Обмен углеводов. Обмен углеводов - это совокупность процессов превращения углеводов в организме

Углеводами называются альдегиды или кетоны многоатомных спиртов или их производных.

Углеводы классифицируются на:

1. моносахариды – не подвергаются гидролизу:

Триозы (глицеральдегид, диоксиацетон);

Тетрозы (эритроза);

Пентозы (рибоза, дезоксирибоза, рибулоза, ксилуоза);

Гексозы (глюкоза, фруктоза, галактоза).

2. олигосахариды – состоят из 2–12 моносахаридов, соединенных между собой гликозидными связями (мальтоза – 2 глюкозы, лактоза – галактоза и глюкоза, сахароза – глюкоза и фруктоза);

3. полисахариды:

Гомополисахариды (крахмал, гликоген, клетчатка);

Гетерополисахариды (сиаловая кислота, нейраминовая кислота, гиалуроновая кислота, хондроитинсерная кислота, гепарин).

Углеводы входят в состав клеток животных (до 2%) и растений (до 80%).

Биологическая роль:

1. энергитическая. На долю углеводов приходится около 70% всей калорийности. Суточная потребность для взрослого человека – 400-500 г. При окислении 1 г углеводов до воды и углекислого газа выделяется 4,1 ккал энергии;

2. структурная. Углеводы используются как пластический материал для образования структурно-функциональных компонентов клеток. К ним относятся пентозы нуклеиновых кислот, углеводы гликопротеинов, гетерополисахариды межклеточного вещества;

3. резервная. Могут откладываться про запас в печени, мышцах в виде гликогена;

4. защитная. Гликопротеины принимают участие в образовании антител. Гетерополисахариды участвуют в образовании вязких секретов (слизи), покрывающих слизистые оболочки ЖКТ, дыхательных и мочеполовых путей. Гиалуроновая кислота играет роль цементирующего вещества соединительной ткани, препятствующего проникновению чужеродных тел;

5. регуляторная. Некоторые гормоны – гликопротеины (гипофиза, щитовидной железы);

6. участвуют в процессах узнавания клеток (сиаловая и нейраминовая кислоты);

7. определяют группу крови, входя в состав оболочек эритроцитов;

8. участвуют в процессах свертываемости крови, входя в состав гликопротеинов крови, фибриногена и протромбина. Так же предупреждает свёртываемость крови, входя в состав гепарина.

Основным источником углеводов для организма служат углеводы пищи, главным образом крахмал, сахароза и лактоза.

Крахмал – это смесь двух гомополисахаридов: линейного (амилоза от 10% до 30%) и разветвленного (амилопектин от70% до 90%) строения. Крахмал содержится в основных продуктах питания: картофель до 10%, крупы – 70-80%.

Остатки глюкозы соединяются в амилозе и линейных цепях амилопектина с помощью -1,4-гликозидных связей, а в точках ветвления амилопектина - с помощью -1,6-гликозидных связей.

Крахмал, поступая с пищей в ротовую полость, после механической обработки будет подвергаться гидролизу с помощью -амилазы слюны. Этот фермент является эндоамилазой, расщепляющей -1,4-гликозидные связи. Оптимальный рН фермента находится в слабощелочной среде (рН=7-8). Поскольку пища в ротовой полости долго не находится, крахмал здесь подвергается лишь частичному гидролизу с образованием амилодекстринов.

Далее пища идёт в желудок. Слизистая оболочки желудка гликозидазы (ферменты, расщепляющие углеводы) не вырабатываются. В желудке среда резко кислая (рН=1,2-2,5) ,поэтому действие -амилазы слюны прекращается, но в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие фермента слюны продолжается и крахмал успевает пройти стадию гидролиза - эритродекстринов.

Основным местом переваривания крахмала служит тонкий кишечник. Здесь происходят наиболее важные стадии гидролиза крахмала. В двенадцатиперсной кишке, куда открывается проток поджелудочной железы, под действием ферментов ПЖЖ (-амилазы, амило-1,6-гликозидазы и олиго-1,6-гликозидазы) будет идти гидролиз крахмала. Выделяющийся сок поджелудочной железы содержит бикарбонаты, которые участвуют в нейтрализации кислого желудочного содержимого. Образующийся при этом углекислый газ способствует перемешиванию пищевого комка, создаётся слабощелочная среда (рН=8-9). Образующиеся катионы натрия и калия способствуют активации панкреатических гидролаз (-амилаза, амило-1,6-гликозидаза, олиго-1,6-гликозидаза). Эти ферменты завершают гидролитический разрыв внутри гликозидных связей, начатых -амилазой слюны.

Эритродекстрины превращаются в ахродекстрины. Под влиянием -амилазы панкреатического сока завершается разрыв внутренних -1,4-гликозидных связей в крахмале с образованием мальтозы. -1,6-гликозидные связи в точках ветвления гидролизуются под действием амило-1,6-гликозидазы и олиго-1,6-гликозидазы, которая является терминальной (последней) в этом процессе.

Т.о. три панкреатических фермента завершают гидролиз крахмала в кишечнике с образованием мальтоз. Из тех глюкозных остатков, которые в молекуле крахмала были соединены с помощью -1,6-гликозидных связей, образовались дисахариды – изомальтозы.

Слизистая оболочка тонкой кишки (энтероциты) синтезирует мальтазы (изомальтазы), лактазы и сахаразы. Образующиеся в результате гидролиза мальтоза, изомальтоза являются временным продуктом гидролиза, и в клетках кишечника они быстро гидролизуются под влиянием кишечных мальтазы, изомальтазы на две молекулы глюкозы. Т.о. в результате гидролиза крахмала в органах пищеварения образуется конечный продукт – глюкоза.

