данном отделе. Таким образом, существенное падение артериального давления, при прохождении крови через артериолы, указывает, что артериолы обладают значительным сопротивлением кровотоку. Среднее давление незначительно снижается в артериях, так как они обладают незначительным сопротивлением.

Аналогично умеренное падение давления, которое происходит в капиллярах, является отражением того, что капилляры обладают умеренным сопротивлением по сравнению с артериолами.

Поток крови, протекающий через отдельные органы, может изменяться в десять и более раз. Так как среднее артериальное давление является относительно устойчивым показателем деятельности сердечно-сосудистой системы, существенные изменения кровотока органа являются следствием изменения его общего сосудистого сопротивления кровотоку. Последовательно расположённые сосудистые отделы объединены в определенные группы в пределах органа, и общее сосудистое сопротивление органа должно равняться сумме сопротивлений его последовательно соединенных сосудистых отделов.

Так как артериолы обладают значительно большим сосудистым сопротивлением по сравнению с другими отделами сосудистого русла, то общее сосудистое сопротивление любого органа определяется в значительной степени сопротивлением артериол. Сопротивление артериол, конечно, в значительной степени определяется радиусом артериол. Следовательно, кровоток через орган в первую очередь регулируется изменением внутреннего диаметра артериол за счет сокращения или расслабления мышечной стенки артериол.

Когда артериолы органа изменяют свой диаметр, то меняется не только кровоток через орган, но претерпевает изменения и падение артериального давления, происходящее в данном органе.

Сужение артериол вызывает более значительное падение давления в артериолах, что приводит к увеличению артериального давления и одновременному снижению изменений сопротивления артериол на давление в сосудах.

(Функция артериол в какой-то степени напоминает роль дамбы: в результате закрытия ворот дамбы снижается поток и повышается ее уровень в резервуаре позади плотины и снижается уровень после нее).

Напротив, увеличение органного кровотока, вызванное расширением артериол, сопровождается снижением артериального давления и увеличением капиллярного давления. Из-за изменений гидростатического давления в капиллярах сужение артериол ведет к транскапиллярной реабсорбции жидкости, в то время как расширение артериол способствует транскапиллярной фильтрации жидкости.

Определение основных понятий в интенсивной терапии

Основные понятия

Артериальное давление характеризуется показателями систолического и диастолического давления, а также интегральным показателем: среднее артериальное давление. Среднее артериальное давление рассчитывается как сумма одной трети пульсового давления (разницы между систолическим и диастолическим) и диастолического давления.

Среднее артериальное давление само по себе не описывает адекватно функцию сердца. Для этого используются следующие показатели:

Сердечный выброс: объем крови, изгоняемой сердцем за минуту.

Ударный объём: объем крови, изгоняемой сердцем за одно сокращение.

Сердечный выброс равен ударному объёму, умноженному на ЧСС.

Сердечный индекс - это сердечный выброс, с коррекцией на размеры пациента (на площадь поверхности тела). Он точнее отражает функцию сердца.

Ударный объём зависит от преднагрузки, постнагрузки и сократимости.

Преднагрузка - это мера напряжения стенки левого желудочка в конце диастолы. Она трудно поддаётся прямому количественному определению.

Непрямыми показателями преднагрузки служат центральное венозное давление (ЦВД), давление заклинивания лёгочной артерии (ДЗЛА) и давление в левом предсердии (ДЛП). Эти показатели называют «давлениями наполнения».

Конечно-диастолический объём левого желудочка (КДОЛЖ) и конечно-диастолическое давление в левом желудочке считаются более точными показателями преднагрузки, однако они редко измеряются в клинической практике. Ориентировочные размеры левого желудочка могут быть получены с помощью трансторакального или (точнее) чреспищеводного УЗИ сердца. Кроме того, конечно-диастолический объём камер сердца высчитывается с помощью некоторых методов исследования центральной гемодинамики (PiCCO).

Постнагрузка - это мера напряжения стенки левого желудочка во время систолы.

Она определяется преднагрузкой (которая обусловливает растяжение желудочка) и сопротивлением, которое встречает сердце при сокращении (это сопротивление зависит от общего периферического сопротивления сосудов (ОПСС), податливости сосудов, среднего артериального давления и от градиента в выходном тракте левого желудочка).

ОПСС, которое, как правило, отражает степень периферической вазоконстрикции, часто используется как непрямой показатель постнагрузки. Определяется при инвазивном измерении параметров гемодинамики.

Сократительная способность и комплайнс

Сократимость - это мера силы сокращения миокардиальных волокон при определённых пред- и постнагрузке.

Среднее артериальное давление и сердечный выброс часто используются как непрямые показатели сократимости.

Комплайнс - это мера растяжимости стенки левого желудочка во время диастолы: сильный, гипертрофированный левый желудочек может характеризоваться низким комплайнсом.

Комплайнс трудно количественно измерить в клинических условиях.

Конечно-диастолическое давление в левом желудочке, которое можно измерить во время предоперационной катетеризации сердца или оценить по данным эхоскопии, является непрямым показателем КДДЛЖ.

Важные формулы расчета гемодинамики

Сердечный выброс = УО * ЧСС

Сердечный индекс = СВ/ППТ

Ударный индекс = УО/ППТ

Среднее артериальное давление = ДАД + (САД-ДАД)/3

Общее периферическое сопротивление = ((СрАД-ЦВД)/СВ)*80)

Индекс общего периферического сопротивления = ОПСС/ППТ

Сопротивление лёгочных сосудов = ((ДЛА — ДЗЛК)/СВ)*80)

Индекс сопротивления лёгочных сосудов = ОПСС/ППТ

CВ = сердечный выброс, 4,5-8 л/мин

УО = ударный объем, 60-100 мл

ППТ = площадь поверхности тела, 2- 2,2 м 2

СИ = сердечный индекс, 2,0-4,4 л/мин*м2

ИУО = индекс ударного объема, 33-100 мл

СрАД = Среднее артериальное давление, 70- 100 мм рт.

ДД = Диастолическое давление, 60- 80 мм рт. ст.

САД = Систолическое давление, 100- 150 мм рт. ст.

ОПСС = общее периферическое сопротивление, 800-1 500 дин/с*см 2

ЦВД = центральное венозное давление, 6- 12 мм рт. ст.

ИОПСС = индекс общего периферического сопротивления, 2000-2500 дин/с*см 2

СЛС = сопротивление лёгочных сосудов, СЛС = 100-250 дин/с*см 5

ДЛА = давление в лёгочной артерии, 20- 30 мм рт. ст.

ДЗЛА = давление заклинивания лёгочной артерии, 8- 14 мм рт. ст.

ИСЛС = индекс сопротивления лёгочных сосудов = 225-315 дин/с*см 2

Оксигенация и вентиляция

Оксигенация (содержание кислорода в артериальной крови) описывается такими понятиями, как парциальное давление кислорода в артериальной крови (P a 0 2) и сатурация (насыщение) гемоглобина артериальной крови кислородом (S a 0 2).

Вентиляция (движение воздуха в лёгкие и из них) описывается понятием минутный объём вентиляции и оценивается путём измерения парциального давления углекислого газа в артериальной крови (P a C0 2).

Оксигенация, в принципе, не зависит от минутного объёма вентиляции, если только он не очень низкий.

В послеоперационном периоде основной причиной гипоксии являются ателектазы лёгких. Их следует попытаться устранить до того, как увеличивать концентрацию кислорода во вдыхаемом воздухе(Fi0 2).

Для лечения и профилактики ателектазов применяются положительное давление в конце выдоха (РЕЕР) и постоянное положительное давление в дыхательных путях (СРАР).

Потребление кислорода оценивается косвенно по сатурации гемоглобина смешанной венозной крови кислородом (S v 0 2) и по захвату кислорода периферическими тканями.

Функция внешнего дыхания описывается четырьмя объёмами (дыхательный объём, резервный объём вдоха, резервный объём выдоха и остаточный объём) и четырьмя ёмкостями (ёмкость вдоха, функциональная остаточная ёмкость, жизненная ёмкость и общая ёмкость лёгких): в ОИТР в повседневной практике используется только измерение дыхательного объёма.

Уменьшение функциональной резервной ёмкости вследствие ателектазов, положения на спине, уплотнения лёгочной ткани (застойные явления) и коллапса лёгких, плеврального выпота, ожирения приводят к гипоксии.СРАР, РЕЕР и физиотерапия направлены на ограничение этих факторов.

Общее периферическое сопротивление сосудов (ОПСС). Уравнение Франка.

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением .

Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:

где R - гидравлическое сопротивление, l - длина сосуда, v - вязкость крови, r - радиус сосудов.

Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк . используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:

где Р1-Р2 - разность давлений в начале и в конце участка сосудистой системы, Q - величина кровотока через этот участок, 1332- коэффициент перевода единиц сопротивления в систему CGS.

Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.

Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.

В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин с ¦ см. при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200-3000 дин с см-5.

Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

Общее периферическое сопротивление (ОПС) – это сопротивление току крови, присутствующее в сосудистой системе организма. Его можно понимать как количество силы, противодействующей сердцу по мере того, как оно перекачивает кровь в сосудистую систему.

Хотя общее периферическое сопротивление играет важнейшую роль в определении кровяного давления, оно является исключительно показателем состояния сердечно-сосудистой системы и его не следует путать с давлением, оказываемым на стенки артерий, которое служит показателем кровяного давления.

Составляющие сосудистой системы

Сосудистая система, которая отвечает за ток крови от сердца и к сердцу, может быть подразделена на две составляющие: системное кровообращение (большой круг кровообращения) и легочную сосудистую систему (малый круг кровообращения). Легочная сосудистая система доставляет кровь к легким, где та обогащается кислородом, и от легких, а системное кровообращение отвечает за перенос этой крови к клеткам организма по артериям, и возвращение крови обратно к сердцу после кровоснабжения. Общее периферическое сопротивление влияет на работу этой системы и в итоге может в значительной степени воздействовать на кровоснабжение органов.

Общее периферическое сопротивление описывается посредством частного уравнения:

ОПС = изменение давления / сердечный выброс

Изменение давления – это разность среднего артериального давления и венозного давления. Среднее артериальное давление равняется диастолическому давлению плюс одна треть разницы между систолическим и диастолическим давлением. Венозное кровяное давление может быть измерено при помощи инвазивной процедуры с применением специальных инструментов, которая позволяет физически определять давление внутри вены. Сердечный выброс – это количество крови, перекачиваемой сердцем за одну минуту.

Факторы влияющие на компоненты уравнения ОПС

Существует ряд факторов, которые могут значительно влиять на компоненты уравнения ОПС, таким образом, изменяя значения самого общего периферического сопротивления. Эти факторы включают диаметр сосудов и динамику свойств крови. Диаметр кровеносных сосудов обратно пропорционален кровяному давлению, поэтому меньшие кровеносные сосуды повышают сопротивление, таким образом, повышая и ОПС. И наоборот, более крупные кровеносные сосуды соответствуют менее концентрированному объему частиц крови, оказывающих давления на стенки сосудов, что означает более низкое давление.

Гидродинамика крови

Гидродинамика крови также может существенно способствовать повышению или понижению общего периферического сопротивления. За этим стоит изменение уровней факторов свертывания и компонентов крови, которые способны менять ее вязкость. Как можно предположить, более вязкая кровь вызывает большее сопротивление кровотоку.

Менее вязкая кровь легче перемещается через сосудистую систему, что приводит к понижению сопротивления.

В качестве аналогии можно привести разницу в силе, необходимой для перемещения воды и патоки.

Эта информация для ознакомления, за лечением обратитесь к врачу.

Большая Энциклопедия Нефти и Газа

Периферическое сопротивление

Периферическое сопротивление задавалось в интервале от 0.4 до 2.0 мм рт.ст. сек / см с шагом 0.4 мм рт.ст. сек / см. Сократимость связана с состоянием актомиозинового комплекса, работой регулирующих механизмов. Сократимость изменяется заданием значений МС от 1.25 до 1.45 с шагом 0.05, а также вариацией активных деформаций в некоторых периодах сердечного цикла. Модель позволяет изменять активные деформации в различные периоды систолы и диастолы, что воспроизводит регуляцию сократительной функции ЛЖ раздельным влиянием на быстрые и медленные кальциевые каналы. Активные деформации приняты постоянными на протяжении всей диастолы и равными от 0 до 0.004 с шагом 0.001 сначала при неизменных активных деформациях в систолу, затем при одновременном увеличении их значения в конце изоволюмического периода сокращения на величину деформаций в диастолу.  

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда.  

Основным механизмом перераспределения крови служит периферическое сопротивление, оказываемое текущей струе крови мелкими артериальными сосудами и артериолами. В ото время во все остальные органы, в том числе и поч-кк, поступает только около 15 % крови. В покое же на вею массу мышц, составляющих около половины массы тела, приходится лишь около 20 % крови, выбрасываемой сердцем за минуту. Итак, изменение жизненной ситуации обязательно сопровождается своеобразной сосудистой реакцией в виде перераспределения крови.  

Изменение систолического и диастоли-ческого давления у этих больных происходят параллельно, что создает впечатление роста периферического сопротивления по мере нарастания гипердинамии сердца.  

В течение следующих 15 с (с) определяются систолическое, диастолическое и среднее давление, частота сердечных сокращений, периферическое сопротивление, ударный объем, ударная работа, ударная мощность и сердечный выброс. Кроме того, производится усреднение показателей уже исследованных сердечных циклов, а также выдача документов с указанием времени суток.  

Полученные данные дают основание полагать, что при эмоциональном стрессе, характеризующемся катехоламиновым взрывом, развивается системный спазм артериол, что способствует росту периферического сопротивления.  

Характерным для изменений артериального давления у этих больных является также торпидность в восстановлении исходной величины диастолического давления, что в сочетании с данными пъезографии артерий конечностей говорит о стойком повышении у них периферического сопротивления.  

Величина объема крови, покинувшей грудную полость за время t с момента начала изгнания Sam (t), находилась расчетно как функция артериального давления, модуля объемной упругости экстраторакальной части аортально-артериальной системы и периферического сопротивления артериальной системы.  

Сопротивление току крови меняется в зависимости от сокращения или расслабления гладкой мускулатуры сосудистых стенок, особенно в артериолах. При сужении сосудов (ва-зоконстрикции) периферическое сопротивление увеличивается, а при их расширении (вазо-дилатации) уменьшается. Увеличение сопротивления приводит к повышению кровяного давления, а снижение сопротивления - к его падению. Все эти изменения регулируются сосудодвигательным (вазомоторным) центром продолговатого мозга.  

Зная эти две величины, вычисляют периферическое сопротивление - важнейший показатель состояния сосудистой системы.  

По мере снижения диастолической составляющей и увеличения индекса периферического сопротивления, по мнению авторов, нарушается трофика тканей глаза и зрительные функции падают даже при нормальном офтальмотонусе. На наш взгляд, в подобных ситуациях заслуживает специального внимания состояние также внутричерепного давления.  

Учитывая, что динамика диастолическо-го давления косвенно отражает состояние периферического сопротивления, мы полагали, что оно будет снижаться при физической нагрузке у обследуемых больных, так как реальная мышечная работа в еще большей степени приведет к расширению мышечных сосудов, чем при эмоциональном напряжении, которое лишь провоцирует готовность мышц к действию.  

Аналогично в организме осуществляется многосвязное регулирование артериального давления и объемной скорости кровотока. Так, при снижении артериального давления компенсаторно повышаются тонус сосудов и периферическое сопротивление току крови. Это в свою очередь приводит к увеличению артериального давления в сосудистом русле до места сужения сосудов и к понижению кровяного давления ниже места сужения по ходу движения крови. Одновременно с этим в сосудистом русле уменьшается объемная скорость кровотока. Благодаря особенностям регионарного кровотока артериальное давление и объемная скорость крови в мозге, сердце и других органах возрастают, а в остальных органах снижаются. В результате проявляются закономерности многосвязного регулирования: при нормализации артериального давления изменяется другая регулируемая величина - объемный кровоток.  

Эти цифры показывают, что в фоне значимость средовой и наследственной детерминант приблизительно одинакова. Это свидетельствует о том, что различные компоненты, обеспечивающие величину систолического давления (ударный объем, частота пульса, величина периферического сопротивления), совершенно четко передаются по наследству и активизируются именно в период каких-либо экстремальных воздействий на организм, сохраняя гомеостаз системы. Высокая сохранность величины коэффициента Хольцингера в период 10 мин.  

Периферическое сопротивление сосудов (ОПСС)

Среди заболеваний сердца и сосудов одним из основных является артериальная гипертензия (АГ). Это одна из самых значимых неинфекционных пандемий, определяющих структуру сердечно- сосудистой заболеваемости и смертности.

Процессы ремоделирования при АГ захватывают не только сердце и крупные эластические и мышечные артерии, но и артерии меньшего диаметра (резистивные артерии). В связи с этим, целью исследования явилось изучение состояния периферического сосудистого сопротивления брахиоцефальных артерий у пациентов с различной степенью АГ с помощью современных неинвазивных методов исследования.

Исследование проведено у 62 больных АГ в возрасте от 29 до 60 лет, (средний возраст-44,3±2,4 года). Среди них 40 женщин и 22 мужчин. Длительность заболевания составила 8,75±1,6 лет. В исследование включались пациенты с мягкой - АГ-1 (систолическое АД и диастолическое АД соответственно от 140/90 до 160/100 мм рт. ст.) и умеренной - АГ-2 (систолическое АД и диастолическое АД соответственно от 160/90 до 180/110 мм рт. ст.). Из группы обследованных, считающих себя здоровыми, выделена подгруппа пациентов с высоким нормальным АД (САД и ДАД соответственно до 140/90 мм рт. ст.)

