Функции углеводов. Функция углеводов в клетке

Человек черпает энергию для своего существования именно из углеводов. Они выполняют так называемую энергетическую функцию в организмах млекопитающих. Продукты, в состав которых входят сложные углеводы, должны составлять не менее 40-50% от калорийности суточного рациона человека. Глюкозу легко мобилизовать из «запасов» организма при стрессовых ситуациях или интенсивных физических нагрузках.

Незначительные понижение уровня глюкозы в крови (гипогликемия) в первую очередь сказываются на ЦНС :

Появляются слабость,
- головокружение,
- в особо запущенных случаях могут происходить потеря сознания,
- бред,
- мышечные судороги.

Чаще всего, говоря об углеводах, на ум приходит один из самых известных представителей данного класса органических веществ – крахмал, который является одним из наиболее распространенных полисахаридов, т.е. он состоит из огромного количества последовательно соединенных молекул глюкозы. Когда крахмал окисляется он превращается в отдельные полноценные молекулы глюкозы. Но, так как крахмал, как упоминалось выше, состоит из ОГРОМНОГО количества молекул глюкозы, то его полное расщепление происходит пошагово: из крахмала в меньшие по размерам полимеры, затем в дисахариды (которые состоят только из двух молекул глюкозы), и только потом в глюкозу.

Этапы расщепления углеводов

Переработка пищи, основной составляющей которой, является углеводный компонент, происходит в разных частях пищеварительного тракта.

Начало расщепления происходит еще в ротовой полости. Во время акта жевания пища обрабатывается ферментом слюны питалином (амилазой), который синтезируется околоушными железами. Он помогает огромной молекуле крахмала распасться до более мелких полимеров.

Так как пища находится в ротовой полости непродолжительное время, она требует последующей переработки в желудке. Попадая в полость желудка углеводные продукты смешиваются с секретом поджелудочной железы, а именно панкреатической амилазой, которая является более эффективной, чем амилаза ротовой полсти, а потому уже через 15-30 минут, когда химус (полужидкое не до конца переваренное содержимое желудка) из желудка достигает двенадцатиперстной кишки почти все углеводы оказываются уже окисленными до очень мелких полимеров и мальтозы (дисахарид, две соединенные молекулы глюкозы).

Из двенадцатиперстной кишки смесь полисахаридов и мальтозы продолжает свой удивительный путь в верхние отделы кишечника, где их окончательной переработкой занимаются так называемы ферменты кишечного эпителия. Энтероциты (клетки, которые выстилают микроворсинки тонкого кишечника) содержат ферменты лактазу, мальтазу, сахаразу и декстриназу, которые осуществляют конечную переработку дисахаридов и мелких полисахаридов до моносахаридов (это уже одна молекула, но еще не глюкоза). Лактоза распадается на галактозу и глюкозу, сахароза – на фруктозу и глюкозу, мальтоза, как и другие небольшие полимеры – на молекулы глюкозы, а она мгновенно попадает в кровяное русло.

Из кровяного русла глюкоза попадает в печень и, впоследствии, из нее синтезируется гликоген (полисахарид животного происхождения, выполняет запасающую функцию, просто необходим организму, когда нужно быстро получить большое количество энергии).

Депо гликогена

Одни из депо является печень, но печень – не единственное место, где накапливается гликоген. Так же его довольно много в скелетных мышцах, при сокращении которых активируется фермент фосфорилаза, что приводит к интенсивному расщеплению гликогена. Согласитесь, в современном мире организм любого человека могут подстерегать непредвиденные обстоятельства, который, скорее всего потребуют колоссальных энергозатрат, а потому, чем гликогена больше, тем лучше

Можно сказать даже больше – гликоген настолько важен, что синтезируется даже из неуглеводных продуктов, которые содержат молочную, пировиноградную кислоту, гликогенные аминокислоты (аминокислоты - основные составляющие белков, гликогенные - значит, что в ходе биохимических процессов из них могут получатся углеводы), глицерол и многие другие. Конечно, в этом случае гликоген будет синтезироваться с большими затратами энергии и в небольших количествах.

Как уже отмечалось выше, уменьшение количества глюкозы в крови вызывает у организма достаточно серьезную реакцию. А потому печень целенаправленно регулирует количество глюкозы в крови и при необходимости прибегает к гликогенолизу. Гликогенолиз (мобилизация, распад гликогена) осуществляется при недостаточном количестве глюкозы в крови, которое может быть вызвано голоданием, тяжелой физической работой или сильными стрессами. Он начинается с того что печень, при помощи фермента фосфоглюкомутазы расщепляет гликоген до глюкозо-6-фосфатов. Далее фермент глюкозо-6-фосфатаза окисляет и их. Свободная глюкоза легко проникает через мембраны гепатоцитов (клеток печени) в кровяное русло, таким образом, ее количество в крови увеличивается. Ответной реакцией на скачок уровня глюкозы, является высвобождение инсулина поджелудочной железой. Если при высвобождении инсулина уровень глюкозы не упал, поджелудочная будет секретировать его до тех пор, пока это не произойдет.

И, напоследок, немного о фактов о самом инсулине (потому как нельзя говорить об углеводном обмене, не затронув эту тему):

Инсулин переносит глюкозу через мембраны клеток, так называемых инсулинзависимых тканей (жировой, мышечной и мембраны клеток печени)

Инсулин является стимулятором синтеза гликогена в печени и мышцах, жиров - печени и жировых тканях, белков - в мышцах и других органах.