В составе пищи кроме полисахаридов поступают и дисахариды (лактоза и сахароза), которые подвергаются гидролизу только в тонком кишечнике. В энтероцитах синтезируются специфические ферменты: лактаза и сахараза, которые осуществляют гидролиз этих дисахаридов с образованием глюкоз, галактоз и фруктоз. Продукты полностью перевариваются. Углеводы - моносахариды всасываются в кровь и на этом завершается начальный этап обмена углеводов в организме человека - пищеварение.

Было установлено, что для всасывания моносахаридов (глюкозы) в кровь необходимо наличие в энтероцитах:

В цитоплазме - ионов калия, натрия, АТФ и воды.

В биомембранах - специфических белков–переносчиков и фермента - АТФ-азы.

90% образовавшейся в результате гидролиза крахмала глюкозы всасывается в кровь и через систему воротной вены поступает в печень, где депонируется в виде резервного полисахарида - гликогена. Около 10% всасывающихся в кровь моносахаридов попадает в большой круг кровообращения, разносится к органам и тканям, которые используют их в метаболических реакциях.

С пищей в организм человека поступает клетчатка – полисахарид, состоящий из остатков -D- глюкопиранозы. В ЖКТ человека она гидролизу не подвергается, поскольку не вырабатываются -гликозидазы, которые расщепляют её до глюкозы.

Биологическая роль клетчатки:

1. формирует пищевой комок;

2. продвигаясь по ЖКТ она раздражает слизистую оболочку, усиливая секрецию пищеварительных желез;

3. усиливает перистальтику кишечника;

4. нормализует кишечную микрофлору.

Достигая толстого отдела кишки, она под действием ферментов микрофлоры подвергается частичному сбраживанию с образованием глюкозы, малата, газообразных веществ. Глюкозы образуется мало, но она всасывается в кровь.

Биологический синтез гликогена

Установлено, что гликоген образуется почти во всех клетках организма, однако наибольшее содержание гликогена обнаружено в печени (2-6%) и в мышцах (0,5-2%). Т.к. общая мышечная масса организма человека велика, то большая часть всего гликогена содержится в мышцах.

Глюкоза из крови легко поступает в клетки организма и в ткани, легко проникая через биологические мембраны. Инсулин обеспечивает проницаемость мембран, это единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. Как только глюкоза поступает в клетку, она сразу же как бы запирается в ней. В результате первой метаболической реакции, катализируемой ферментом гексакиназой в присутствии АТФ, глюкоза превращается в фосфорный эфир – глюкозо-6-фосфат, для которого клеточная мембрана не проницаема. Глюкозо-6-фосфат теперь будет использоваться клеткой в метаболических реакциях (анаболизм, катаболизм). Из клетки глюкоза может обратно выйти в кровь только после гидролиза под действием фосфатазы (глюкозо-6-фосфатазы). Этот фермент есть в печени, почках, в эпителии кишечника, в других органах и тканях его нет, следовательно, проникновение глюкозы в клетки этих органов и тканей необратимо.

Процесс биосинтеза гликогена можно записать в виде 4-х стадий:

глюкоза (гексакиназа, АТФАДФ) глюкозо-6-фосфат (фосфоглюкомутаза) глюкозо-1-фосфат (глюкозо-1-фосфат-уридин трансфераза) УДФ-глюкоза (гликоген-синтетаза, + n) n+1 (это наращенный гликоген) +УДФ



Затем УДФ+АТФ(нуклеозиддифосфаткиназа) УТФ+АДФ. Т.о. на присоединение 1 молекулы глюкозы тратмтся 2 молекулы АТФ.

Гликогенсинтаза является трансферазой, которая переносит остатки глюкозы, входящие в УДФ-глюкозу на гликозидную связь остаточного в клетке гликогена. При этом образуются -1,4- гликозидные связи. Образование -1,6-гликозидных связей в точках ветвления гликогена катализирует специальный фермент гликогенветвящий.

Гликоген в клетках печени накапливается во время пищеварения, и рассматривается как резервная форма глюкозы, которая используется в промежутках между приёмами пищи.

Распад гликогена

Он может идти двумя путями:

1. Основной – фосфоролитический - протекает в печени, почках, эпителии кишечника.

Схематически его можно записать в виде 3-х стадий:

а) n (это гликоген) (фосфорилаза А, +Н 3 РО 4) глюкозо-1-фосфат + n-1

б) глюкозо-1-фосфат (фосфоглюкомутаза) глюкозо-6-фосфат

в) глюкозо-6-фосфат (глюкозо-6-фосфатаза, +Н 2 О) глюкоза + Н 3 РО 4

2. Не основной – амилолитический. его доля мала и незначительна. Протекает в клетках печени при участии:

- -амилазы слюны, расщепляющей -1,4-гликозидные связи;

Амило-1,6-гликозидазы, расщепляющей -1,6-гликозидные связи в точках ветвления гликогена;

- -амилазы, которая последовательно отрывает концевые остатки глюкозы от боковых цепей гликогена.

Гликогеновые болезни

Гликогеновые болезни - наследственные нарушения обмена гликогена, которые связаны с недостаточностью какого–либо фермента, участвующего в синтезе или распаде гликогена. Как правило, эта недостаточность выражена в снижении активности или полном отсутствии фермента.

Различают гликогенозы – болезни, связанные с нарушением процесса распада гликогена. При этом клетки печени, мышц, почек накапливают большое количество гликогена, что ведет к разрушению клеток. У больных наблюдается увеличение печени, гипоглюкоземия натощак, мышечная слабость. Обычно такие больные умирают в раннем возрасте. Наиболее часто встречаются следующие гликогенозы:

Болезнь Герса, связанная с недостаточной активностью или отсутствием фосфорилазы печени;

Болезнь Мак-Ардля, -//- фосфорилазы мышц;

Болезнь Помпе, -//- -1,4-гликозидазы;

Болезнь Гори, -//- амило-1,6-гликозидазы;

Болезнь Гирке, -//- глюкозо-6-фосфатазы.