У всех обследованных оценивались кроме общеклинических, показатели ЭХОКГ, СМАД, проводилось исследование индексов периферического сопротивления (Pourcelot-Ri и Gosling-Pi), комплекса интима-медиа (КИМ) по общим сонным (ОСА), внутренним сонным (ВСА) артериям методом ультразвуковой допплерографии. Общее периферическое сопротивление сосудов (ОПСС) рассчитывали общепринятым методом по формуле Франка-Пуазейля. Статистическую обработку результатов осуществляли при помощи пакета программ Microsoft Excel.

При анализе показателей АД и эхокардиографических характеристик выявлено значительное увеличение (р

При анализе индексов периферического сопротивления (Pourcelot-Ri и Gosling-Pi) по ОСА наблюдалось повышение Ri у всех больных АГ (р

При корреляционном анализе установлена прямая зависимость между уровнем среднего АД и диаметром экстракраниальных сосудов (r =0,51 , р

Таким образом, стойкое хроническое повышение артериального давления приводит к гипертрофии гладкомышечных элементов медии с развитием сосудистого ремоделирования брахиоцефальных артерий.

Библиографическая ссылка

URL: http://fundamental-research.ru/ru/article/view?id=3514 (дата обращения: 16.03.2018).

кандидатов и докторов наук

Фундаментальные исследования

Журнал издается с 2003 года. В журнале публикуются научные обзоры, статьи проблемного и научно-практического характера. Журнал представлен в Научной электронной библиотеке. Журнал зарегистрирован в Centre International de l’ISSN. Номерам журналов и публикациям присваивается DOI (Digital object identifier).

Индексы периферического сопротивления

ВСА – внутренняя сонная артерия

ОСА – общая сонная артерия

НСА – наружная сонная артерия

НБА – надблоковая артерия

ПА – позвоночная артерия

ОА – основная артерия

СМА – средняя мозговая артерия

ПМА – передняя мозговая артерия

ЗМА – задняя мозговая артерия

ГА – глазничная артерия

ПКА – подключичная артерия

ПСА – передняя соединительная артерия

ЗСА – задняя соединительная артерия

ЛСК – линейная скорость кровотока

ТКД – транскраниальная допплерография

АВМ – артерио-венозная мальформация

БА – бедренная артерия

ПКА – подколенная артерия

ЗБА – задняя большеберцовая артерия

ПБА – передняя большеберцовая артерия

PI – пульсационный индекс

RI – индекс периферического сопротивления

SBI – индекс спектрального расширения

Ультразвуковая допплерография магистральных артерий головы

В настоящее время церебральная допплерография стала неотъемлемой частью диагностического алгоритма при сосудистых заболеваниях головного мозга. Физиологической основой ультразвуковой диагностики является эффект Допплера, отрытый австрийским физиком Кристианом Андреасом Допплером в 1842 году и описанный в работе “О цветном свете двойных звезд и некоторых других звезд на небесах”.

В клинической практике впервые эффект Допплера был использован в 1956 г. Satomuru при проведении ультразвукового исследования сердца. В 1959 г. Franklin использовал эффект Допплера для изучения кровотока в магистральных артериях головы. В настоящее время существует несколько ультразвуковых методик, в основе которых лежит использование эффекта Допплера, предназначенных для исследования сосудистой системы.

Ультразвуковая допплерография, как правило, используется для диагностики патологии магистральных артерий, имеющих относительно большой диаметр и расположенных поверхностно. К ним относятся магистральные артерии головы и конечностей. Исключение составляют интракраниальные сосуды, которые также доступны исследованию при применении импульсного ультразвукового сигнала низкой частоты (1-2 МГц). Разрешающая способность данных ультразвуковой допплерографии ограничивается выявлением: косвенных признаков стенозов, окклюзий магистральных и интракраниальных сосудов, признаков артерио-венозного шунтирования. Обнаружение допплерографических признаков тех или иных патологических признаков служит показанием для более детального обследования пациента – дуплексного исследования сосудов или ангиографии. Таким образом, ультразвуковая допплерогафия относится к срининговому методу. Несмотря на это, ультразвуковая допплерография широко распространена, экономична и вносит весомый вклад в диагностику заболеваний сосудов головы, артерий верхних и нижних конечностей.

Специальной литературы по ультразвуковой допплерографии достаточно, однако большая часть в ней посвящена дуплексному сканированию артерий и вен. В данном пособии описывается церебральная допплерография, ультразвуковое допплеровское исследование конечностей, методика их проведения и применение в диагностических целях.

Ультразвук – волнообразное распространяющееся колебательное движение частиц упругой среды с частотой свышеГц. Эффект Допплера заключается в изменении частоты ультразвукового сигнала при отражении от движущихся тел по сравнению с первоначальной частотой посланного сигнала. Ультразвуковой допплеровский прибор представляет собой локационное устройство, принцип работы которого заключается в излучении зондирующих сигналов в тело пациента, приеме и обработке эхосигналов, отраженных от движущихся элементов кровотока в сосудах.

Допплеровский сдвиг частот (∆f) – зависит от скорости движения элементов крови (v), косинуса угла между осью сосуда и направлением ульразвукового луча (cos a) , скорости распространения ультразвука в cреде (с) и первичной частоты излучения (f °). Данная зависимость описывается допплеровским уравнением:

2 · v · f ° · cos a

Из этого уравнения следует, что увеличение линейной скорости кровотока по сосудам пропорционально скорости движения частиц и наоборот. Нужно отметить, что прибор регистрирует только допплеровский сдвиг частот (в кГц), значения же скорости вычисляются по допплеровскому уравнению, при этом скорость распространения ультразвука в среде принимается как постоянная и равная 1540 м / сек, а первичная частота излучения соответствует частоте датчика. При сужении просвета артерии (например, бляшкой) – скорость кровотока возрастает, тогда как в местах расширения сосудов она будет снижаться. Разница частот, отражающая линейную скорость движения частиц, может быть отображена графически в виде кривой изменения скорости в зависимости от сердечного цикла. При анализе полученной кривой и спектра потока возможна оценка скоростных и спектральных параметров кровотока и вычисление ряда индексов. Таким образом, по изменению “звучания” сосуда и характерным изменениям допплеровских параметров можно косвенно судить о наличии в изучаемой области различных патологических изменений, таких как:

  • - окклюзия сосуда по исчезновению звука в проекции облитерированного сегмента и падению скорости до 0, может быть вариабельность отхождения или извитость артерии, например ВСА;
  • - сужение просвета сосуда по увеличению скорости кровотока в этом сегменте и увеличению “звучания” на данном участке, а после стеноза, наоборот, скорость будет ниже нормальной и звук более низкий;
  • - артерио – венозный шунт, извитость сосуда, перегиб и в связи с этим изменение условий циркуляции приводит к самым разнообразным модификациям звучания и кривой скорости на данном участке.

2.1. Характеристика датчиков для допплерографии.

Широкий спектр ультразвуковых исследований сосудов современным допплеровским прибором обеспечивается за счет применения датчиков различного назначения, отличающихся между собой характеристиками излучаемого ультразвука, а также конструктивными параметрами (датчики для скрининговых обследований, датчики со специальными держателями для мониторинга, плоские датчики для хирургических применений).

Для исследования экстракраниальных сосудов используются датчики с частотой 2, 4, 8 МГц, интракраниальных сосудов – 2, 1 МГц. Ультразвуковой датчик содержит пьезоэлектрический кристалл, вибрирующий под воздействием переменного тока. Эта вибрация генерирует УЗ луч, который движется от кристалла. Допплеровские датчики имеют два режима работы: постоянноволновой (continuous wave CW) и импульсный (pulsed wave PW). У постоянноволнового датчика имеется 2 пьезокристалла, один постоянно излучает, второй – принимает излучение. В датчиках PW один и тот же кристалл является принимающим и излучающим. Режим импульсного датчика позволяет осуществлять локацию на различных, произвольно выбираемых глубинах, в связи с чем, именно он используется для инсонации интракраниальных артерий. Для датчика 2 МГц существует 3-х сантиметровая “ мертвая зона ” , при глубине проникновения 15 см зондирования; для датчика 4 МГц ­– 1,5 см “ мертвая зона ” , зона зондирования 7,5 см; 8 МГц – 0,25 см “ мертвая зона ’ , 3,5 см глубина зондирования.

III. Ультразвуковая допплерография МАГ.

3.1. Анализ показателей допплерограммы.

Кровоток в магистральных артериях имеет ряд гидродинамических особенностей, в связи с чем, выделяют два основных варианта потока:

  • - ламинарный (параболический) – имеется градиент скорости потоков центральных (максимальные скорости) и пристеночных (минимальные скорости) слоев. Разница между скоростями максимальна в систолу и минимальна в диастолу. Слои не смешиваются между собой;
  • - турбулентный – вследствие неровностей сосудистой стенки, высокой скорости кровотока слои смешиваются, эритроциты начинают совершать хаотическое движение в разных направлениях.

Допплерограмма – графическое отражение допплеровского сдвига частот во времени – имеет две основных составляющих:

  • - огибающая кривая – линейная скорость в центральных слоях потока;
  • - допплеровский спектр – графическая характеристика пропорционального соотношения пулов эритроцитов, движущихся с различными скоростями.