Недостаточная секреция инсулина клетками островковой ткани поджелудочной железы может привести к гипергликемии с последующей гликозурией (сахарным диабетом);

Гормонами - антагонистами инсулина являются глюкагон, адреналин, норадреналин, кортизол и прочие кортикостероиды.

В заключение

Углеводный обмен имеет колоссальную важность для жизни человека. Несбалансированный рацион ведет к нарушениям работы пищеварительного тракта. Поэтому здоровый рацион с умеренным количеством сложных и простых углеводов помогут вам всегда выглядеть и чувствовать себя хорошо.

Про углеводы часто вспоминают с содроганием, считая, что они являются причиной лишнего веса и различных заболеваний. Если не злоупотреблять ими, ничего подобного не случится. Наоборот, роль углеводов в организме человека заключается в том, чтобы обеспечить его необходимой подзарядкой. Человек, не получающий их в достаточном количестве, выглядит болезненно и устало.

Что собой представляют углеводы для человека?

Углеводами принято называть соединения, образованные атомами углерода, кислорода и водорода. К ним относят крахмалосодержащие и сахаристые вещества. Каждый из них выполняет свою функцию. Ведь в их молекулах присутствуют разные элементы. Принято также классифицировать углеводы как:

  • простые, к которым относятся моносахариды и дисахариды;
  • сложные, в составе которых присутствуют полисахариды.

В первую группу входят:

  • глюкоза;
  • фруктоза;
  • галактоза;
  • лактоза;
  • сахароза;
  • мальтоза.

Их сладкий вкус в продуктах невозможно не заметить. Они стремительно растворяются в воде. Человеку эти вещества способны быстро дать энергию, т. к. усваиваются легко.

Во второй группе находятся крахмал, клетчатка, гликоген и пектин.

Функция в организме людей

Поступая в организм человека в основном из растительной пищи, углеводы не только позволяют высвободить из неё энергию. Их значение огромно! Существуют и другие немаловажные функции, которые выполняют углеводы организме человека:

  • Очистка желудочно-кишечного тракта. Не все вещества, входящие в продукты питания, полезны для организма человека. Благодаря клетчатке и другим углеводам, происходит самоочищение. В противном случае наступала бы интоксикация индивида.
  • Глюкоза позволяет питать ткани головного мозга, сердечной мышцы, участвует в образовании ключевого для работы печени компонента – гликогена.
  • Повышение иммунитета и защита организма. Гепарин предотвращает чрезмерную свёртываемость крови, а полисахариды способны наполнить кишечник необходимыми активными веществами для борьбы с инфекциями.
  • Строительство тела человека. Без углеводов невозможно появление некоторых видов клеток в организме. Синтез нуклеиновых кислот и клеточной мембраны является ярким примером.
  • Регуляция обменных процессов. Углеводы способны ускорять или замедлять окисление.
  • Помощь в расщеплении и усвоении белков и жиров, поступающих с пищей. Отметим, что учитывают сочетаемость различных видов углеводов с белками и жирами, чтобы их расщеплять было проще.

Чтобы углеводы помогали, а не вредили организму человека, необходимо употреблять их в ограниченном количестве.

Заболевания, вызванные переизбытком углеводов

Основная проблема, которую может получить человек при злоупотреблении углеводами, – нарушение обмена веществ. Он запускает уже другие нежелательные последствия, в частности:

  • уменьшение скорости расщепления питательных веществ;
  • нарушение гормонального фона;
  • повышение уровня отложения жиров за счёт перехода углеводов в жировые молекулы;
  • развитие или прогрессирование сахарного диабета, т. к. истощаются клетки поджелудочной железы, вырабатывающей инсулин.

Повышение уровня глюкозы в составе крови запускает ряд негативных изменений. В частности, увеличивается вероятность склеивания тромбоцитов, что приводит к образованию тромбов. Сами сосуды становятся хрупкими, что обостряет проблемы с сердцем и повышает риск инсульта или инфаркта.

В ротовой полости глюкоза и фруктоза в сочетании с кислотами способны создавать среду для развития патогенной микрофлоры. В итоге разрушается эмаль зубов, развивается кариес, а цвет становится непривлекательным.

Сколько нужно употреблять углеводов?

Для того чтобы сбалансировать собственное питание, рекомендуется придерживаться следующих норм потребления углеводов:

  • детям до одного года необходимо давать по 13 г углеводов на 1 кг веса;
  • для взрослого человека до 30 лет, не испытывающего сильных физических нагрузок, нужно 300–350 г в сутки этих веществ;
  • после 30 лет норма снижается на 50 г;
  • для женщин все нормы должны быть на 30–50 г меньше;
  • для занимающихся спортом и ведущих активный образ жизни людей допускается превышение нормы на 40–50 г в сутки.

Пищевых волокон или клетчатки должно быть не менее 20 г, чтобы самоочищение кишечника работало хорошо.

Следует помнить, что существует вероятность аллергической реакции на . Поэтому нужно перед включением их в рацион малыша исключить возможность индивидуальной непереносимости. Делать это лучше в утренние часы.

Богатые углеводами продукты не следует употреблять в вечернее время, когда замедляются обменные процессы в организме. К тому же энергия, которую они позволят выделить, останется невостребованной. Это не касается людей, работающих в ночное время или по сменам. Для них нужно составлять индивидуальный режим питания.

