Химические вещества. Какие есть вещества

Химический элемент, простое и сложное вещество, аллотропия. Относительная атомная и молекулярная массы, моль, молярная масса. Валентность, степень окисления, химическая связь, структурная формула.


Практикум: Расчеты по химическим формулам, химическим уравнениям.Решение задач на нахождение химической формулы вещества. Решение задач с использованием понятия «молярная масса». Вычисления по химическим уравнениям, если одно из веществ взято в избытке, если одно из веществ содержит примеси. Решение задач на определение выхода продукта реакции.


Химия - это наука о веществах, их свойствах и превращениях, происходящих в результате химических реакций, а также о фундаментальных законах, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий.


Химический элемент - определённый вид атома имеющий название, порядковый номер, и положение в таблице Менделеева называют химическим элементом. В настоящее время известно 118 химических элементов, заканчивая Uuo (Ununoctium - Унуноктий). Каждый элемент обозначен символом, который представляет одну или две буквы из его латинского названия (водород обозначен буквой H - первой буквой его латинского названия Hydrogenium).


Вещество - вид материи с определёнными химическими и физическими свойствами. Совокупность атомов, атомных частиц или молекул, находящаяся в определённом агрегатном состоянии. Из веществ состоят физические тела (медь - вещество, а медная монета - физическое тело).


Простое вещество - вещество, состоящее из атомов одного химического элемента: водород, кислород и т.д.


Сложное вещество - вещество, состоящее из атомов разных химических элементов: кислоты, вода и др.


Аллотропия - это способность некоторых химических элементов существовать в виде двух или нескольких простых веществ, различных по строению и свойствам. Например: алмаз и уголь состоят из одного и того же элемента - углерода.

Относительная атомная масса. Относительной атомной массой элемента называют отношение абсолютной массы атома к 1/12 части абсолютной массы атома изотопа углерода 12С. Обозначают относительную атомную массу элемента символом Аr, где r - начальная буква английского слова relative (относительный).


Относительная молекулярная масса. Относительной молекулярной массой Мr называют отношение абсолютной массы молекулы к 1/12 массы атома изотопа углерода 12С.


Обратите внимание на то, что относительные массы по определению являются безразмерными величинами.


Таким образом, мерой относительных атомных и молекулярных масс избрана 1/12 часть массы атома изотопа углерода 12С, которая называется атомной единицей массы (а.е.м.):


Моль. В химии чрезвычайное значение имеет особая величина - количество вещества.


Количество вещества определяется числом структурных единиц (атомов, молекул, ионов или других частиц) этого вещества, оно обозначается обычно n и выражается в молях (моль).


Моль - это единица количества вещества, содержащая столько же структурных единиц данного вещества, сколько атомов содержится в 12 г углерода, состоящего только из изотопа 12С.


Число Авогадро. Определение моля базируется на числе структурных единиц, содержащихся в 12 г углерода. Установлено, что данная масса углерода содержит 6,02× 1023 атомов углерода. Следовательно, любое вещество количеством 1 моль содержит 6,02× 1023 структурных единиц (атомов, молекул, ионов).


Число частиц 6,02 × 1023 называется числом Авогадро или постоянной Авогадро и обозначается NA:


N A = 6,02 × 10 23 моль -1


Молярная масса. Для удобства расчетов, проводимых на основании химических реакций и учитывающих количества исходных реагентов и продуктов взаимодействия в молях, вводится понятие молярной массы вещества.


Молярная масса M вещества представляет собой отношение его массы к количеству вещества:
где г - масса в граммах, n - количество вещества в молях, М - молярная масса в г/моль - постоянная величина для каждого данного вещества.
Значение молярной массы численно совпадает с относительной молекулярной массой вещества или относительной атомной массой элемента.


Валентность - способность атомов химических элементов образовывать определённое число химических связей с атомами других элементов или количество связей, которые может образовывать вещество.


Степень окисления (окислительное число, формальный заряд) - вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов.
Представления о степени окисления положены в основу классификации и номенклатуры неорганических соединений.


Степень окисления соответствует заряду иона или формальному заряду атома в молекуле или в формульной единице, например:


Na + Cl - , Mg 2+ Cl 2 - , N -3 H 3 - , C +2 O -2 , C +4 O 2 -2 , Cl + F - , H + N +5 O -2 3 , C -4 H 4 + , K +1 Mn +7 O -2 4 .