При проведении спектрального допплеровского анализа оцениваются качественные и количественные параметры. К качественным параметрам относятся:

  • 1. форма допплеровской кривой (огибающей допплеровского спектра)
  • 2. наличие “ спектрального ” окна.

К количественным параметрам относятся:

  • 1. Скоростные характеристики потока.
  • 2. Уровень периферического сопротивления.
  • 3. Показатели кинематики.
  • 4. Состояние допплеровского спектра.
  • 5. Реактивность сосудов.

1. Скоростные характеристики потока определяются по огибающей кривой. Выделяют:

  • – систолическую скорость кровотока Vs (максимальная скорость)
  • – конечную диастолическую скорость кровотока Vd ;
  • – среднюю скорость кровотока (Vm) – отражается среднее значение скорости кровотока за сердечный цикл. Средняя скорость кровотока рассчитывается по формуле:
  • – средневзвешенную скорость кровотока, определяется по характеристикам допплеровского спектра (отражает среднюю скорость движения эритроцитов по всему поперечнику сосуда – истинно средняя скорость кровотока)
  • – определенную диагностическую ценность имеет показатель межполушарной асимметрии линейной скорости кровотока (КА) в одноименных сосудах:

где V 1, V 2 – средняя линейная скорость кровотока в парных артериях.

2. Уровень периферического сопротивления – результирующее вязкости крови, внутричерепного давления, тонуса резистивных сосудов пиально-капиллярной сосудистой сети – определяется по значению индексов:

  • – систоло – диастолический коэффициент (СДК) Stuart:
  • – индекс периферического сопротивления, или индекс резистивности (ИС) Pourselot (RI):

Наиболее чувствителен в отношении изменения уровня периферического сопротивления индекс Gosling .

Межполушарная асимметрия уровней периферического сопротивления характеризуется трансмиссионным пульсационным индексом (ТПИ) Lindegaard:

где ПИ пс, ПИ зс – пульсационный индекс в средней мозговой артерии на пораженной и здоровой стороне соответственно.

3. Индексы кинематики потока косвенно характеризуют потерю потоком крови кинетической энергии и тем самым свидетельствуют об уровне “проксимального” сопротивления потоку:

Индекс подъема пульсовой волны (ИППВ) определяется по формуле:

Где Т о – время начала систолы,

Т с – время достижения пиковой ЛСК,

Т ц – время, занимаемое сердечным циклом;

4. Допплеровский спектр характеризуется двумя основными параметрами: частотой (величина сдвига линейной скорости кровотока) и мощностью (выражается в децибеллах и отражает относительное количество эритроцитов, движущихся с данной скоростью). В норме подавляющая часть мощности спектра приближена к огибающей скорости. При патологических состояниях, приводящих к турбулентному потоку, спектр “расширяется“ – возрастает количество эритроцитов, совершающих хаотическое движение или перемещающихся в пристеночные слои потока.

Индекс спектрального расширения. Вычисляется как отношение разности пиковой систолической скорости кровотока и усредненной по времени средней скорости кровотока к пиковой систолической скорости. SBI = (Vps - NFV)/Vhs = 1 - TAV/ Vps.

Состояние допплеровского спектра может быть определено с помощью индекса расширения спектра (ИРС) (стеноза) Arbelli:

где Fo – спектральное расширение в неизменном сосуде;

Fm – спектральное расширение в патологически измененном сосуде.

Систоло-диастолическое отношение. Это отношение величины пиковой систолической скорости кровотока к конечно-диастолической скорости кровотока, является косвенной характеристикой состояния сосудистой стенки, в частности ее эластических свойств. Одной из наиболее частых патологий, приводящих к изменению данной величины, является артериальная гипертензия.

5. Реактивность сосудов. Для оценки реактивности сосудистой системы головного мозга используется коэффициент реактивности ­– отношение показателей, характеризующих деятельность системы кровообращения в состоянии покоя, к их значению на фоне воздействия нагрузочного стимула. В зависимости от природы способа воздействия на рассматриваемую систему регуляторные механизмы будут стремиться вернуть интенсивность мозгового кровотока к исходному уровню, либо изменить ее, чтобы приспособиться к новым условиям функционирования. Первое характерно при использовании стимулов физической природы, второе – химической. Учитывая целостность и анатомическую и функциональную взаимосвязанность составляющих системы кровообращения, то при оценке изменений параметров кровотока по интракраниальным артериям (по средней мозговой артерии) на определенный нагрузочный тест необходимо рассматривать реакцию не каждой изолированной артерии, а двух одноименных одновременно, и именно на этом оценивать тип реакции.

В настоящее время существует следующая классификация типов реакций на функциональные нагрузочные тесты:

  • 1) однонаправленная положительная – характеризуется при отсутствии существенной (значимой для каждого конкретного теста) сторонней асимметрии при ответе на функциональный нагрузочный тест с достаточным стандартизованным изменением параметров кровотока;
  • 2) однонаправленная отрицательная – при двустороннем сниженном или отсутствующем ответе на функциональный нагрузочный тест;
  • 3) разнонаправленная – с положительной реакцией на одной стороне и отрицательной (парадоксальной) – на контрлатеральной, которая может быть двух типов: а) с преобладанием ответа на стороне поражения; б) с преобладанием ответа на противоположной стороне.

Однонаправленная положительная реакция соответствует удовлетворительной величине церебрального резерва, разнонаправленная и однонаправленная отрицательная – сниженной (или отсутствующей).

Среди функциональных нагрузок химической природы наиболее полно отвечает требованиям функционального теста ингаляционная проба с вдыханием в течение 1-2 мин газовой смеси, содержащей 5-7% СО2 в воздухе. Способность мозговых сосудов к расширению в ответ на вдыхание углекислого газа может резко ограничиться или вовсе утрачиваться, вплоть до появления инверсированных реакций, при стойком снижении уровня перфузионного давления, возникающем, в частности, при атеросклеротическом поражении МАГ и, особенно, несостоятельности путей коллатерального кровоснабжения.

В противоположность гиперкапнии гипокапния вызывает сужение как крупных, так и мелких артерий, однако не приводит к резким изменениям давления в микроциркуляторном русле, что способствует поддержанию адекватной перфузии мозга.

Сходным по механизму действия с гиперкапническим нагрузочным тестом является проба с задержкой дыхания (Breath Holding) . Сосудистая реакция, выражающаяся в расширении артериолярного русла и проявляющаяся увеличением скорости кровотока в крупных мозговых сосудах, возникает в результате повышения уровня эндогенного СО2 за счет временного прекращения поступления кислорода. Задержка дыхания приблизительно насек приводит к возрастанию систолической скорости кровотока на 20-25% по сравнению с исходной величиной.

В качестве тестов миогенной направленности используют: тест кратковременной компрессии общей сонной артерии, сублингвальный прием 0,25 – 0,5 мг нитроглицерина, орто- и антиортостатические пробы.

Методика исследования цереброваскулярной реактивности включает в себя:

а) оценку исходных значений ЛСК в средней мозговой артерии (передней, задней) с двух сторон;

б) проведение одной из вышеперечисленных функциональных нагрузочных проб;

в) повторную оценку через стандартный интервал времени ЛСК в исследуемых артериях;

г) вычисление индекса реактивности, отображающего положительный прирост параметра усредненной по времени максимальной (средней) скорости кровотока в ответ на предъявляемую функциональную нагрузку.

Для оценки характера реакции на функциональные нагрузочные тесты используется следующая классификация типов реакций:

    • 1) положительная – характеризуется положительным изменением параметров оценки с величиной индекса реактивности более 1,1;
    • 2) отрицательная – характеризуется отрицательным изменением параметров оценки с величиной индекса реактивности в диапазоне от 0,9 до 1,1;
    • 3) парадоксальная – характеризуется парадоксальным изменением параметров оценки индекса реактивности менее 0,9.

    3.2. Анатомия каротидных артерий и методика их исследования.

    Анатомия общей сонной артерии (ОСА). От дуги аорты с правой стороны отходит плечеголовной ствол, который делится на уровне грудино-ключичного сочленения на общую сонную артерию (ОСА) и правую подключичную артерию. Слева от дуги аорты отходят и общая сонная артерия, и подключичная артерия; ОСА направляется вверх и латерально до уровня грудино-ключичного сочленения, далее обе ОСА идут кверху параллельно друг другу. В большинстве случаев ОСА делится на уровне верхнего края щитовидного хряща или подъязычной кости на внутреннюю сонную артерию (ВСА) и наружную сонную артерию (НСА). Кнаружи от ОСА лежит внутренняя яремная вена. У людей, имеющих короткую шею, разделение ОСА происходит более высоко. Длина ОСА справа в среднем – 9,5 (7-12) см, слева 12,5 (10-15) см. Варианты ОСА: короткая ОСА длиной 1-2 см; отсутствие ее – ВСА и НСА начинаются самостоятельно от дуги аорты.