Полезно знать, что для некоторых сладких продуктов имеет значение не только объём сахаров в 100 г продукта, но и количество влаги. Вода легко выводится из организма, оставляя в работе моносахариды. Если её в продукте много, то может оказаться, что глюкозы и других сахаров человек получает больше, чем нужно.

Одно яблоко, съеденное в течение дня, которое якобы способно обеспечить нужным количеством клетчатки, не поможет организму. Необходимо до 5 несладких фруктов, чтобы достичь нормального уровня суточного потребления.

Нельзя выбирать только крахмалосодержащие углеводы или моносахара. Для того чтобы обеспечить организм всем необходимым, баланс между ними должен быть примерно 1:1,5 в пользу первых (каш, хлеба и т. д.).

Если не запивать водой или жидкостью продукты, в которых много подобных элементов, то риск их превращения в жиры в случае превышения нормы потребления снижается. Поэтому пить лучше через час после еды.

Свежевыжатые соки стоит употреблять в разбавленном виде, чтобы не давать нагрузку на внутренние системы и одновременно уменьшить калорийность продукта.

Вывод прост: если к употреблению углеводов подойти грамотно, их употребление принесёт организму только пользу!

Основная функция углеводов  обеспечение энергией всех процессов в организме. Действительно, при окислении 1 грамма углеводов организм получает 4,1 ккал энергии. Клетки способны получать из углеводов энергию, как при их окислении кислородом, так и в анаэробных условиях (без доступа кислорода). Боль в мышцах после тяжелой работы  результат действия на клетки молочной кислоты, которая образуется при анаэробном распаде углеводов, когда для обеспечения работы мышечных клеток не хватает кислорода, поступающего с кровью.

Общую схему анаэробного негидролитического расщепления углеводов  гликолиза  можно представить следующим образом:

С

молочная кислота

6 H 12 O 6 + 2H 3 PO 4 + 2АДФ 2CH 3 CH(OH)COOH + 2АТФ

Углеводы также способны стимулировать окисление промежуточных продуктов метаболизма жирных кислот. Они являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот, являются предшественниками образования жиров, иммуно-глобулинов, играющих важную роль в системе иммунитета, и гликопротеидов  комплексов углеводов и белков, которые являются важнейшими компонентами клеточных оболочек. Гиалуроновые кислоты и другие мукополисахариды образуют защитную прослойку между всеми клетками, из которых состоит организм.

В отличие от растений, способных получать углеводы в процессе фотосинтеза, животные организмы синтезировать углеводы не способны и получают их только с растительной пищей. Резкое ограничение углеводов в диете ведет к значительным нарушениям метаболизма. Особенно страдает при этом белковый обмен. При достаточном поступлении углеводов с пищей белки используются, главным образом, для пластического обмена, а не для производства энергии. При дефиците углеводов белки используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций. Это приводит к повышенному образованию азотистых веществ и, как следствие, к повышенной нагрузке на почки, нарушениям солевого обмена и другим, вредным для здоровья, последствиям. Таким образом, углеводы необходимы для рационального использования белков.

При дефиците углеводов в пище организм использует для получения энергии не только белки, но и жиры. При усиленном распаде жиров могут возникнуть нарушения обменных процессов, связанные с ускоренным образованием кетонов (к этому классу веществ относится известный всем ацетон) и накоплением их в организме. Избыточное образование кетонов при усиленном окислении жиров и частично белков может привести к «закислению» внутренней среды организма и отравлению тканей мозга вплоть до развития ацидотической комы с потерей сознания.

Основным средством депонирования (накопления) углеводов в растениях является крахмал. У животных в этом качестве выступает гликоген.

Некоторые представители углеводов

Глюкоза самый важный простой углевод.

Из всех моносахаридов наиболее важным является глюкоза, так как она является структурной единицей для построения молекул большинства ди- и полисахаридов, поступающих в организм с пищей. Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.

Полисахариды в процессе движения по желудочно-кишечному тракту (ЖКТ) расщепляются до моносахаридов и всасываются в кровь в тонком кишечнике. С кровью воротной вены большая часть глюкозы (около половины) из кишечника поступает в печень, остальная глюкоза через общий кровоток транспортируется в другие ткани. Концентрация глюкозы в крови в норме поддерживается на постоянном уровне и составляет 3,33-5,55 мкмоль/л, что соответствует 80-100 мг в 100 мл крови. Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы  инсулином. В клетке в ходе многостадийных химических реакций глюкоза превращаются в другие вещества, которые в конечном итоге окисляются до углекислого газа и воды, при этом выделяется энергия, используемая организмом для обеспечения жизнедеятельности. При снижении уровня глюкозы в крови или ее высокой концентрации (и невозможности использования в полном объеме), как это происходит при диабете, наступает сонливость, а в некоторых случаях  потеря сознания (гипогликемическая кома ).

Без присутствия инсулина глюкоза не поступает в клетки и не может быть использована в качестве топлива. В этом случае ее роль выполняют жиры (это характерно для людей с сахарным диабетом). Скорость поступления глюкозы в ткани мозга и печени не зависит от инсулина и определяется только концентрацией ее в крови. Эти ткани называются инсулинонезависимыми .

Фруктоза вкусный углевод.

Является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное топливо  глюкозу, поэтому фруктоза тоже способна повышать уровень сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7  сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов.