Агликогенозы – заболевания, которые характеризуются нарушением синтеза гликогена. У больных: гипогликемия натощак, судороги, рвота, потеря сознания, постоянное углеводное голодание мозга приводит к отставанию умственного развития. Больные погибают в раннем возрасте. Наиболее часто встречаются следующие агликогенозы:

Болезнь Льюиса, связанная с нарушением выработки или полным отсутствием гликогенсинтазы;

Болезнь Андерсена, -//- гликогенветвящего фермента.

Пути катаболизма глюкозы

В зависимости от функционального состояния клеток органов и тканей, они могут находиться в условиях достаточного снабжения кислородом или испытывать его недостаток, находиться в условиях гипоксии.

Следовательно, катаболизм глюкозы в организме можно рассматривать с двух позиций: в аэробных и анаэробных условиях.

Анаэробный путь распада глюкозы в тканях называется гликолизом, если в анаэробных условиях распадается глюкозный остаток гликогена, то этот процесс называется гликогенолизом. Оба эти процесса протекают в цитоплазме клеток. Конечным продуктом окисления будет являться молочная кислота. В процессе окисления будет выделяться энергия за счет реакций субстратного фосфорилирования. Основная биологическая роль – энергетическая. Окисление глюкозы и глюкозного остатка гликогена в тканях отличается только в начальных стадиях превращения, до образования глюкозо-6-фосфата. Схематически это можно представить как:

глюкоза (гексакиназа, АТФАДФ) глюкозо-6-фосфат;

N (это гликоген) (фосфорилаза А, +Н 3 РО 4) глюкозо-1-фосфат + n-1

глюкозо-1-фосфат  (фосфоглюкомутаза) глюкозо-6-фосфат

Основные стадии гликолиза и гликогенолиза:

Процесс гликолиза сложный и многоступенчатый. Условно его можно разделить на 2 стадии.

1 стадия – завершается образованием глицеральдегид-3-фосфата. 2 стадия – называется стадией гликолитической оксидоредукцией. Она сопряжена с образованием АТФ за счет реакций субстратного фосфорилирования, окислением глицеральдегид-3-фосфата и восстановлением пирувата в лактат.

гексакиназа ↓ АТФАДФ

глюкозо-6-фосфатизомераза ↓

фосфофруктокиназа ↓ АТФАДФ

альдолаза ↓


Фосфодиоксиацетон под действием изомеразы может превращаться в глицеральдегид-3-фосфат.

2 стадия. На ней перед всеми формулами ставим 2, т.к. фосфодиоксиацетон изомеризовался и получилось 2 молекулы глицеральдегид-3-фосфата:

дегидрогеназа, +Н 3 РО 4 ↓ НАДНАДН 2

дифосфоглицераткиназа ↓ АДФАТФ

фосфоглицеромутаза ↓

енолаза ↓

фосфоенолпируваткиназа ↓ АДФАТФ

ЛДГ ↓ НАДН 2 НАД

Т.о. анаэробные превращения глюкозы в тканях завершается образование молочной кислоты. В процессе превращения глюкозы было израсходовано 2 молекулы АТФ для фосфорилирования глюкозы и фруктоза-6–фосфата (гексакиназная реакция и фосфофруктокиназная реакция).

С этапа образования триоз (альдолазная реакция) идет одновременная их окисление, в результате этих реакций образуется энергия в виде АТФ за счет реакций субстратного фосфорилирования (фосфоглицераткиназная и пируваткиназная реакции).

На этапе гликолитической оксидоредукции идет окисление гицеральдегид-3-фосфата в присутствии Н 3 РО 4 и НАД-зависимой дегидрогеназы, которая при этом восстанавливается до НАДН 2 .

Митохондрии в анаэробных условиях блокированы, поэтому выделяемый в процессе окисления НАДН 2 находиться в среде до тех пор, пока не образуется субстрат, способный принять его. ПВК принимает НАДН 2 и восстанавливается с образованием лактата, завершая тем самым внутренний окислительно-восстановительный цикл гликолиза. НАД-окисленный выделяется и вновь может принимать участие в окислительном процессе, выполняя роль переносчика водорода.

Три реакции гликолиза являются необратимыми:

Гексакиназная реакция;

Фосфофруктокиназная реакция;

Пируваткиназная реакция.

Энергетический эффект гликолиза (гликогенолиза):

АТФ(глюкоза)=(2*2)–2=2

АТФ(гликоген)=(2*2)–1=3

Биологическая роль гликолиза – энергетическая. Гликолиз является единственным процессом в клетке, способным поставлять энергию в форме АТФ в бескислородных условиях. В кризисных ситуациях, когда клетки органов и тканей по каким то причинам находятся в анаэробных условиях, гликолиз является единственным источником скорой энергетической помощи для сохранения жизнедеятельности клеток, а в эритроцитах, где митохондрии отсутствуют, гликолиз вообще является единственным процессом, продуцирующим АТФ и поддерживающим их функции и целостность.

Гексозодифосфатный путь превращения углеводов в тканях

В аэробных условиях, когда в ткани в достаточном количестве поступает кислород, происходит подавление гликолиза. При этом уменьшается потребление глюкозы, блокируется образование лактата. Эффект подавления гликолиза дыханием получил название эффекта Пастера.

Глюкоза в аэробных условиях сгорает в клетках с образованием конечных продуктов - воды и углекислого газа. При окислении 1 моль глюкозы будет выделено 38 молекул АТФ, а при окислении 1 глюкозного остатка гликогена – 39 молекул.

Химизм реакций превращения глюкозы такой же, как и в аэробных условиях, но только до стадии образования пирувата.

Превращение глюкозы до пирувата протекает в цитоплазме, затем пируват поступает в митохондрии, где подвергается окислительному декарбоксилированию. Образовавшийся при этом АцКоА в дальнейшем окисляется в митохондриях с участием ферментов ЦТК и сопряженных с ними ферментов дыхательной цепи (ЦПЭ).