    Исследование магистральных артерий головы проводится в положении пациента лежа на спине, перед началом исследования пальпируются каротидные сосуды, определяется их пульсация. Для диагностики каротидных и позвоночных артерий используется датчик 4 МГц.

    Для инсонации ОСА датчик ставится по внутреннему краю кивательной мышцы под угломградусов в краниальном направлении, последовательно лоцируя артерию на всем протяжении до бифуркации ОСА. Кровоток ОСА направлен от датчика.

    Рис.1. Допплерограмма ОСА в норме.

    Для допплерограммы ОСА характерно высокое систоло-диастолическое отношение (в норме до 25-35%), максимум спектральной мощности у огибающей кривой, имеется четкое спектральное “окно”. Отрывистый насыщенный среднечастотный звук, сменяющийся длительным низкочастотным звуком. Допплерограмма ОСА имеет сходство с допплерограммами НСА и НБА.

    ОСА на уровне верхнего края щитовидного хряща делится на внутреннюю и наружную сонные артерии. ВСА является наиболее крупной ветвью ОСА и лежит чаще всего сзади и латерально от НСА. Нередко отмечается извитость ВСА, она может быть одно и двусторонней. ВСА, поднимаясь вертикально, достигает наружного отверстия сонного канала и проходит через него в череп. Варианты ВСА: одно- или двусторонняя аплазия или гипоплазия; самостоятельное отхождение от дуги аорты или от плечеголовного ствола; необычно низкое начало от ОСА.

    Исследование проводится в положении больного лежа на спине у угла нижней челюсти датчиком 4 или 2 МГц под углом 45–60 градусов в краниальном направлении. Направление кровотока по ВСА от датчика.

    Нормальная допплерограмма ВСА: быстрый крутой подъем, заостренная вершина, медленный пилообразный плавный спуск. Систоло-диастолическое отношение около 2,5. Максимум спектральной мощности ­– у огибающей, имеется спектральное “окно”; характерен дующий музыкальный звук.

    Рис.2. Допплерограмма ВСА в норме.

    Анатомия позвоночной артерии (ПА) и методика исследования .

    ПА является ветвью подключичной артерии. Справа она начинается на расстоянии 2,5 см, слева – 3,5 см от начала подключичной артерии. Позвоночные артерии подразделяются на 4 сегмента. Начальный сегмент ПА (V1), располагаясь позади передней лестничной мышцы, направляется вверх, входит в отверстие поперечного отростка 6-го (реже 4-5 или 7-го) шейного позвонка. Сегмент V2 - шейная часть артерии проходит в канале, образованном поперечными отростками шейных позвонков и поднимается вверх. Выйдя через отверстие в поперечном отростке 2-го шейного позвонка (сегмент V3) ПА идет кзади и латерально (1-й изгиб), направляясь в отверстие поперечного отростка атланта (2-й изгиб), затем поворачивает на дорзальную сторону боковой части атланта (3-й изгиб) повернув медиально и достигнув большего затылочного отверстия (4-й изгиб), она проходит через атланто-затылочную мембрану и твердую мозговую оболочку в полость черепа. Далее внутричерепная часть ПА (сегмент V4) идет на основание мозга латерально от продолговатого мозга, а затем кпереди от него. Обе ПА на границе продолговатого мозга и моста сливаются в одну основную артерию. Примерно в половине случаев одна или обе ПА до момента слияния имеют S­ - образный изгиб.

    Исследование ПА выполняется в положении больного лежа на спине датчиком 4 МГц или 2МГц в сегменте V3. Датчик располагают по заднему краю кивательной мышцы на 2-3 см ниже сосцевидного отростка, направляя ультразвуковой луч к противоположной орбите. Направление кровотока в сегменте V3 из-за наличия изгибов и индивидуальных особенностей хода артерии может быть прямым, обратным и двунапраленным. Для идентификации сигнала ПА выполняют пробу с пережатием гомолатеральной ОСА, если кровоток не уменьшается значит сигнал ПА.

    Кровоток в позвоночной артерии характеризуется непрерывной пульсацией и достаточным уровнем диастолической составляющей скорости, что также является следствием низкого периферического сопротивления в позвоночной артерии.

    Рис.3. Допплерограмма ПА.

    Анатомия надблоковой артерии и методика исследования .

    Надблоковая артерия (НБА) является одной из конечных ветвей глазничной артерии. Глазничная артерия отходит от медиальной стороны передней выпуклости сифона ВСА. Она входит в глазницу через канал зрительного нерва и на медиальной стороне делится на свои конечные ветви. НБА выходит из полости орбиты через лобную вырезку и анастомозирует с надглазничной артерией и с поверхностной височной артерией, ветвями НСА.

    Исследование НБА проводится при закрытых глазах датчиком 8 МГц, который располагается у внутреннего угла глаза в направление к верхней стенке глазницы и медиально. В норме направление кровотока по НБА к датчику (антеградный кровоток). Кровоток в надблоковой артерии имеет непрерывную пульсацию, высокий уровень диастолической составляющей скорости и непрерывный звуковой сигнал, что является следствием низкого периферического сопротивления в бассейне внутренней сонной артерии. Доплерограмма НБА типична для экстракраниального сосуда (имеет сходство с допплерограммами НСА и ОСА). Высокий крутой систолический пик с быстрым подъемом, острой вершиной и быстрым ступенчатым спуском, сменяющийся плавным спуском в диастолу, высокое систоло-диастолическое отношение. Максимум спектральной мощности сосредоточен в верхней части допплерограммы, вблизи огибающей; спектральное “окно” выражено.

    Рис.4. Допплерограмма НБА в норме.

    Форма кривой скорости кровотока в периферических артериях (подключичная, плечевая, локтевая, лучевая) существенно отличаются от формы кривой артерий, снабжающих мозг. В силу высокого периферического сопротивления этих сегментов сосудистого русла практически отсутствует диастолическая составляющая скорости и кривая скорости кровотока располагается на изолинии. В норме кривая скорости кровотока периферических артерий имеет три компонента: систолическую пульсацию, обусловленную прямым кровотоком, обратный кровоток в период ранней диастолы, связанный с артериальным рефлюксом, и небольшой положительный пик в период поздней диастолы после отражения крови от створок аортального клапана. Подобный тип кровотока называется магистральным.

    Рис. 5. Допплерограмма периферических артерий, магистральный тип кровотока.

    3.3. Анализ потоков допплерографии.

    На основании результатов анализа допплерографии можно выделить основные потоки:

    1) магистральный поток,

    2) поток стеноза,

    4) остаточный поток,

    5) затрудненная перфузия,

    6) паттерн эмболии,

    7) церебральный ангиоспазм.

    1. Магистральный поток характеризуется нормальными (для конкретной возрастной группы) показателями линейной скорости кровотока, резистивности, кинематики, спектра, реактивности. Это трехфазная кривая, состоящая из систолического остроконечного пика, ретроградного пика, возникающего в диастолу вследствие ретроградного тока крови в сторону сердца до момента закрытия аортального клапана и третий антеградный небольшой пик возникает в конце диастолы, и объясняется возникновением слабого антеградного кровотока после отражения крови от створок аортального клапана. Магистральный тип кровотока характерен для периферических артерий.

    2. При стенозировании просвета сосуда (гемодинамический вариант: несоответствие диаметра сосуда нормальному объемному кровотоку, (сужение просвета сосуда более 50%), что встречается при атеросклеротических поражениях, сдавлении сосуда опухолью, костными образованиями, перегибе сосуда) вследствие эффекта Д. Бернулли возникают следующие изменения:

    • возрастает линейная преимущественно систолическая скорость кровотока;
    • уровень периферического сопротивления незначительно снижается (за счет включения ауторегуляторных механизмов, направленных на снижение периферического сопротивления)
    • индексы кинематики потока существенно не изменяются;
    • прогрессивное, пропорциональное степени стеноза, расширение спектра (индекс Аrbelli соответствует % стеноза сосуда по диаметру)
    • снижение церебральной реактивности преимущественно за счет сужения вазодиляторного резерва при сохраненных возможностях к вазоконстрикции.

    3. При шунтирующих поражениях сосудистой системы головного мозга – относительном стенозе, когда возникает несоответствие объемного кровотока нормальному диаметру сосуда (артерио–венозные мальформации, артериосинусные соустья, избыточная перфузия,) допплерографический паттерн характеризуется:

    • значительным повышением (преимущественно за счет диастолической) линейной скорости кровотока пропорционально уровню артерио–венозного сброса;
    • значительным снижением уровня периферического сопротивления (за счет органического поражения сосудистой системы на уровне резистивных сосудов, определяющего низкий уровень гидродинамического сопротивления в системе)
    • относительной сохранностью индексов кинематики потока;
    • отсутствием выраженных изменений допплеровского спектра;
    • резким снижением цереброваскулярной реактивности, преимущественно за счет сужения вазоконстрикторного резерва.