Степень окисления указывается сверху над символом элемента. В отличие от указания заряда иона, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот.


H + N +3 O -2 2 - степень окисления, H + N 3+ O 2- 2 - заряды.


Степень окисления атома в простом веществе равна нулю, например:


O 0 3 , Br 0 2 , C 0 .


Алгебраическая сумма степеней окисления атомов в молекуле всегда равна нулю:


H + 2 S +6 O -2 4 , (+1 2) + (+6 1) + (-2 4) = +2 +6 -8 = 0


Химическая связь, взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют химические связи. Химическая связь определяется взаимодействием между заряженными частицами (ядрами и электронами). Основные характеристики химической связи - прочность, длина, полярность.

Свойства - совокупность признаков по которым одни вещества отличаются от других, они бывают химическими и физическими.


Физические свойства - признаки вещества, при характеристике которых вещество не изменяет свой химический состав.(плотность, агрегатное состояние, температуры плавления и кипения и т.п.)


Химические свойства - способность веществ взаимодействовать с другими веществами или изменятся под действием определённых условий.Результатом является превращения одного вещества или веществ в другие вещества.


Физические явления - новые вещество не образуется.
Химические явления - новые вещество образуется.

Понятие вещества изучается сразу несколькими науками. Вопрос о том, какие есть вещества, мы разберём с двух точек зрения - с позиции химической науки и с позиции физики.

Вещество в химии и физике

Химики понимают вещество, как физическую субстанцию с определённым набором химических элементов. В современной физике вещество рассматривается как вид материи, который состоит из фермионов или вид материи, содержащий в себе фермионы, бозоны, обладает массой покоя. По обыкновению, вещество должно состоять из частиц, по большей части электронов, протонов и нейтронов. Протоны и нейтроны образуют атомные ядра, а все вместе эти элементы образуют атомы (атомное вещество).

Свойства вещества

Практически каждое из веществ имеет свой уникальный набор свойств. Под свойствами понимают характеристики, указывающие на индивидуальность вещества, которая в свою очередь демонстрирует его отличия от всех остальных веществ. Характерными физико-химическими свойствами являются константы - плотность, различные типы температур, термодинамика, показатели кристаллической структуры.

Химическая классификация веществ

В химии разделяют вещества на соединения и их смеси. Кроме того, следует сказать органические вещества Соединение - это есть набор атомов, которые связаны друг с другом с учётом определённых закономерностей. При этом следует отметить, что границу между соединением и смесью веществ определить чётко довольно сложно. Это обусловлено тем, что науке известны вещества непостоянного состава. Для них составить точную формулу невозможно. Кроме того, соединение - это по большому счёту абстракция, так как в практическом смысле может быть достигнута только лишь конечная чистота изучаемого вещества. Любой существующий в реальной жизни образец - это смесь веществ, но с преобладанием одного вещества из всей группы. Кроме того, следует сказать, какие есть органические вещества. Эта группа сложных веществ имеет в составе углерод (белки, углеводы).

Простые и сложные вещества

Простые вещества(O2, O3, H2, Cl2) - это те вещества, которые состоят только из атомов одного химического элемента. Эти вещества - есть форма существования элементов в свободном виде. Другими словами, эти химические элементы, которые не связаны с другими элементами, образуют простые вещества. Таких веществ науке известно более чем 400 разновидностей. Простые вещества классифицируют по типу связи между атомами. Так, простые вещества разделяют на металлы(Na, Mg, Al, Bi и др.) и неметаллы (H 2 , N 2 , Br 2 , Si и др).

Сложные вещества - химические соединения, которые состоят из связанных друг с другом атомов двух и более элементов. Простые вещества также имеют право называться химическими соединениями, если их молекулы будут состоять из атомов, соединённых ковалентной связью (азот, кислород, бром, фтор,). А вот инертные (благородные) газы и атомарный водород называть химическими соединениями будет ошибкой.

Физическая классификация веществ

С точки зрения физики вещества существуют в нескольких агрегатных состояниях - тело, жидкость и газ. О том, какие твердые вещества, например, видно невооружённым взглядом. Тоже самое можно сказать и о другом агрегатном состоянии. Какие жидкие вещества есть в природе мы со школы знаем. Примечательно, что такое вещество как вода может существовать сразу в трёх состояния - как лёд, жидкая вода и пар. Три агрегатных состояния вещества не считаются индивидуальными характеристиками веществ, но соответствуют разным, зависимым от внешних условий существования веществ. При переходе от состояний агрегатных состояний к реальным состояниям химического вещества можно выявить ряд промежуточных типов, которые в науке получили название аморфных или стеклообразных состояний, а также состояния жидкого кристалла и полимерного состояние. В связи с этим учёные часто используют понятие «фаза».