Реакция окислительного декарбоксилирования ПВК осуществляется при участии ряда ферментов и кофакторов:

1. дегидрогеназ (НАД, ФАД);

3. ацилтрансфераз (HS-KoA);

4. липоевой кислоты (ЛК), участвующей в переносе углекислого газа.

СН 3 -СО-СООН (это ПВК) (пируватдегидрогеназа, НАД, ФАД, HS-KoA, ТПФ, ЛК) СО 2 +НАДН 2 +Н 2 О +3АТФ +СН 3 -С(О)-SKoA (это АцКоА, он поступает в ЦТК).

При окислении глюкозы в аэробных условиях энергия выделяется за счет реакций :

1. субстратного фосфорилирования на этапах превращения 1,3-дифосфоглицериновой кислоты, фосфоенол-ПВК, сукцинил-КоА;

2. за счет реакций окислительного фосфорилирования на этапах превращения глицеральдегид-3-фосфата, ПВК, изоцитрата, -кетоглутаровой кислоты, сукцината, малата.

Энергетический эффект окисления:

АТФ (глюкозы)=2*(3+1+1+3+12)-2=38

АТФ (гликогена)=2*(3+1+1+3+12)-1=39

Конечные продукты образуются:

Углекислый газ на этапах превращения пирувата, оксалосукцината, -кетоглутаровой;

Вода образуется на этапах превращения: глицеральдегид-3-фосфата, 2-фосфоглицериновой кислоты, пирувата, изоцитрата, -кетоглутаровой кислоты, сукцината, малата.

Т.о. в отличие от анаэробного пути, аэробный путь окисления глюкозы является энергитически более эффективным и является основным путем обеспечения клеток энергией. При этом окисление идет с образованием конечных продуктов – углекислого газа и воды.

Гексозомонофосфатный путь превращения углеводов в тканях

Гексозомонофосфатный путь превращения углеводов в тканях (пентозофосфатный путь, апотолический путь) протекает в цитоплазме клеток органов и тканей и представлен двумя последовательными ветвями: окислительной и неокислительной.

Активность этого пути превращения глюкозы зависит от типа ткани и ее функционального состояния. Особенно активно глюкоза окисляется по этому пути в тканях и органах, где синтезируется много липидов: печень, кора надпочечников, жировая ткань, молочные железы. Биологическая роль этого пути связана, прежде всего, с производством 2-х веществ:

1. рибозо-5-фосфата и его производных, которые используется в клетках для биосинтеза важнейших биологических молекул: АТФ, ГТФ, HSKoA, НАД, ФАД и нуклеиновых кислот (ДНК, РНК);

2. НАДФ·Н 2 , которые в отличие от НАД·Н 2 не окисляется в дыхательной цепи митохондрии, а используется как источник протонов и электронов для синтеза веществ, включающего реакции восстановления (ВЖК, холестерина, желчных кислот, стероидных гормонов, витамина D 3). НАДФН 2 используется для обезвреживания ядов и токсических веществ (в реакции связывания аммиака при восстановительном аминировании -кетокислот).

Этот путь является единственным поставщиком пентоз для работающих клеток тканей и органов, и на 50% покрывает потребность в НАДФН 2 , следовательно основная биологическая роль этого пути – анаболическая.

Окислительная стадия пентозного пути превращения глюкоза отличается от классического гексозодифосфатного пути с этапа превращения глюкозы-6-фосфата и включает 5 реакций:

глюкозо-6-фосфат (глюкозо-6-фосфатдегидрогеназа, НАДФНАДФН 2) 6-фосфоглюкозолактон  (лактоназа, +Н 2 О) 6-фосфоглюконовая кислота (дегидрогеназа 6-фосфоглюконовой кислоты, НАДФНАДФН 2) 3-кето-6-фосфоглюконовая кислота (декарбоксилаза, -СО 2) рибулозо-5-фосфат (изомераза) рибозо-5-фосфат (эпимераза) ксилуозо-5-фосфат

При определённых условиях на этом заканчивается окислительная стадия пентозного цикла. Между пентозами устанавливается подвижное равновесие: рибулозо-5-фосфат (изомераза) рибозо-5-фосфат (эпимераза) ксилуозо-5-фосфат

Однако в ряде случаев, когда в клетках отмечается дефицит кислорода, может протекать неокислительная стадия пентозного цикла. Основными реакциями этого этапа являются 2 транскетолазные реакции и одна трансальдолазная. Все они обратимы. В результате этих реакций образуются субстраты для гликолиза (фруктозо-6-фосфат и глицеральдегид-3-фосфат), а также вещества, характерные для пентозного пути превращения глюкозы. Схематически неокислительную стадию пентозного цикла можно записать так:

1. транскетолазные реакции:

а) ксилуозо-5-фосфат+рибозо-5-фосфа(ТПФ) седогептулозо-7-фосфат+ глицеральдегид-3-фосфат;

б) ксилуозо-5-фосфат+эритрозо-4-фосфат(ТПФ) фруктозо-6-фосфат+ глицеральдегид-3-фосфат;

2. трансальдолазная реакция:

судогептулозо-7-фосфат+ глицеральдегид-3-фосфат фруктозо-6-фосфат+ эритрозо-4-фосфат

Баланс окислительной и неокислительной стадий гексозомонофосфатного пути превращения глюкозы в тканях можно записать в виде суммарного уравнения реакции:

6 глюкозо-6-фосфат+ 7Н 2 О+ 12НАДФ 5 глюкозо-6-фосфат+ 6СО 2 +12НАДФН 2 +Фн

Глюконеогенез и другие источники глюкозы для организма человека

Глюкоза является основным углеводом крови. Её концентрация в течение суток колеблется в зависимости от энергозатрат и частоты приемов пищи, содержания углеводов в пище. Для взрослого человека содержание глюкозы в крови составляет от 3,3 до 5,5 ммоль/л. Поддерживается концентрация глюкозы в крови за счет процесса биосинтеза и распада гликогена, глюконеогенеза и за счет углеводов пищи.