    4. Остаточный поток – регистируется в сосудах, расположенных дистальнее зоны гемодинамически значимой окклюзии (тромбоз, закупорка сосуда, стеноз% по диаметру). Характеризуется:

    • снижением ЛСК, преимущественно систолической составляющей;
    • снижается уровень периферического сопротивления за счет включения ауторегуляторных механизмов, вызывающих дилятацию пиально-капиллярной сосудистой сети;
    • резко снижены показатели кинематики (“сглаженный поток”)
    • допплеровский спектр относительно низкой мощности;
    • резкое снижение реактивности, преимущественно за счет вазодиляторного резерва.

    5. Затрудненная перфузия – характерна для сосудов, сегментов расположенных проксимальнее зоны аномально высокого гидродинамического эффекта. Отмечается при внутричерепной гипертензии, диастолической вазоконстрикции, глубокой гипокапнии, артериальной гипертензии. Харарктеризуется:

    • снижением ЛСК за счет диастолической составляющей;
    • значительным повышением уровня периферического сопротивления;
    • мало изменяются показатели кинематики и спектра;
    • значительно снижается реактивность: при внутричерепной гипертензии – на гиперкапническую нагрузку, при функциональной вазоконстрикции - на гипокапническую.

    7. Церебральный ангиоспазм – возникает в результате сокращения гладкой мускулатуры церебральных артерий при субарахноидальном кровоизлиянии, инсульте, мигрени, артериальной гипо и гипертензии, дисгормональных нарушениях и др. заболеваниях. Характеризуется высокой линейной скоростью кровотока, преимущественно за счет систолической составляющей.

    В зависимости от увеличения показателей ЛСК выделяют 3 степени тяжести церебрального ангиоспазма:

    легкая степень – до 120 см/сек,

    средняя степень – до 200 см/сек,

    тяжелая степень – свыше 200 см/сек.

    Увеличение до 350 см/сек и выше приводит к остановке кровообращения в сосудах мозга.

    В 1988 г. К.Ф. Линдегард предложил определять соотношение пиковой систолической скорости в средней мозговой артерии и одноименной внутренней сонной артерии. По мере нарастания степени церебрального ангиоспазма меняется соотношение скоростей между СМА и ВСА (в норме: V cma/Vвса = 1,7 ± 0,4). Этот показатель также позволяет судить о выраженности спазма СМА:

    легкая степень 2,1-3,0

    средняя степень 3,1- 6,0

    тяжелая более 6,0.

    Значение индекса Линдегарда в диапозоне от 2 до 3 может оцениваться как диагностически значимое у лиц с функциональным вазоспазмом.

    Допплерографический мониторинг этих показателей позволяет осуществлять раннюю диагностику ангиоспазма, когда ангиографически он может быть еще не обнаружен, и динамику его развития, что позволяет проводить более эффективное лечение.

    Пороговое значение пиковой систолической скорости кровотока для ангиоспазма в ПМА по данным литературы составляет 130 см/c, в ЗМА – 110см/c. Для ОА разными авторами были предложены разные пороговые значения пиковой систолической скорости кровотока, которые варьировали от 75 до 110 см/c. Для диагностики ангиоспазма основной артерии берется соотношение пиковой систолической скорости ОА и ПА наэкстракраниальном уровне, значимое значение = 2 и более. В таблице 1. приведена дифференциальная диагностика стеноза, ангиоспазма и артериовенозной мальформации.

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:

Используется для расчета величины этого параметра или его изменений. Для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистыхотделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем.

На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

Сопротивление, разность давления и поток связаны основным уравнением гидродинамики: Q=AP/R. Так как поток (Q) должен быть идентичен в каждом из последовательно расположенных отделов сосудистой системы, то падение давления, которое происходит на протяжении каждого из этих отделов, является прямым отражением сопротивления, которое существует в данном отделе. Таким образом, существенное падение артериального давления, при прохождении крови через артериолы, указывает, что артериолы обладают значительным сопротивлением кровотоку. Среднее давление незначительно снижается в артериях, так как они обладают незначительным сопротивлением.

Аналогично умеренное падение давления, которое происходит в капиллярах, является отражением того, что капилляры обладают умеренным сопротивлением по сравнению с артериолами.

Поток крови, протекающий через отдельные органы, может изменяться в десять и более раз. Так как среднее артериальное давление является относительно устойчивым показателем деятельности сердечно-сосудистой системы, существенные изменения кровотока органа являются следствием изменения его общего сосудистого сопротивления кровотоку. Последовательно расположённые сосудистые отделы объединены в определенные группы в пределах органа, и общее сосудистое сопротивление органа должно равняться сумме сопротивлений его последовательно соединенных сосудистых отделов.

Так как артериолы обладают значительно большим сосудистым сопротивлением по сравнению с другими отделами сосудистого русла, то общее сосудистое сопротивление любого органа определяется в значительной степени сопротивлением артериол. Сопротивление артериол, конечно, в значительной степени определяется радиусом артериол. Следовательно, кровоток через орган в первую очередь регулируется изменением внутреннего диаметра артериол за счет сокращения или расслабления мышечной стенки артериол.

Когда артериолы органа изменяют свой диаметр, то меняется не только кровоток через орган, но претерпевает изменения и падение артериального давления, происходящее в данном органе.

Сужение артериол вызывает более значительное падение давления в артериолах, что приводит к увеличению артериального давления и одновременному снижению изменений сопротивления артериол на давление в сосудах.

(Функция артериол в какой-то степени напоминает роль дамбы: в результате закрытия ворот дамбы снижается поток и повышается ее уровень в резервуаре позади плотины и снижается уровень после нее).

Напротив, увеличение органного кровотока, вызванное расширением артериол, сопровождается снижением артериального давления и увеличением капиллярного давления. Из-за изменений гидростатического давления в капиллярах сужение артериол ведет к транскапиллярной реабсорбции жидкости, в то время как расширение артериол способствует транскапиллярной фильтрации жидкости.

Определение основных понятий в интенсивной терапии

Основные понятия

Артериальное давление характеризуется показателями систолического и диастолического давления, а также интегральным показателем: среднее артериальное давление. Среднее артериальное давление рассчитывается как сумма одной трети пульсового давления (разницы между систолическим и диастолическим) и диастолического давления.

Среднее артериальное давление само по себе не описывает адекватно функцию сердца. Для этого используются следующие показатели:

Сердечный выброс: объем крови, изгоняемой сердцем за минуту.

Ударный объём: объем крови, изгоняемой сердцем за одно сокращение.

Сердечный выброс равен ударному объёму, умноженному на ЧСС.

Сердечный индекс - это сердечный выброс, с коррекцией на размеры пациента (на площадь поверхности тела). Он точнее отражает функцию сердца.

Ударный объём зависит от преднагрузки, постнагрузки и сократимости.

Преднагрузка - это мера напряжения стенки левого желудочка в конце диастолы. Она трудно поддаётся прямому количественному определению.

Непрямыми показателями преднагрузки служат центральное венозное давление (ЦВД), давление заклинивания лёгочной артерии (ДЗЛА) и давление в левом предсердии (ДЛП). Эти показатели называют «давлениями наполнения».

Конечно-диастолический объём левого желудочка (КДОЛЖ) и конечно-диастолическое давление в левом желудочке считаются более точными показателями преднагрузки, однако они редко измеряются в клинической практике. Ориентировочные размеры левого желудочка могут быть получены с помощью трансторакального или (точнее) чреспищеводного УЗИ сердца. Кроме того, конечно-диастолический объём камер сердца высчитывается с помощью некоторых методов исследования центральной гемодинамики (PiCCO).

Постнагрузка - это мера напряжения стенки левого желудочка во время систолы.

Она определяется преднагрузкой (которая обусловливает растяжение желудочка) и сопротивлением, которое встречает сердце при сокращении (это сопротивление зависит от общего периферического сопротивления сосудов (ОПСС), податливости сосудов, среднего артериального давления и от градиента в выходном тракте левого желудочка).

ОПСС, которое, как правило, отражает степень периферической вазоконстрикции, часто используется как непрямой показатель постнагрузки. Определяется при инвазивном измерении параметров гемодинамики.

Сократительная способность и комплайнс

Сократимость - это мера силы сокращения миокардиальных волокон при определённых пред- и постнагрузке.

Среднее артериальное давление и сердечный выброс часто используются как непрямые показатели сократимости.

Комплайнс - это мера растяжимости стенки левого желудочка во время диастолы: сильный, гипертрофированный левый желудочек может характеризоваться низким комплайнсом.

Комплайнс трудно количественно измерить в клинических условиях.

Конечно-диастолическое давление в левом желудочке, которое можно измерить во время предоперационной катетеризации сердца или оценить по данным эхоскопии, является непрямым показателем КДДЛЖ.