Помимо прочих в физике рассматривают ещё и четвёртое агрегатное состояние химического вещества. Это плазма, то есть состояние, полностью или частично ионизированное, а плотность положительных и отрицательных зарядов в этом состоянии одинакова, иными словами плазма электронейтральна. В целом, веществ в природе множество, но теперь вы знаете, какие бывают вещества, а это гораздо важнее.

Что такое вещество – один из тех вопросов, ответ на который вроде бы ясен, но с другой стороны – попробуй-ка ответь! На первый взгляд всё просто: вещество – это то, из чего состоят тела… как-то неопределённо получилось. Попробуем разобраться.

Для простоты начнём с понятия ещё более сложного и абстрактного – материя. На сегодняшний день считается, что материя – это объективная реальность, существующая в пространстве и изменяющаяся во времени.

Реальность эта существует в двух формах. Одна из этих форм обладает волновой природой: невесомость, непрерывность, проницаемость, способность распространяться со скоростью света. Природа другой формы – корпускулярная: она обладает массой покоя, состоит из локализованных частиц (атомных ядер и электронов), малопроницаема (а в некоторых случаях непроницаема вообще), и до скорости света ей далеко. Первая форма существования материи называется полем, вторая веществом.

Тут следует оговориться: такое чёткое разделение проводилось в XIX веке, позднее – с открытием корпускулярно-волнового дуализма – пришлось поставить это под сомнение. Оказалось, что у поля и вещества намного больше общего, чем можно было предполагать, ведь даже электрон демонстрирует свойства и частицы, и волны! Впрочем, проявляется это в микромире, на уровне элементарных частиц, в макромире – на уровне тел – это неочевидно, так что разделение на вещество и поле вполне подходит.

Но вернёмся к нашему веществу. Как все мы помним со школьной скамьи, оно может существовать в трёх состояниях. Одно из них – твёрдое: молекулы практически неподвижны, сильно притягиваются друг к другу, поэтому тело сохраняет форму. Другое – жидкое: молекулы могут перемещаться с места на место, тело принимает форму сосуда в котором находится, не имея собственной формы. И наконец – газообразное: хаотичное движение молекул, слабая связь между ними, как следствие – отсутствие не только формы, но и объема: газ заполнит ёмкость любого объёма, распределившись по ней. В таких состояниях может находиться любое вещество, вопрос только в том, какие условия для этого нужны – например, металлический водород, имеющийся на Юпитере, на Земле пока не удаётся получить даже в лаборатории.

Но есть и четвёртое состояние вещества – плазма. Это ионизированный газ – т.е. газ, в котором наряду с нейтральными атомами присутствуют положительно и отрицательно заряженные частицы – ионы (атомы, лишившиеся части электронов) и электроны, при этом количество положительно и отрицательно заряженных частиц уравновешивает друг друга – это называется квазинейтральностью. Такое состояние вещества возможно при очень высокой температуре – счёт идёт на тысячи кельвинов. Напрашивается вопрос: если плазма – ионизированный газ, почему её надо считать четвёртым состоянием вещества, почему нельзя рассматривать как разновидность газа?

Оказывается, нельзя! По некоторым свойствам плазма противоположна газу. Газы обладают крайне низкой электрической проводимостью, а плазма – высокой. Газы состоят из частиц, подобных друг другу, которые крайне редко сталкиваются, а плазма – из частиц, различающихся по электрическому заряду, постоянно взаимодействующих друг с другом.

Если вам трудно представить, что такое плазма, не расстраивайтесь: вы видите её каждый день, а если повезёт, то и каждую ночь, ведь именно из неё состоят звёзды, в том числе и наше Солнце! Человек тоже научился её использовать: в светящихся вывесках «работает» именно неоновая или аргоновая плазма!

Таким образом, можно с уверенностью говорить не о трёх, а о четырёх состояниях вещества… не об этом ли догадывались философы древности, говоря о четырёх элементах бытия: «земля» (твёрдое), «вода» (жидкое), «воздух» (газообразное), «огонь» (плазма)? А мы, неразумные потомки, всё ищем в этом какую-то мистику!