Глюконеогенез - это процесс образования глюкозы из неуглеводных предшественников, которыми являются продукты распада белков, липидов и углеводов. Основными являются пируват, лактат. Промежуточными могут быть метаболиты ЦТК, а так же глицерин и АК. Ряд АК (АСП, ТИР, ФЕН, ТРЕ, ВАЛ, МЕТ, ИЛЕ, ГИС, ПРО, АРГ) тем или иным путем превращаются в метаболиты ЦТК – фумаровую кислоту, которая в дальнейшем превращается в ЩУК. Другие АК (ГЛИ, АЛА, ЦИС, СЕР) превращаются в пируват.

Глюконеогенез возможен не во всех тканях. Главным местом синтеза глюкозы является печень, в меньшей степени почки и слизистая оболочка кишечника.

Биологическая роль глюконеогенеза заключается не только в синтезе глюкозы, но и в возвращении лактата в клеточный фонд углеводов. За счет этого процесса поддерживается уровень глюкозы в крови при углеводном голодании и сахарном диабете. Этот путь является единственным, который поддерживает биоэнергетику жизненно важных тканей в кризисных ситуациях.

Большинство реакций глюконеогенеза представляют собой обратимые реакции гликолиза, за исключением 3-х, которые являются термодинамически необратимыми.:

1. гексакиназной;

2. фосфофруктокиназной;

3. пируваткиназной.

Эти реакции гликолиза имеют при глюконеогенезе обходные пути, которые связаны с образованием фосфоенолпирувата, фруктозо-6-фосфата и глюкозы.

Обходные реакции гликолиза:

Первая обходная реакция глюконеогенеза связана с образованием фосфоенолпирувата. Она протекает в 2 стадии. Сначала в результате реакции карбоксилирования пируват превращается в ЩУК. Эта реакция протекает в митохондриях, куда ПВК поступает из цитозоля. ЩУК в митохондриях восстанавливается в малат под действием МДГ (НАДН 2). Мембраны митохондрий не проницаемы для ЩУК, малат же легко выходит в цитозоль, где окисляясь снова превращается в ЩУК. ЩУК в дальнейшем принимает участие в глюконеогенезе, вступая в реакции декарбоксилирования и фосфорилирования. Донором фосфатного остатка служит ГТФ, но может быть и АТФ.

а) CH 3 -CO-COOH (это ПВК) (пируваткарбоксилаза (биотин), +СО 2 , +АТФ, +Н 2 О) СООН-СО-СН 2 -СООН (это ЩУК) +АДФ +Фн;

б) СООН-СО-СН 2 -СООН (это ЩУК)(фосфоеноилпируваткарбоксикиназа, +ГТФ, +Н 2 О) СООН-С(О~РО 3 Н 2)=СН 2 + СО2 +ГДФ.

Вторая реакция связана с образованием фруктозо-6-фосфата:

фруктоза-1,6-дифосфат (фосфатаза, +Н 2 О) фруктоза-6-фосфат+ Фн

Третья реакция связана с образованием глюкозы:

глюкозо-6-фосфат (фосфатаза, +Н 2 О) глюкоза+ Фн

Образовавшаяся в процессе глюконеогенеза глюкоза может вновь поступать в клетки органов и тканей и принимать участие в метаболизме (использоваться в тканях как энергетический субстрат, откладываться про запас в виде гликогена, участвовать в анаболических реакциях).

В организме взрослого человека массой 70 кг, главным образом в печени, за сутки образуется около 80 гр. глюкозы.

Патология углеводного обмена

Нарушения углеводного обмена могут быть на различных этапах обмена веществ. Основными показателями нарушения является изменение концентрации глюкозы в крови (гипер-, гипоглюкоземия) и появление глюкозы в моче (глюкозурия). Концентрация глюкозы в крови взрослого здорового человека в норме составляет 3,3-5,5 ммоль/л. Появление глюкозы в моче возможно в случае превышения величины почечного порога, который для глюкозы составляет 10 ммоль/л.

Основными причинами развития нарушения углеводного обмена являются:

1. алиментарные. Употребление пищи, богатой углеводами, ведет к быстрому переполнению гликогенного резерва печени, мышц, развитию гиперглюкоземии, глюкозурии. При снижении двигательной активности происходит снижение окислительных процессов и усиление биосинтеза жиров в тканях, что ведет к развитию алиментарного ожирения;

2. при поражении слизистых оболочек ЖКТ. При этом в желудке нарушается образование HCl (гипохлоргидрия или ахлоргидрия), поступающие углеводы сбраживаются под влиянием ферментов микрофлоры с образованием лактата, а белки подвергаются гниению. Это создает благоприятные условия для развития микрофлоры и приводит к расстройству пищеварения в целом. При поражении слизистой тонкого кишечника нарушается гидролиз дисахаридов или всасывание продуктов гидролиза;

3. при поражении печени нарушается биосинтез и распад гликогена, глюконеогенез;

4. при поражении поджелудочной железы нарушается секреция ферментов (-амилаз, олиго-1,6-гликозидаз), участвующих в гидролизе крахмала и гликогена.

Наиболее грозным заболеванием ПЖЖ является сахарный диабет. При этом поражаются В-клетки, они перестают вырабатывать гормон инсулин. Инсулин – единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. В случае недостаточной его выработки или отсутствия вообще происходит нарушение биоэнергетики клеток, органов и тканей. В этом случае интенсивному окислению подвергаются белки и липиды, что сопровождается избыточной продукцией аммиака и Ац-КоА.

Для связывания токсичного аммиака отвлекаются кетокислоты (ЩУК и -кетоглутаровая) из ЦТК, их концентрация резко падает, что приводит к снижению интенсивности окислительных процессов. ЦТК не в состоянии окислить все молекулы ацетил-КоА, образование которых увеличивается с усилением окисления белков и липидов. Создаются условия для их конденсации с образованием кетоновых тел. При сахарном диабете в крови наблюдается гиперкетонемия (норма - до 0,1 г/л) и кетонурия.