Галактоза молочный углевод.

В продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой  лактозу (молочный сахар)  основной углевод молока и молочных продуктов.

Галактоза, образующаяся при расщеплении лактозы, превращает-ся в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание  галактоземия, которая ведет к умственной отсталости.

Сахароза «пустой» углевод.

Содержание сахарозы в сахаре составляет 95%. Сахар быстро расщепляется в ЖКТ, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют «носителем пустых калорий», так как сахар  это чистый углевод, он не содержит других питательных веществ, таких как, например, витамины, минеральные соли. При соединении двух молекул глюкозы образуется мальтоза  солодовый сахар. Ее содержат мед, солод, пиво, патока и хлебо-булочные и кондитерские изделия, изготовленные с добавлением патоки.

Избыток сахарозы оказывает влияние на жировой обмен, усиливая жирообразование. Таким образом, количество поступающе-го сахара может служить в известной степени фактором, регулирующим жировой обмен. Обильное потребление сахара приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Избыток сахара отрицательно сказывается на функции кишечной микрофлоры. При этом повышается удельный вес гнилостных микроорганизмов, усиливается интенсивность гнилостных процессов в кишечнике, развивается метеоризм.

Установлено, что в наименьшей степени эти недостатки проявляются при потреблении фруктозы.

Крахмал распространенный углевод.

Основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов. Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70%  в рисовой. Много крахмала содержится и в бобовых продуктах  от 40% в чечевице до 44% в горохе. По причине высокого содержания крахмала в картофеле (15-18%) в диетологии его относят не к овощам, где основные углеводы представлены моно- и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.

Основное отличие крахмала от других полисахаридов состоит с том, что расщепление крахмала начинается уже в полости рта при участии слюны, которая частично расщепляет гликозидные связи, образуя менее крупные, чем крахмал молекулы  декстрины. Затем процесс переваривания крахмала происходит постепенно на протяжении всего ЖКТ.

Гликоген углевод прозапас.

Молекула гликогена содержит до 1 млн. остатков глюкозы, следовательно, на синтез расходуется значительное количество энергии. Необходимость превращения глюкозы в гликоген связана с тем, что накопление значительного количества глюкозы в клетке привело бы к повышению осмотического давления, так как глюкоза хорошо растворимое вещество. Напротив, гликоген содержится в клетке в виде гранул и малорастворим. Распад гликогена  гликогенолиз  происходит в период между приемами пищи. Таким образом, гликоген  удобная форма накопления углеводов, имеющая активно разветвленную структуру, что позволяет быстро и эффектив-но расщеплять гликоген на глюкозу и оперативно использовать как источник энергии.

Гликоген запасается, главным образом, в печени (до 6% от массы печени) и в мышцах, где его содержание редко превышает 1%. Запасы углеводов в организме нормального взрослого человека (массой 70 кг) после приема пищи составляют около 327 г.

Функция мышечного гликогена состоит в том, что он является легкодоступным источником глюкозы, используемой в энергети-ческих процессах в самой мышце. Гликоген печени используется для поддержания физиологических концентраций глюкозы в крови, прежде всего в промежутках между приемами пищи. Через 12-18 ч после приема пищи запас гликогена в печени почти полностью истощается. Содержание мышечного гликогена заметно снижается только после продолжительной и напряженной физической работы.

Пищевые волокна комплексный углевод.

Это комплекс углеводов: клетчатки (целлюлозы), гемицеллюлозы, пектинов, камедей (гумми), слизи, а также не являющегося углеводом лигнина. Таким образом, пищевые волокна  это большая группа веществ различной химической природы, источником которых служат растительные продукты. Пищевых волокон много в отрубях, непросеянной муке и хлебе из нее, крупах с оболочками, бобовых, орехах. Меньше пищевых волокон в большинстве овощей, фруктов и ягод и особенно в хлебе из муки тонкого помола, макаронах, в очищенных от оболочек крупах (рис, манная крупа и др.)

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Роль углеводов для организма определяется их энергетической функцией. Углеводы (в виде глюкозы) служат непосредственным источником энергии почти для всех клеток организма. В организме содержание углеводов составляет около 2% сухой массы. Особенно велика роль углеводов для клеток головного мозга. Глюкоза обеспечивает энергетическую базу мозговой ткани, она необходима для дыхания мозга, для синтеза макроэргических соединений и медиаторов, без которых не может функционировать нервная система. Велика также роль глюкозы для мышечной ткани, особенно в период активной мышечной деятельности, поскольку мышцы в конечном итоге функционируют благодаря анаэробному и аэробному распаду углеводов.

Углеводы выполняют в организме роль резервного энергетического вещества, легко мобилизуемого в соответствии с потребностями организма. Таким резервным углеводом является гликоген. Его присутствие помогает организму сохранить постоянство углеводного питания тканей даже при условии длительных перерывов в поступлении пищи. Углеводы играют важную пластическую роль, входя в состав цитоплазмы и субклеточных образований: костей, хрящей и соединительной ткани. Являясь обязательной составной частью биологических жидкостей организма, углеводы играют немалую роль в процессе осмоса. Наконец, они входят в сложные соединения, выполняющие в организме специфические функции (нуклеиновые кислоты, мукополисахариды и др.), необходимые для обезжиривания химических веществ в печени и для иммунологической защиты организма.