Важные формулы расчета гемодинамики

Сердечный выброс = УО * ЧСС

Сердечный индекс = СВ/ППТ

Ударный индекс = УО/ППТ

Среднее артериальное давление = ДАД + (САД-ДАД)/3

Общее периферическое сопротивление = ((СрАД-ЦВД)/СВ)*80)

Индекс общего периферического сопротивления = ОПСС/ППТ

Сопротивление лёгочных сосудов = ((ДЛА - ДЗЛК)/СВ)*80)

Индекс сопротивления лёгочных сосудов = ОПСС/ППТ

CВ = сердечный выброс, 4,5-8 л/мин

УО = ударный объем, 60-100 мл

ППТ = площадь поверхности тела, 2- 2,2 м 2

СИ = сердечный индекс, 2,0-4,4 л/мин*м2

ИУО = индекс ударного объема, 33-100 мл

СрАД = Среднее артериальное давление, 70- 100 мм рт.

ДД = Диастолическое давление, 60- 80 мм рт. ст.

САД = Систолическое давление, 100- 150 мм рт. ст.

ОПСС = общее периферическое сопротивление, 800-1 500 дин/с*см 2

ЦВД = центральное венозное давление, 6- 12 мм рт. ст.

ИОПСС = индекс общего периферического сопротивления, 2000-2500 дин/с*см 2

СЛС = сопротивление лёгочных сосудов, СЛС = 100-250 дин/с*см 5

ДЛА = давление в лёгочной артерии, 20- 30 мм рт. ст.

ДЗЛА = давление заклинивания лёгочной артерии, 8- 14 мм рт. ст.

ИСЛС = индекс сопротивления лёгочных сосудов = 225-315 дин/с*см 2

Оксигенация и вентиляция

Оксигенация (содержание кислорода в артериальной крови) описывается такими понятиями, как парциальное давление кислорода в артериальной крови (P a 0 2) и сатурация (насыщение) гемоглобина артериальной крови кислородом (S a 0 2).

Вентиляция (движение воздуха в лёгкие и из них) описывается понятием минутный объём вентиляции и оценивается путём измерения парциального давления углекислого газа в артериальной крови (P a C0 2).

Оксигенация, в принципе, не зависит от минутного объёма вентиляции, если только он не очень низкий.

В послеоперационном периоде основной причиной гипоксии являются ателектазы лёгких. Их следует попытаться устранить до того, как увеличивать концентрацию кислорода во вдыхаемом воздухе(Fi0 2).

Для лечения и профилактики ателектазов применяются положительное давление в конце выдоха (РЕЕР) и постоянное положительное давление в дыхательных путях (СРАР).

Потребление кислорода оценивается косвенно по сатурации гемоглобина смешанной венозной крови кислородом (S v 0 2) и по захвату кислорода периферическими тканями.

Функция внешнего дыхания описывается четырьмя объёмами (дыхательный объём, резервный объём вдоха, резервный объём выдоха и остаточный объём) и четырьмя ёмкостями (ёмкость вдоха, функциональная остаточная ёмкость, жизненная ёмкость и общая ёмкость лёгких): в ОИТР в повседневной практике используется только измерение дыхательного объёма.

Уменьшение функциональной резервной ёмкости вследствие ателектазов, положения на спине, уплотнения лёгочной ткани (застойные явления) и коллапса лёгких, плеврального выпота, ожирения приводят к гипоксии.СРАР, РЕЕР и физиотерапия направлены на ограничение этих факторов.

Общее периферическое сопротивление сосудов (ОПСС). Уравнение Франка.

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением .

Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:

где R - гидравлическое сопротивление, l - длина сосуда, v - вязкость крови, r - радиус сосудов.

Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк . используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:

где Р1-Р2 - разность давлений в начале и в конце участка сосудистой системы, Q - величина кровотока через этот участок, 1332- коэффициент перевода единиц сопротивления в систему CGS.

Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.

Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.

В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин с ¦ см. при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200-3000 дин с см-5.

Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

Сопротивление представляет собой препятствие кровотоку, которое возникает в кровеносных сосудах. Сопротивление не может быть измерено никаким прямым методом. Оно может быть рассчитано с использованием данных о величине кровотока и разницы давления на обоих концах кровеносного сосуда. Если разница давления равна 1 мм рт. ст., а объемный кровоток равен 1 мл/сек, сопротивление составляет 1 единицу периферического сопротивления (ЕПС).

Сопротивление , выраженное в единицах системы СГС. Иногда для выражения единиц периферического сопротивления используют единицы системы СГС (сантиметры, граммы, секунды). В этом случае единицей сопротивления будет дина сек/см5.

Общее периферическое сосудистое сопротивление и общее легочное сосудистое сопротивление. Объемная скорость кровотока в системе кровообращения соответствует сердечному выбросу, т.е. тому объему крови, которое сердце перекачивает за единицу времени. У взрослого человека это составляет примерно 100 мл/сек. Разница давления между системными артериями и системными венами равна примерно 100 мм рт. ст. Следовательно, сопротивление всего системного (большого) круга кровообращения или, иными словами, общее периферическое сопротивление соответствует 100/100 или 1 ЕПС.

В условиях, когда все кровеносные сосуды организма резко сужены, общее периферическое сопротивление может возрасти до 4 ЕПС. И наоборот, если все сосуды окажутся расширенными, сопротивление может упасть до 0,2 ЕПС.

В сосудистой системе легких артериальное давление в среднем равно 16 мм рт. ст., а среднее давление в левом предсердии - 2 мм рт. ст. Следовательно, общее легочное сосудистое сопротивление составит 0,14 ЕПС (примерно 1/7 общего периферического сопротивления) при обычном сердечном выбросе, равном 100 мл/сек.

Проводимость сосудистой системы для крови и ее взаимосвязь с сопротивлением. Проводимость определяется объемом крови, протекающим по сосудам, за счет данной разницы давления. Проводимость выражается в миллилитрах за секунду на миллиметр ртутного столба, но может быть выражена также в литрах за секунду на миллиметр ртутного столба или в каких-либо других единицах объемного кровотока и давления.
Очевидно, что проводимость - это величина, обратная сопротивлению: проводимость=1/сопротивление.

Незначительные изменения диаметра сосудов могут привести к существенным изменениям их проводимоаи. В условиях ламинарного течения крови незначительные изменения диаметра сосудов могут резко изменить величину объемного кровотока (или проводимость кровеносных сосудов). На рисунке показаны три сосуда, диаметры которых соотносятся как 1, 2 и 4, а разница давления между концами каждого сосуда одинакова - 100 мм рт. ст. Скорость объемного кровотока в сосудах равна 1, 16 и 256 мл/мин, соответственно.

Обратите внимание, что при увеличении диаметра сосуда только в 4 раза объемный кровоток увеличился в нем в 256 раз. Таким образом, проводимость сосуда увеличивается пропорционально четвертой степени диаметра в соответствии с формулой: Проводимость ~ Диаметр.

Физиологическая роль артериол в регуляции кровотока

Кроме того, тонус артериол может изменяться локально, в пределах данного органа или ткани. Локальное изменение тонуса артериол, не оказывая заметного влияния на общее периферическое сопротивление, будет определять величину кровотока в данном органе. Так, тонус артериол заметно снижается в работающих мышцах, что приводит к увеличению их кровоснабжения.

Регуляция тонуса артериол

Поскольку изменение тонуса артериол в масштабе целостного организма и в масштабе отдельных тканей имеет совершенно различное физиологическое значение, существуют как локальные, так и центральные механизмы его регуляции.

Локальная регуляция сосудистого тонуса

В отсутствие всяких регуляторных воздействий изолированная артериола, лишенная эндотелия, сохраняет некоторый тонус, зависящий от самих гладких мышц. Он называется базальным тонусом сосуда. На сосудистый тонус постоянно влияют такие факторы среды, как pH и концентрация CO 2 (снижение первой и повышение второй приводят к уменьшению тонуса). Эта реакция оказывается физиологически целесообразной, так как следующее за локальным снижением тонуса артериол увеличение местного кровотока, собственно, и приведет к восстановлению тканевого гомеостаза.

Напротив, медиаторы воспаления, такие, как простагландин E 2 и гистамин, вызывают снижение тонуса артериол. Изменение метаболического состояния ткани может менять баланс прессорных и депрессорных факторов. Так, снижение pH и увеличение концентрации CO 2 смещает баланс в пользу депрессорных влияний.

Системные гормоны, регулирующие сосудистый тонус

Участие артериол в патофизиологических процессах

Воспаление и аллергические реакции

Важнейшая функция воспалительной реакции - локализация и лизис чужеродного агента, вызвавшего воспаление. Функции лизиса выполняют клетки, доставляющиеся в очаг воспаления током крови (главным образом, нейтрофилы и лимфоциты. Соответственно, оказывается целесообразным увеличить в очаге воспаления локальный кровоток. Поэтому «медиаторами воспаления» служат вещества, имеющие мощный сосудорасширяющий эффект - гистамин и простагландин E 2 . Три из пяти классических симптомов воспаления (покраснение, отёк, жар) вызваны именно расширением сосудов. Увеличение притока крови - следовательно, краснота; рост давления в капиллярах и увеличение фильтрации из них жидкости - следовательно, отёк (впрочем, в его формировании участвует и рост проницаемости стенок капилляров), увеличение притока нагретой крови от ядра тела - следовательно, жар (хотя здесь, возможно, не меньшую роль играет увеличение скорости обмена веществ в очаге воспаления).