2СН 3 -СОSKoA (это ацетил-КоА) (Ац-КоА-трансфераза) ацетоацетил-КоА  (деацилаза, +Н 2 О, -HS-KoA) ацетоуксусная кислота.

Ацетоуксусная кислота может превращаться в -гидроксимасляную кислоту, при этом НАДН 2 НАД. Также она может превращаться в ацетон с отщеплением СО 2 .


Наследственные заболевания, как правило, связаны с нарушением синтеза ферментов, участвующих в метаболизме углеводов. Например, алактазия - неусвояемость углеводов молока (лактозы). Это связано с отсутствием фермента – лактазы, поэтому поступающие с молоком дисахариды не усваиваются. У детей проявляется в виде рвоты, тошноты, поноса, вздутия живота, происходит обезвоживание организма. Лечение: исключение лактозы из пищи и замещение на мальтозу, сахарозу, глюкозу.

Другая группа заболеваний может быть связана с наследственными нарушениями обмена гликогена:

1. гликогенозы, связанные с недостаточным количеством ферментов, участвующих в распаде гликогена (болезнь Гирке, Кори);

2. агликогенозы – заболевания, связанные с нарушением синтеза гликогена (болезнь Льюиса. Андерсона и т.д.).

Липиды

Липиды – это сложные органические вещества биологической природы, не растворимые в воде, но растворимые в органических растворителях .

Все липиды делятся на простые и сложные . Простые: триглицериды, стерины, стериды и воски. Сложные: фосфолипиды, гликолипиды. Фосфолипиды делятся на сфинголипиды и глицерофосфолипиды. К глицерофосфолипидам относятся: фосфатидилхолин, фосфатидилсерин, фосфатидилэтаноламин, фосфатидилинозит и плазмогены (ацетальфосфатиды). К гликолипидам: цереброзиды, ганглиозиды, сульфатиды.

Наряду с белками и углеводами, липиды являются основными продуктами питания. В организме человека они поступают с продуктами растительного и животного происхождения. Суточная потребность взрослого человека составляет 80-100 г. Липиды составляют 10-20% от массы тела. В среднем в теле взрослого человека содержится 10-12 кг. липидов. Из них 25% приходится на структурные липиды, остальные относятся к резервным. Установлено, что 98% резервных липидов находится в жировой ткани.

Резервные липиды (жиры) представлены триглицеридами (ТГ). Они используются для энергетических нужд организма. Важнейшими ТГ являются эфиры глицерина и ВЖК. ВЖК могут быть как предельными (пальмитиновая С 15 Н 31 СООН, стеариновая С 17 Н 35 СООН), так и непредельными (олеиновая С 17 Н 33 СООН, линолевая С 17 Н 31 СООН, линоленовая С 17 Н 29 СООН, арахидоновая С 19 Н 31 СООН).

Фосфолипиды (ФЛ), гликолипиды являются структурными компонентами биологических мембран клеток, они не имеют такой энергетической ценности, как ТГ. Они, как и стерины (холестерин - ХС) относятся к структурным липидам.

ХС является предшественником ряда биологически активных веществ (БАВ), например стероидных гормонов (эстрогенов, андрогенов, минерало- и глюкокортикоидов), витаминов группы D и желчных кислот. Арахидоновая кислота (С 19 Н 31 СООН), входя в состав ФЛ, может принимать участие в образовании гормоноподобных веществ (простагландинов, лейкотриенов).

Биологическая роль липидов:

1. структурная – входят в состав биомембран клеток (ФЛ, ГЛ, холестерин);

2. резервная – нейтральные жиры могут откладываться про запас в жировое депо;

3. энергетическая – при окислении 1 г липидов до воды и углекислого газа выделяется 9,3 ккал энергии. На долю липидов приходится примерно 50% всей калорийности;

4. механическая – входя в состав соединительной ткани, подкожной жировой клетчатки, липиды предохраняют внутренние органы от повреждения при механических травмах;

5. теплоизолирующая роль – входя в состав подкожной жировой клетчатки, липиды предохраняют органы от перегревания и переохлаждения;

6. транспортная – входя в состав биомембран клеток, липиды участвуют в транспорте веществ (катионов);

7. регуляторная – все стероидные гармоны являются липидами. Гармоноподобные вещества (простагландины и лейкотриены) образуются из липидов;

8. выполняет роль смазочного материала для кожи, предохраняют её от сухости и растрескивания;

9. участвуют в передаче нервных импульсов;

10. липиды являются основным источником эндогенной воды - при окислении 100 г липидов образуется 107 мл эндогенной воды (из 100 г углеводов 57 мл воды, а из 100 г белков – 41 мл воды);

11. растворяющая – желчные кислоты, являясь стеринами, участвуют в растворении жирорастворимых витаминов А, Д, Е и К;

12. питательная роль – с пищей в организм поступают незаменимые ВЖК, которые имеют 2 и более двойных связей.

Незаменимые ВЖК в организме не синтезируются, но их роль велика:

1. они являются обязательным структурным компонентом биомембран;

2. препятствуют всасыванию холестерина в кишечнике;

3. стимулируют синтез желчных кислот в печени;

4. тормозят образование ЛПОНП, предупреждая развитие атеросклероза;

5. понижают свёртывание крови и понижают возможность тромбообразования;

6. повышают защитные силы организма;

7. предупреждают развитие кожных заболеваний;

8. являются источником гормоноподобных веществ.

Богаты ненасыщенными ВЖК растительные масла, в которых их содержание составляет 50-55%. Для полного удовлетворения суточной потребности взрослому человеку достаточно получать 15-20 г этих масел.

Углеводный обмен отвечает за процесс усвоения углеводов в организме, их расщепление с образованием промежуточных и конечных продуктов, а также новообразование из соединений, не являющихся углеводами, или превращение простых углеводов в более сложные. Основная роль углеводов определяется их энергетической функцией.

Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках.

При снижении уровня глюкозы в крови развиваются:

    Судороги;

    потеря сознания;

    вегетативные реакции (усиленное потоотделение, изменение просвета кожных сосудов).

Это состояние получило название «гипогликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства.

Метаболизм углеводов в организме человека состоит из следующих процессов:

    Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника вкровь.

    Синтез и распад гликогена в тканях (гликогенез и гликогенолиз).

    Гликолиз (распад глюкозы).

    Анаэробный путь прямого окисления глюкозы (пентозный цикл).

    Взаимопревращение гексоз.

    Анаэробный метаболизм пирувата.

    Глюконеогенез — образование углеводов из неуглеводных продуктов.

Нарушения углеводного обмена

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (амилаза панкреатического сока). При этом поступающие с пищей углеводы не расщепляются до моносахаридов и не всасываются. В результате у пациента развивается углеводное голодание.

Всасывание углеводов страдает также при нарушении фосфорилирования глюкозы в кишечной стенке, возникающем при воспалении кишечника, при отравлении ядами, блокирующими фермент гексокиназу (флоридзин, монойодацетат). Не происходит фосфорилирования глюкозы в кишечной стенке и она не поступает в кровь.

Всасывание углеводов особенно легко нарушается у детей грудного возраста, у которых еще не вполне сформировались пищеварительные ферменты и ферменты, обеспечивающие фосфорилирование и дефосфорилирование.

Причины нарушения углеводного обмена, вследствие нарушения гидролиза и всасывания углеводов:

    Гипоксия

    нарушение функций печени - нарушение образования гликогена из молочной кислоты - ацидоз (гиперлакцидемия).

    гиповитаминоз В1.


Нарушение синтеза и расщепления гликогена

Синтез гликогена может изменяться в сторону патологического усиления или снижения. Усиление распада гликогена происходит при возбуждении центральной нервной системы. Импульсы по симпатическим путям идут к депо гликогена (печень, мышцы) и активируют гликогенолиз и мобилизацию гликогена. Кроме того, в результате возбуждения центральной нервной системы повышается функция гипофиза, мозгового слоя надпочечников, щитовидной железы, гормоны которых стимулируют распад гликогена.

Повышение распада гликогена при одновременном увеличении потребления мышцами глюкозы происходит при тяжелой мышечной работе. Снижение синтеза гликогена происходит при воспалительных процессах в печени: гепатитах , в ходе которых нарушается ее гликоген-образовательная функция.

При недостатке гликогена тканевая энергетика переключается на жировой и белковый обмены. Образование энергии за счет окисления жира требует много кислорода; в противном случае в избытке накапливаются кетоновые тела и наступает интоксикация. Образование же энергии за счет белков ведет к потере пластического материала. Гликогеноз это нарушение обмена гликогена, сопровождающееся патологическим накоплением гликогена в органах.

Болезнь Гирке гликогеноз, обусловленный врожденным недостатком глюкозо-6-фосфатазы - фермента, содержащегося в клетках печени и почек.

Гликогеноз при врожденном дефиците α-глюкозидазы. Этот фермент отщепляет глюкозные остатки от молекул гликогена и расщепляет мальтозу. Он содержится в лизосомах и разобщен с фосфорилазой цитоплазмы.

При отсутствии α-глюкозидазы в лизосомах накапливается гликоген, который оттесняет цитоплазму, заполняет всю клетку и разрушает ее. Содержание глюкозы в крови нормальное. Гликоген накапливается в печени, почках, сердце. Обмен веществ в миокарде нарушается, сердце увеличивается в размерах. Больные дети рано умирают от сердечной недостаточности.

Нарушения промежуточного обмена углеводов

К нарушению промежуточного обмена углеводов могут привести:

Гипоксические состояния (например, при недостаточности дыхания или кровообращения, при анемиях), анаэробная фаза превращения углеводов преобладает над аэробной фазой. Происходит избыточное накопление в тканях и крови молочной и пировиноградной кислот. Содержание молочной кислоты в крови возрастает в несколько раз. Возникает ацидоз. Нарушаются ферментативные процессы. Снижается образование АТФ.

Расстройства функции печени, где в норме часть молочной кислоты ресинтезируется в глюкозу и гликоген. При поражении печени этот ресинтез нарушается. Развиваются гиперлакцидемия и ацидоз.

Гиповитаминоз В1. Нарушается окисление пировиноградной кислоты, так как витамин B1 входит в состав кофермента, участвующего в этом процессе. Пировиноградная кислота накапливается в избытке и частично переходит в молочную кислоту, содержание которой также возрастает. При нарушении окисления пировиноградной кислоты снижается синтез ацетилхолина и нарушается передача нервных импульсов. Уменьшается образование из пировиноградной кислоты ацетилкоэнзима А. Пировиноградная кислота является фармакологическим ядом для нервных окончаний. При увеличении ее концентрации в 2-3 раза возникают нарушения чувствительности, невриты, параличи и др.

При гиповитаминозе B1 нарушается также и пентозофосфатный путь обмена углеводов, в частности образование рибозы.


Гипергликемия

Гипергликемия это повышение уровня сахара крови выше нормального. В зависимости от этиологических факторов различают следующие виды гипергликемий:

Алиментарная гипергликемия. Развивается при приеме больших количеств сахара. Этот вид гипергликемии используют для оценки состояния углеводного обмена (так называемая сахарная нагрузка). У здорового человека после одномоментного приема 100-150 г сахара содержание глюкозы в крови нарастает, достигая максимума - 1,5-1,7 г/л (150-170 мг%) через 30-45 мин. Затем уровень сахара крови начинает падать и через 2 ч снижается до нормы (0,8-1,2 г/л), а через 3 ч оказывается даже несколько сниженным.