Основная часть углеводов (около 70%), поступающих с пищей, окисляется до СО 2 и Н 2 О, покрывая тем самым значительную часть энергетических потребностей организма. Около 25-28% вводимой с пищей глюкозы превращается в жир и только 2 из 5% пищевой глюкозы синтезирует гликоген - резервный углевод организма.

При уменьшении уровня сахара в крови (гипогликемия) наблюдается падение температуры тела и мышечная слабость.

Основные этапы обмена углеводов . Углеводный обмен - процесс усвоения (синтеза, распада и выведения) клетками и тканями организма углеводов и углеводсодержащих веществ. Обмен углеводов состоит из следующих фаз: 1) переваривание углеводов в желудочно-кишечном тракте; 2) всасывание моносахаридов в кровь; 3) межуточный обмен углеводов; 4) ультрафильтрация и обратное всасывание глюкозы в почках.



Переваривание углеводов . Расщепление полисахаридов пищи начинается в полости рта, под действием фермента слюны - амилазы. Действие этого фермента слюны продолжается и в желудке до тех пор, пока под влиянием кислого желудочного сока не произойдет инактивация фермента. Дальнейшее расщепление углеводов продолжается в 12-перстной кишке под действием ферментов поджелудочной железы и собственно кишечных ферментов. Углеводы расщепляются до стадии глюкозы - ферментом мальтазой. Этот же фермент расщепляет дисахарид сахарозу до глюкозы и фруктозы. Принятая с пищей лактоза под действием фермента лактазы расщепляется до глюкозы и галактозы. Таким образом, в результате ферментативных процессов углеводы пищи превращаются в моносахариды: глюкозу, фруктозу и галактозу.

Всасывание углеводов . Моносахариды всасываются, главным образом, в тонком кишечнике через ворсинки слизистой оболочки и поступают в кровь воротной вены. Скорость всасывания моносахаридов различна. Если принять скорость всасывания за 100, то соответственная величина для галактозы будет 110, для фруктозы - 43. Всасывание глюкозы и галактозы происходит в результате активного транспорта, то есть с затратой энергии и при участии специальных транспортных систем. Активность всасывания этих моносахаридов усиливается транспортом Nа + через мембраны эпителия.

Всасывание глюкозы активируется гормонами коры надпочечников, тироксином, инсулином, а также серотонином и ацетилхоллином. Адреналин наоборот подавляет всасывание глюкозы из кишечника.

Межуточный обмен углеводов . Всосавшиеся через слизистую оболочку тонкого кишечника моносахариды переносятся током крови в головной мозг, печень, к мышцам и другим тканям, где они претерпевают различные превращения (рис. 23).

Рис. 23. Превращение углеводов в обмене веществ (по: Андреева и др., 1998)



1. В печени из глюкозы синтезируется гликоген, и этот процесс называется гликогенезом. В случае необходимости гликоген вновь распадается до глюкозы, то есть происходит гликогенолиз. Образовавшаяся глюкоза выделяется печенью в общий ток кровообращения.

2. Часть поступившей в печень глюкозы может подвергнуться окислению с выделением энергии, необходимой организму.

3. Глюкоза может стать источником синтеза неуглеводов, в частности белков и жиров.

4. Глюкоза может быть использована для синтеза некоторых веществ, необходимых для особых функций организма. Так, из глюкозы образуется глюкуроновая кислота - продукт, необходимый для осуществления обезвреживающей функции печени.

5. В печени может происходить новообразование углеводов из продуктов распада жиров и белков - глюконеогезе.

Глюкогенез и глюконеогенез взаимосвязаны и направлены на поддержание постоянства уровня сахара в крови. Печень человека выделяет в кровь в среднем 3,5 мг глюкозы на 1 кг массы в минуту или 116 мг на 1 м 2 поверхности тела. Способность печени регулировать процессы углеводного обмена и поддерживать уровень сахара в крови называется гомеостатической функцией, в основе которой лежит способность печеночной клетки изменять свою активность в зависимости от концентрации сахара в притекающей крови.

В углеводном обмене большой удельный вес занимает мышечная ткань. Мышцы, особенно в активном состоянии захватывают из крови большое количество глюкозы. В мышцах так же, как и в печени, синтезируется гликоген. Распад гликогена - один из источников энергетики мышечного сокращения. Мышечный гликоген расщепляется до молочной кислоты и этот процесс называется гликолизом . Затем часть молочной кислоты поступает в кровь и поглощается печенью для синтеза гликогена.

Головной мозг содержит очень большие запасы углеводов, поэтому для полноценной функции нервных клеток необходим постоянный приток в них глюкозы. Мозг поглощает около 69% глюкозы, выделяемой печенью (Држевецкая , 1994). Поступившая в мозг глюкоза преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга почти исключительно покрываются за счет углеводов, и это отличает мозг от всех других органов.

Ультрафильтрация и реабсорбция глюкозы . На первом этапе процесса мочеобразования, то есть во время ультрафильтрации в клубочковом аппарате, глюкоза переходит из крови в первичную мочу. В процессе дальнейшей реабсорбции в канальцевой части нефрона глюкоза вновь возвращается в кровь. Обратное всасывание глюкозы представляет собой активный процесс, происходящий с участием ферментов эпителия почечных канальцев.

Таким образом, почки участвуют в поддержании постоянства сахара во внутренней среде организма.