Основной вопрос, на который должен знать ответ человек для правильного понимания картины мира - что такое вещество в химии. Данное понятие формируется ещё в школьном возрасте и направляет ребёнка в дальнейшем развитии. Приступая к изучению химии важно найти точки соприкосновения с ней на бытовом уровне, это позволяет наглядно и доступно разъяснить те или иные процессы, определения, свойства и т.д.

К сожалению, в силу неидеальности системы образования, многие упускают некоторые фундаментальные азы. Понятие «вещество в химии» - это своего рода краеугольный камень, своевременное усвоение данного определения даёт человеку правильный старт в последующем развитии в области естествознания.

Формирование понятия

Перед тем как перейти к понятию вещества, необходимо определить, чем является предмет химии. Вещества - это то, что непосредственно изучает химия, их взаимные превращения, строение и свойства. В общем понимании вещество - это то, из чего состоят физические тела.

Итак, в химии? Сформируем определение путём перехода от общего понятия к чисто химическому. Вещество - это определённый обязательно имеющий массу, которую можно измерить. Данная характеристика отличает вещество от другого вида материи - поля, которое массы не имеет (электрическое, магнитное, биополе и т.д.). Материя, в свою очередь, - это то, из чего созданы мы и всё, что нас окружает.

Несколько другая характеристика материи, определяющая то, из чего конкретно она состоит - это уже предмет химии. Вещества сформированы атомами и молекулами (некоторые ионами), а значит любая субстанция, состоящая из этих формульных единиц, и есть вещество.

Простые и сложные вещества

После усвоения базового определения можно перейти к его усложнению. Вещества бывают различных уровней организации, то есть простые и сложные (или соединения) - это самое первое деление на классы веществ, химия имеет множество последующих разделений, подробных и более сложных. Эта классификация, в отличие от многих других, имеет строго определённые границы, каждое соединение можно чётко отнести к одному из видов, взаимоисключающих друг друга.

Простое вещество в химии - это соединение, состоящее из атомов только одного элемента из периодической таблицы Менделеева. Как правило, это бинарные молекулы, то есть состоящие из двух частиц, соединённых посредством ковалентной неполярной связи - образования общей неподелённой электронной пары. Так, атомы одного и того же химического элемента имеют идентичную электроотрицательность, то есть способность удерживать общую электронную плотность, поэтому она не смещена ни к одному из участников связи. Примеры простых веществ (неметаллы) - водород и кислород, хлор, йод, фтор, азот, сера и т.д. Из трёх атомов состоит молекула такого вещества, как озон, а из одного - всех благородных газов (аргона, ксенона, гелия и т.д.). В металлах (магнии, кальции, меди т.д.) существует свой собственный тип связи - металлический, осуществляющийся за счёт обобществления свободных электронов внутри металла, а образования молекул как таковых не наблюдается. При записи вещества металла указывается просто символ химического элемента без каких-либо индексов.

Простое вещество в химии, примеры которого были приведены выше, отличается от сложного качественным составом. Химические соединения образованы атомами разных элементов, от двух и более. В таких веществах имеет место ковалентный полярный или ионный тип связывания. Так как разные атомы имеют отличающуюся электроотрицательность, то при образовании общей электронной пары происходит её сдвиг в сторону более электроотрицательного элемента, что приводит к общей поляризации молекулы. Ионный тип - это крайний случай полярного, когда пара электронов полностью переходит к одному из участников связывания, тогда атомы (или их группы) превращаются в ионы. Чёткой границы, между этими типами нет, ионную связь можно интерпретировать как ковалентную сильно полярную. Примеры сложных веществ - вода, песок, стекло, соли, оксиды и т.д.

Модификации веществ

Вещества, именуемые простыми, на самом деле имеют уникальную особенность, которая не присуща сложным. Некоторые химические элементы могут образовывать несколько форм простого вещества. В основе всё так же лежит один элемент, но количественный состав, строение и свойства кардинально отличают такие образования. Эта особенность имеет название аллотропии.

Кислород, сера, углерод и другие элементы имеют несколько Для кислорода - это О 2 и О 3 , углерод даёт четыре типа веществ - карбин, алмаз, графит и фуллерены, молекула серы бывает ромбической, моноклинной и пластической модификации. Такое простое вещество в химии, примеры которого не ограничены вышеперечисленными, имеет огромное значение. В частности, фуллерены используются как полупроводники в технике, фоторезисторы, добавки для роста алмазных плёнок и в других целях, а в медицине это мощнейшие антиоксиданты.