8)классификация кровеносных сосудов.

Кровено́сные сосу́ды - эластичные трубчатые образования в теле животных и человека, по которым силой ритмически сокращающегося сердца или пульсирующего сосуда осуществляется перемещение крови по организму: к органам и тканям по артериям, артериолам, артериальным капиллярам, и от них к сердцу - по венозным капиллярам, венулам и венам.

Среди сосудов кровеносной системы различают артерии , артериолы , капилляры , венулы , вены и артериоло-венозные анастомозы ; сосуды системы микроциркуляторного русла осуществляют взаимосвязь между артериями и венами. Сосуды разных типов отличаются не только по своей толщине, но и по тканевому составу и функциональным особенностям.

    Артерии - сосуды, по которым кровь движется от сердца. Артерии имеют толстые стенки, в которых содержатся мышечные волокна, а также коллагеновые и эластические волокна. Они очень эластичные и могут сужаться или расширяться, в зависимости от количества перекачиваемой сердцем крови.

    Артериолы - мелкие артерии, по току крови непосредственно предшествующие капиллярам. В их сосудистой стенке преобладают гладкие мышечные волокна, благодаря которым артериолы могут менять величину своего просвета и, таким образом, сопротивление.

    Капилляры - это мельчайшие кровеносные сосуды, настолько тонкие, что вещества могут свободно проникать через их стенку. Через стенку капилляров осуществляется отдача питательных веществ икислорода из крови в клетки и переход углекислого газа и других продуктов жизнедеятельности из клеток в кровь.

    Венулы - мелкие кровеносные сосуды, обеспечивающие в большом круге отток обедненной кислородом и насыщенной продуктами жизнедеятельности крови из капилляров в вены.

    Вены - это сосуды, по которым кровь движется к сердцу. Стенки вен менее толстые, чем стенки артерий и содержат соответственно меньше мышечных волокон и эластических элементов.

9)Объемная скорость кровотока

Объемная скорость потока крови (кровотока) сердца - это динамический показатель деятельности сердца. Соответствующая этому показателю переменная физическая величина характеризует объёмное количество крови, проходящее через поперечное сечение потока (в сердце) за единицу времени. Объемную скорость кровотока сердца оценивают по формуле:

CO = HR · SV / 1000,

где: HR - частота сокращений сердца (1 / мин ), SV - систолический объём кровотока (мл , л ). Система кровообращения, или сердечно-сосудистая система представляет собой замкнутую систему (см. схему 1, схему 2, схему 3). Она состоит из двух насосов (правое сердце и левое сердце), соединенных между собой последовательнокровеносными сосудами большого круга кровообращения и кровеносными сосудами малого круга кровообращения(сосудами лёгких). В любом совокупном сечении этой системы протекает одно и то же количество крови. В частности, при одних и тех же условиях поток крови, протекающий через правое сердце, равен потоку крови, протекающей через левое сердце. У человека в состоянии покоя объёмная скорость кровотока (как правого, так и левого) сердца составляет ~4,5 ÷ 5,0 л / мин . Целью системы кровообращения является обеспечение непрерывного кровотока во всех органах и тканях в соответствии с потребностями организма. Сердце является насосом, перекачивающим кровь по системе кровообращения. Вместе с кровеносными сосудами сердце актуализирует цель системы кровообращения. Отсюда, объёмная скорость кровотока сердца является переменной, характеризующей эффективность работы сердца. Кровоток сердца управляется сердечно-сосудистым центром и зависит от ряда переменных. Главными из них являются:объёмная скорость потока венозной крови к сердцу (л / мин ), конечно-диастолический объём кровотока (мл ), систолический объём кровотока (мл ), конечно-систолический объём кровотока (мл ), частота сокращений сердца (1 / мин ).

10) Линейная скорость потока крови (кровотока) - это физическая величина, являющаяся мерой движения частиц крови, составляющих поток. Теоретически она равна расстоянию, проходимому частицей вещества, составляющего поток, в единицувремени: v = L / t . Здесь L - путь (м ), t - время (c ). Кроме линейной скорости кровотока различают объёмную скорость потока крови, или объёмную скорость кровотока . Средняя линейная скорость ламинарного кровотока (v ) оценивается интегрированием линейных скоростей всех цилиндрических слоев потока:

v = (dP · r 4 ) / (8η · l ),

где: dP - разница давления крови в начале и в конце участка кровеносного сосуда, r - радиус сосуда, η - вязкость крови, l - длина участка сосуда, коэффициент 8 - это результат интегрирования скоростей, движущихся в сосуде слоев крови. Объемная скорости кровотока (Q ) и линейная скорости кровотока связаныотношением:

Q = v · π · r 2 .

Подставив в это отношение выражение для v получим уравнение («закон») Хагена-Пуазейля для объёмной скорости кровтотка:

Q = dP · (π · r 4 / 8η · l ) (1).

Исходя из простой логики, можно утверждать, что объёмная скорость любого потока прямо пропорциональна движущейсиле и обратно пропорциональна сопротивлению потоку. Аналогично, объёмная скорость кровотока (Q ) прямо пропорциональна движущей силе (градиентдавления, dP ), обеспечивающей кровоток, и обратно пропорциональна сопротивлению кровотоку (R ): Q = dP / R . Отсюда R = dP / Q . Подставляя в это отношение выражение (1) для Q , получим формулу для оценки сопротивления кровотоку:

R = (8η · l ) / (π · r 4 ).

Из всех этих формул видно, что самой значимой переменной, определяющей линейную и объёмную скорости кровотока, является просвет (радиус) сосуда. Эта переменная является главной переменной в управлении кровотоком.

Сопротивление сосудов

Гидродинамическое сопротивление прямо пропорционально длине сосуда и вязкости крови и обратно пропорционально радиусу сосуда в 4-й степени, то есть больше всего зависит от просвета сосуда. Так как наибольшим сопротивлением обладают артериолы, ОПСС зависит главным образом от их тонуса.

Различают центральные механизмы регуляции тонуса артериол и местные механизмы регуляции тонуса артериол.

К первым относятся нервные и гормональные влияния, ко вторым - миогенная, метаболическаяи эндотелиальная регуляция.

На артериолы оказывают постоянный тонический сосудосуживающий эффект симпатические нервы. Величина этого симпатического тонуса зависит от импульсации, поступающей отбарорецепторов каротидного синуса, дуги аорты и легочных артерий.

Основные гормоны, в норме участвующие в регуляции тонуса артериол, - это адреналин инорадреналин, вырабатываемые мозговым веществом надпочечников.

Миогенная регуляция сводится к сокращению или расслаблению гладких мышц сосудов в ответ на изменения трансмурального давления; при этом напряжение в их стенке остается постоянным. Тем самым обеспечивается ауторегуляция местного кровотока - постоянство кровотока при меняющемся перфузионном давлении.

Метаболическая регуляция обеспечивает расширение сосудов при повышении основного обмена(за счет выброса аденозина и простагландинов) и гипоксии (также за счет выделения простагландинов).

Наконец, эндотелиальные клетки выделяют ряд вазоактивных веществ - окись азота,эйкозаноиды (производные арахидоновой кислоты), сосудосуживающие пептиды (эндотелин-1, ангиотензин II) и свободные радикалы кислорода.

12)давление крови в разных отделах сосудистого русла

Давление крови в различных участках сосудистой системы. Среднее давление в аорте поддерживается на высоком уровне (примерно 100 мм рт. ст.), поскольку сердце непрестанно перекачивает кровь в аорту. С другой стороны, артериальное давление меняется от систолического уровня 120 мм рт. ст. до диастолического уровня 80 мм рт. ст., поскольку сердце перекачивает кровь в аорту периодически, только во время систолы. По мере продвижения крови в большом круге кровообращения среднее давление неуклонно снижается, и в месте впадения полых вен в правое предсердие оно составляет 0 мм рт. ст. Давление в капиллярах большого круга кровообращения снижается от 35 мм рт. ст. в артериальном конце капилляра до 10 мм рт. ст. в венозном конце капилляра. В среднем «функциональное» давление в большинстве капиллярных сетей составляет 17 мм рт. ст. Этого давления достаточно для перехода небольшого количества плазмы через мелкие поры в капиллярной стенке, в то время как питательные вещества легко диффундируют через эти поры к клеткам близлежащих тканей. В правой части рисунке показано изменение давления в различных участках малого (легочного) круга кровообращения. В легочных артериях видны пульсовые изменения давления, как и в аорте, однако уровень давления значительно ниже: систолическое давление в легочной артерии - в среднем 25 мм рт. ст., а диастоли-ческое - 8 мм рт. ст. Таким образом, среднее давление в легочной артерии составляет всего 16 мм рт. ст., а среднее давление в легочных капиллярах равно примерно 7 мм рт. ст. В то же время общий объем крови, проходящий через легкие за минуту, - такой же, как и в большом круге кровообращения. Низкое давление в системе легочных капилляров необходимо для выполнения газообменной функции легких.