Возрастные особенности углеводного обмена . У плода на единицу массы тела ткани получают меньше кислорода, чем после рождения, что обусловливает преобладание анаэробного пути распада углеводов над аэробным. Поэтому в крови плода уровень молочной кислоты выше, чем у взрослых людей. Оказанная особенность сохраняется и в период новорожденности, и только к концу первого месяца у ребенка существенно увеличивается активность ферментов аэробного распада углеводов. Для новорожденного характерна гипогликемия (всего 2,2-2,5 моль/л, то есть вдвое меньше, чем у взрослых), поскольку во время родов резко истощаются запасы гликогена в печени - единственного источника глюкозы в крови.

Углеводы в организме ребенка являются не только основным источником энергии, но в виде глюкопротеидов и мукополисахаридов играют важную пластическую роль при создании основного вещества соединительной ткани клеточных мембран (Рачев и др., 1962).

Для детей характерна большая интенсивность углеводного обмена.
В детском организме ослаблено образование углеводов из белков и жиров (гликогенолиз), так как рост требует усиленного расхода белковых и жировых запасов организма. Углеводы в детском организме откладываются в мышцах, печени и других органах в незначительном количестве. В грудном возрасте на 1 кг веса ребенок должен получать 10-12 г углеводов, за счет которых покрывается около 40% всей энергетической потребности. В последующие годы количество углеводов колеблется от 8-9 до 12-15 г на 1 кг веса, причем за их счет покрывается уже до 50-60% всей калорийной потребности.

Суточное количество углеводов, которое дети должны получать с пищей, значительно увеличивается с возрастом: от 1 года до 3 лет - 193 г, от 4 до 7 лет - 287,9 г, от 8 до 13 лет - 370 г, от 14 до 17 лет - 470 г, что почти равно норме взрослого (по данным института питания РАМН).

Высокая потребность в углеводах у растущего ребенка отчасти объясняется тем обстоятельством, что рост тесно связан с процессами гликолиза, ферментативным распадом углеводов, сопровождающихся образованием молочной кислоты. Чем моложе ребенок, тем быстрее происходит его рост и больше интенсивность гликолетических процессов. Так, в среднем у ребенка на 1-м году жизни гликолитические процессы на 35% интенсивнее, чем у взрослых.

Представление об особенностях углеводного обмена у детей дает пищеварительная гипергликемия. Максимальный уровень сахара в крови большей частью отличается уже через 30 минут после приема пищи. Через 1 час кривая сахара начинает снижаться, и приблизительно через 2 часа уровень сахара в крови возвращается к исходному уровню или даже незначительно снижается.

Особенностью организма детей и подростков является менее совершенный углеводный обмен в смысле возможности быстрой мобилизации внутренних углеводных ресурсов организма и особенно поддержания углеводного обмена при выполнении физической нагрузки. При сильном утомлении во время продолжительных спортивных соревнований прием нескольких кусочков сахара улучшает состояние организма.

У детей и подростков при выполнении различных физических упражнений наблюдалось как правило, снижение сахара в крови, в то же время, как у взрослых, выполнение тех же гимнастических упражнений сопровождалось в среднем повышением уровня сахара в крови (Яковлев , 1962).

Обмен жиров и липидов. Общие сидения.
Значение жиров и липидов

Жиры - химические соединения, представляющие собой триглицириды, полные сложные эфиры глицерина и жирных кислот. Большая часть жиров в организме находится в жировой ткани в виде жировых капелек - это запасный жир, он является источником энергии в организме. Меньшая часть жира входит в состав клеточных структур и связана с углеводами и белками клеточных мембран.

Общее количество жира в организме составляет 10-20% массы тела, при ожирении может достигать даже 50%.

Количество запасного жира зависит от характера питания, количества пищи, конституциональных особенностей, а также от величины расхода энергии при мышечной деятельности, пола, возраста; количество же протоплазматического жира является устойчивым и постоянным.

Покрывая тело, жир является биологической терморегулирующей системой, способствующей сохранению тепла в организме, а также, обволакивая сосуды и нервы, жир предохраняет их от травматических воздействий внешней среды. Отложенный в жировых депо жир мобилизуется организмом при охлаждении и при голодании и используется как источник энергии.

С жиром доставляются растворенные в нем витамины А, D, Е, К, являющиеся важным фактором роста и развития ребенка. Жиры облегчают усвоение этих витаминов. Без жира невозможна устойчивость организма к воздействиям факторов внешней среды. Он нужен для выработки специфического и неспецифического иммунитета. Наконец, часть жира из жировых депо может поступать в кровь и ею доставляться в печень, где жировые отложения превращаются в гликоген.

Липиды - жироподобные вещества, разнообразного химического строения, характеризующиеся растворимостью в органических веществах (эфир, спирт, бензол) и, как правило, нерастворимые в воде. Липиды выполняют важные функции: 1) входят в состав биологических мембран, 2) образуют энергетический запас, 3) создают защитные и термоизоляционные покровы у животных и человека, 4) выполняют гормональные функции, 5) влияют на клеточную проницаемость, 6) участвуют в передаче нервного импульса и в мышечном сокращении, 7) участвуют в создании межклеточных контактов и в иммунохимических реакциях. Комплексы липидов с белками (липопротеины) выполняют важную транспортную роль в сыворотке крови человека и животных. К липидам относятся высшие жирные кислоты, триглицериды, холестерин, лецитины, витамин D, кортикостероиды, половые гормоны и др.