Что происходит с веществами?

Каждую секунду внутри и вокруг происходит превращение веществ. Химия рассматривает и объясняет те процессы, которые идут с качественным и/или количественным изменением состава реагирующих молекул. Параллельно, часто взаимосвязано протекают и физические превращения, которые характеризуются лишь изменением формы, цвета веществ или агрегатного состояния и некоторых других характеристик.

Химические явления - это реакции взаимодействия различных видов, например, соединения, замещения, обмена, разложения, обратимые, экзотермические, окислительно-восстановительные и т.д., в зависимости от изменения интересующего параметра. К относят: испарение, конденсацию, сублимацию, растворение, замерзание, электропроводимость и т.д. Часто они сопровождают друг друга, например, молния во время грозы - это физический процесс, а выделение под её действием озона - химический.

Физические свойства

Вещество в химии - это материя, которой присущи определённые физические свойства. По их наличию, отсутствию, степени и интенсивности можно спрогнозировать, как вещество поведёт себя в тех или иных условиях, а также объяснить некоторые химические особенности соединений. Так, например, высокие температуры кипения органических соединений, в которых есть водород и электроотрицательный гетероатом (азот, кислород и т.д.), свидетельствуют о том, что в веществе проявляется такой химический тип взаимодействия, как водородная связь. Благодаря знанию о том, какие вещества имеют наилучшую способность проводить электрический ток, кабеля и провода электропроводки изготавливаются именно из определённых металлов.

Химические свойства

Установлением, исследованием и изучением другой стороны медали свойств занимается химия. с её точки зрения - это их реакционная способность к взаимодействию. Некоторые вещества крайне активны в этом смысле, например, металлы или любые окислители, а другие, благородные (инертные) газы, при нормальных условиях в реакции практически не вступают. Химические свойства можно активировать или пассивировать при необходимости, иногда это не связано с особыми трудностями, а в некоторых случаях приходится нелегко. Учёные проводят многие часы в лабораториях, методом проб и ошибок добиваясь поставленных целей, иногда и не достигают их. Изменяя параметры окружающей среды (температуру, давление и т.д.) или применяя специальные соединения - катализаторы или ингибиторы - можно повлиять на химические свойства веществ, а значит и на ход реакции.

Классификация химических веществ

В основе всех классификаций лежит разделение соединений на органические и неорганические. Главный элемент органики - это углерод, соединяясь друг с другом и гидрогеном, атомы карбона образуют углеводородный скелет, который после заполняется другими атомами (кислородом, азотом, фосфором, серой, галогенами, металлами и другими), замыкается в циклы или разветвляется, обосновывая тем самым большое разнообразие органических соединений. На сегодняшний день науке известны 20 миллионов таких веществ. В то время как минеральных соединений всего лишь полмиллиона.

Каждое соединение индивидуально, но имеет и множество похожих черт с другими в свойствах, строении и составе, на этой основе происходит группировка в классы веществ. Химия имеет высокий уровень систематизации и организации, это точная наука.

Неорганические вещества

1. Оксиды - бинарные соединения с кислородом:

а) кислотные - при взаимодействии с водой дают кислоту;

б) основные - при взаимодействии с водой дают основание.

2. Кислоты - вещества, состоящие из одного или нескольких протонов водорода и кислотного остатка.

3. Основания (щёлочи) - состоят из одной или нескольких гидроксильных групп и атома металла:

а) амфотерные гидроксиды - проявляют свойства и кислот и оснований.

4. Соли - результат между кислотой и щелочью (растворимым основанием), состоят из атома металла и одного или нескольких кислотных остатков:

а) кислые соли - анион кислотного остатка имеет в составе протон, результат неполной диссоциации кислоты;

б) основные соли - с металлом связана гидроксильная группа, результат неполной диссоциации основания.

Органические соединения

Классов веществ в органике великое множество, такой объём информации сложно сразу запомнить. Главное, знать основные разделения на алифатические и циклические соединения, карбоциклические и гетероциклические, предельные и непредельные. Также углеводороды имеют множество производных, в которых атом гидрогена замещён на галоген, кислород, азот и другие атомы, а так же функциональные группы.

Вещество в химии - это основа сущестования. Благодаря органическому синтезу человек на сегодняшний день имеет огромное количество искусственных веществ, заменяющих натуральные, а также не имеющих аналогов по своим характеристикам в природе.