Этапы жирового обмена . Обмен жиров - процесс усвоения (синтеза, распада, выведения) клетками и тканями организма нейтральных жиров и липидов (в первую очередь жирных кислот). Основными этапами жирового обмена являются: 1) переваривание липидов пищи в желудочно-кишечном тракте; 2) всасывание липидов в кишечнике; 3) образование липопротеидов в слизистой оболочке кишечника и в печени; 4) транспорт липопротеидов кровью; 5) гидролиз этих соединений на поверхности клеточных мембран ферментом - липопротеидлипазой; 6) всасывание жирных кислот и глицерина в клетки, где они либо непосредственно мобилизуются, либо используются для синтеза липидов.

Пищевой жир, поступающий в организм под действием фермантов (липазы), превращается из сложных липидов в более простые формы - глицерин и жирные кислоты, которые могут всасываться в тонком кишечнике. Под влиянием желчных кислот здесь происходит эмульгирование жира до образования частиц величиной около 500 нм. Около 25-45% эмульгированного жира под воздействием липазы поджелудочного, а затем кишечного соков расщепляется до моноглицеридов и жирных кислот. Эти соединения с помощью желчных кислот проникают в клетки кишечного эпителия при помощи механизма активного транспорта. Там осуществляется ресинтез триглециридов. Кроме того, в эпителиоцитах мельчайшие капельки нейтрального жира и сложных липидов покрываются оболочкой из белка, фосфолипидов и холестерина. В результате образуются хломикроны (рис. 24). В таком виде жир попадает в лимфатическую систему и через грудной проток в кровь верхней полой вены. Меньшая часть триглициридов проникает в кровь воротной вены, а затем в печень. В целом в лимфу всасывается около 80% жира, а в кровь всего около 20%.

Транспорт жира и переход его из крови в ткани . В крови триглицириды циркулируют в хиломикронах. Первый орган, через который должны пройти хиломикроны, - легкие. При большой концентрации их в крови, что бывает после приема жирной пищи, часть их задерживается в легком.

Таким образом, легкие регулируют поступление жира в артериальную кровь (Лейтес , 1967).

Хиломикроны, попавшие в артериальную кровь подвергаются гидролизу под влиянием липазы, которая вырабатывается эндотелием сосудов. Её называют липопротеиновой липазой. В процессе гидролиза триглицериды хиломикронов расщепляются с образованием высших свободных, то есть неэтерифицицированных жирных кислот (НЭЖК).

НЭЖК адсорбируются на белках плазмы (альбумин и ά- липопротеин) и таким образом транспортируются в периферические ткани. Там они очень быстро окисляются: период их полураспада равен всего 2 мин, и они доставляют примерно 50% энергии от общего количества основного обмена. Часть НЭЖК поступает в подкожную жировую ткань, где они ресинтезируются в собственные жиры организма.

Натощак в крови человека содержится около 2,2 ммоль триглицеридов. После приема жирной пищи концентрация жира в крови увеличивается, то есть наступает в крови пищевая гипергликемия. Гипергликемия начинает появляться через 2-4-6 ч, к концу 9-го часа уровень жира в крови возвращается к норме.

Межуточный обмен жира. Процессы межуточного обмена нейтральных жиров происходит в жировой ткани, печени, клетках различных органов, однако большое значение в жировом обмене играет печень (рис. 24).

В жировой ткани нейтральный жир депонируется в виде триглециридов. По мере повышения энергетических потребностей происходит распад триглицеридов с освобождением неэтерифицированных жирных кислот. Этот процесс называется мобилизацией жира. Жирные кислоты поступают в кровь и переносятся в печень. В печени они либо ресинтезируются в триглицериды, либо включаются в состав молекулярных комплексов - липопротеидов, состоящих из белка и липидов. В составе липопротеидов жирные кислоты поступают к органам и тканям.

Желудочно-кишечный тракт Печень Мышца

ЛИПОЛИЗ НЕОСИНТЕЗ

Рис. 24. Метаболизм жира в организме (по: Алимова и др., 1975).

Синтез триглициридов называется липогенезом , распад их - липолизом. Процесс липогенеза в жировых депо можно сравнить с образованием гликогена в печени: и в том, и другом случае откладывается запас энергетического материала. Липолиз и освобождение неэтерифицированных жирных кислот по своей биологической значимости эквивалентны распаду печеночного гликогена и образованию свободной глюкозы крови: в обоих случаях высвобождается биохимический субстрат, легко утилизируемый для покрытия энергетических расходов организма.

В результате межуточного обмена жиров в печени образуются кетоновые (ацетоновые) тела, которые поступают из печени в кровь и окисляются в цикле Кребса в других тканях (мышцах, легких, печени).

Кетоновые тела используются как источник энергии. Они быстро окисляются в клетках различных тканей, поэтому содержание их в крови невелико - всего 0,9-1,7 ммоль/л. Для полного окисления кетоновых тел в цикле Кребса (через стадии ацетоацетилкоэнзима А) необходимо нормальное течение углеводного обмена. При нарушении межуточных процессов жирового обмена отмечается увеличение уровня кетоновых тел в крови и выделение их с мочой. Это состояние называется кетозом. Наиболее частая причина кетоза - недостаток углеводов. Так, кетоз наступает при истощающей мышечной работе, голодании, сахарном диабете.

Конечными продуктами обмена жиров являются углекислый газ и вода.

Вместе с продуктами питания наш организм получает множество веществ, нужных для полноценной жизнедеятельности органов и систем. Так, каждому человеку необходимо систематическое поступление белков, жиров и углеводов, а также минералов, витаминов и прочих полезных элементов. Каждое из этих веществ выполняет свои функции в нашем теле. Темой нашего сегодняшнего разговора станут свойства углеводов и применение их на благо человека. Также обсудим какие у углеводов функции в организме человека.

Углеводы являются органическими соединениями, которые имеют в своем составе углерод, водород, а также кислород. В организм они попадают вместе с продуктами питания. Всего существует несколько разновидностей углеводов, представленных моносахаридами, олигосахаридами, а также сложными углеводами и волокнистыми либо неусвояемыми углеводами, которые определяют как пищевую клетчатку.

К моносахаридам (самым простым формам углеводам) в свою очередь относят глюкозу, фруктозу, рибозу, а также эритрозу. Олисахариды (вмещают от двух до десятка остатков моносахаридов) представлены сахарозой, лактозой и мальтозой. Сложные углеводы (имеют в своем составе множество остатков глюкозы) – это крахмал с гликогеном. А представители волокнистых углеводов – это целлюлоза.

Основные функции в организме углеводов

Углеводы выполняют в организме функции разного характера, их много. Одна из основных – энергетическая, ведь углеводы – это ценный энергетический материал. Именно они обеспечивают больше половины суточной энергии, нужной человеку. Основным источником энергии является глюкоза, также организм может запасать углеводы в форме гликогена и использовать их для удовлетворения энергетических потребностей.

Еще одна функция углеводов – пластическая. Эти вещества организм использует при построении нуклеотидов (в том числе АТФ и АДФ), а кроме того нуклеиновых кислот.

Еще углеводы всходят в состав клеточной мембраны. А продукты переработки глюкозы – это составляющие компоненты полисахаридов, а еще сложных белков различных тканей (к примеру, хрящевых). В сочетании с белками углеводы становятся ферментами и гормонами, секретом слюнных и прочих желез, формирующих слизь.

Также углеводы выполняют накопительную функцию, они накапливаются организмом в форме гликогена. При систематической мышечной деятельности объем таких запасов увеличивается, благодаря чему энергетические возможности организма возрастают.

Еще одна известная функция углеводов – специфическая. Ведь такие вещества принимают участие в обеспечении специфичности различных групп крови. Кроме того они могут играть роль факторов свертывания крови (антикоагулянтов) и даже оказывать противоопухолевое воздействие.

Также углеводы выполняют защитную функцию. Они являются составляющей частью ряда компонентов иммунитета. К примеру, мукополисахариды входят в состав слизистых тканей, покрывающих поверхности дыхательных путей, пищеварительного тракта, путей мочевыделения. Такие углеводы помогают предупредить проникновение в организм агрессивных микроорганизмов и защищают вышеназванные участки от механических повреждений.

Еще одной известной функцией углеводов считается регуляторная. Как известно, клетчатка не способна расщепляться в кишечнике, тем не менее, она играет важную роль в полноценной работе пищеварительного тракта. Что касается ферментов, используемых в желудке и кишечнике, то они необходимы для полноценного пищеварения и для усвоения питательных элементов.

Какие у углеводов свойства ?

Различные углеводы характеризуются разными свойствами. Так, одно из наиболее известных веществ такого типа – это глюкоза. Это главный источник энергии для тела каждого читателя «Популярно о здоровье». Глюкоза с легкостью и высокой скоростью усваивается организмом, так как обладает очень простой структурой. Нехватка глюкозы чревата возникновением раздражительности, плохой работоспособности и усталости.

Также известным углеводом является фруктоза. Это вещество обладает такими же свойствами, что и глюкоза. Но при этом для ее усвоения организму не нужен инсулин.

Еще один простой углевод – это лактоза. Человеку углевод лактоза поступает в организм вместе с молокопродуктами. Особенно много лактозы присутствует в грудном молоке, и обычно она легко усваивается организмом новорожденного, полностью покрывая его энергетические потребности.

Более сложные углеводы после попадания в организм могут расщепляться на исходные. Так, сахароза расщепляется на глюкозу, а также фруктозу. Эти вещества с легкостью усваиваются, но не обеспечивают организм энергией надолго.

Пектины и клетчатка практически не могут усвоиться организмом. Тем не менее, они крайне важны для полноценного пищеварения и выведения из организма токсинов и вредных веществ. Продукты, имеющие их в своем составе, отлично и надолго насыщают.

Крахмал также медленно усваивается, расщепляясь при этом до глюкозы. Дает долгое чувство насыщения.

Наконец, гликоген, очень долго усваивается, откладываясь у человека в организме в печени. Именно это вещество может быть использовано для восполнения дефицита глюкозы.

Применение углеводов

Все углеводы человеку полезны, так как являются основным источником энергии для него. Тем не менее, нужно помнить о том, что применение простых углеводов в избыточном количестве позволяет быстро насытиться, но после этого также быстро наступает чувство голода. Поэтому диетологи советуют использовать в своем питании преимущественно сложные углеводы, которые долго усваиваются организмом и позволяют надолго насытиться. Простые же углеводы стоит есть при постоянных физических либо умственных нагрузках, когда организм нуждается в энергетической подпитке.