Эмоциональная гипергликемия. При резком преобладании в коре головного мозга раздражительного процесса над тормозным возбуждение иррадиирует на нижележащие отделы центральной нервной системы. Поток импульсов по симпатическим путям, направляясь к печени, усиливает в ней распад гликогена и тормозит переход углеводов в жир. Одновременно возбуждение воздействует через гипоталамические центры и симпатическую нервную систему на надпочечники. Происходит выброс в кровь больших количеств адреналина, стимулирующего гликогенолиз.

Гормональные гипергликемии. Возникают при нарушении функции эндокринных желез, гормоны которых участвуют в регуляции углеводного обмена. Например, гипергликемия развивается при повышении продукции глюкагона - гормона α-клеток островков Лангерганса поджелудочной железы, который, активируя фосфорилазу печени, способствует гликогенолизу. Сходным действием обладает адреналин. К гипергликемии ведет избыток глюкокортикоидов (стимулируют глюконеогенез и тормозят гексокиназу) и соматотропного гормона гипофиза (тормозит синтез гликогена, способствует образованию ингибитора гексокиназы и активирует инсулиназу печени).

Гипергликемии при некоторых видах наркоза. При эфирном и морфинном наркозах происходит возбуждение симпатических центров и выход адреналина из надпочечников; при хлороформном наркозе к этому присоединяется нарушение гликогенообразовательной функции печени.

Гипергликемия при недостаточности инсулина является наиболее стойкой и выраженной. Ее воспроизводят в эксперименте путем удаления поджелудочной железы. Однако при этом дефицит инсулина сочетается с тяжелым расстройством пищеварения. Поэтому более совершенной экспериментальной моделью инсулиновой недостаточности является недостаточность, вызванная введением аллоксана (C4H2N2O4), который блокирует SH-группы. В β-клетках островков Лангерганса поджелудочной железы, где запасы SH-групп невелики, быстро наступает их дефицит и инсулин становится неактивным.

Экспериментальную недостаточность инсулина можно вызвать дитизоном, блокирующим цинк в β-клетках островков Лангерганса, что ведет к нарушению образования гранул из молекул инсулина и его депонирования. Кроме того, в β-клетках образуется дитизонат цинка, который повреждает молекулы инсулина.

Недостаточность инсулина может быть панкреатической и внепанкреатической. Оба эти вида инсулиновой недостаточности могут вызвать сахарный диабет .


Панкреатическая инсулиновая недостаточность

Этот тип недостаточности развивается при разрушении поджелудочной железы:

    Опухолями;

    туберкулезным/сифилитическим процессом;

    панкреатитом.

В этих случаях нарушаются все функции поджелудочной железы, в том числе и способность вырабатывать инсулин. После панкреатита в 16-18% случаев развивается инсулиновая недостаточность в связи с избыточным разрастанием соединительной ткани, которая нарушает снабжение клеток кислородом.

К инсулиновой недостаточности ведет местная гипоксия островков Лангерганса (атеросклероз, спазм сосудов), где в норме очень интенсивное кровообращение. При этом дисульфидные группы в инсулине переходят в сульфгидрильные и он не оказывает гипогликемического эффекта). Предполагают, что причиной инсулиновой недостаточности может послужить образование в организме при нарушении пуринового обмена аллоксана, близкого по структуре к мочевой кислоте.

Инсулярный аппарат может истощаться после предварительного повышения функции, например при излишнем употреблении в пищу легкоусвояемых углеводов, вызывающих гипергликемию, при переедании. В развитии панкреатической инсулиновой недостаточности важная роль принадлежит исходной наследственной неполноценности инсулярного аппарата.

Внепанкреатическая инсулиновая недостаточность

Этот тип недостаточности может развиться при повышенной активности инсулиназы: фермента, расщепляющего инсулин и образующегося в печени к началу полового созревания.

К недостаточности инсулина могут привести хронические воспалительные процессы, при которых в кровь поступает много протеолитических ферментов, разрушающих инсулин.

Избыток гидрокортизона, тормозящего гексокиназу, снижает действие инсулина. Активность инсулина снижается при избытке в крови неэстерифицированных жирных кислот, которые оказывают на него непосредственное тормозящее влияние.

Причиной недостаточности инсулина может послужить чрезмерно прочная его связь с переносящими белками в крови. Инсулин, связанный с белком, не активен в печени и мышцах, но оказывает обычно действие на жировую ткань.

В ряде случаев при сахарном диабете содержание инсулина в крови нормально или даже повышено. Предполагают, что диабет при этом обусловлен присутствием в крови антагониста инсулина, однако природа этого антагониста не установлена. Образование в организме антител против инсулина ведет к разрушению этого гормона.

Сахарный диабет

Углеводный обмен при сахарном диабете характеризуется следующими особенностями:

    Резко снижен синтез глюкокиназы, которая при диабете почти полностью исчезает из печени, что ведет к уменьшению образования глюкозо-6-фосфата в клетках печени. Этот момент наряду со сниженным синтезом гликогенсинтетазы обусловливает резкое замедление синтеза гликогена. Происходит обеднение печени гликогеном. При недостатке глюкозо-6-фосфата тормозится пентозофосфатный цикл;

    Активность глюкозо-6-фосфатазы резко возрастает, поэтому глюкозо-6-фосфат дефосфорилируется и поступает в кровь в виде глюкозы;

    Тормозится переход глюкозы в жир;

    Понижается прохождение глюкозы через клеточные мембраны, она плохо усваивается тканями;

    Резко ускоряется глюконеогенез - образование глюкозы из лактата, пирувата, аминокислот жирных кислот и других продуктов неуглеводного обмена. Ускорение глюконеогенеза при сахарном диабете обусловлено отсутствием подавляющего влияния (супрессии) инсулина на ферменты, обеспечивающие глюконеогенез в клетках печени и почек: пируваткарбоксилазу, глюкозо-6-фосфатазу.

Таким образом, при сахарном диабете имеют место избыточная продукция и недостаточное использование глюкозы тканями, вследствие чего возникает гипергликемия. Содержание сахара в крови при тяжелых формах может достигать 4-5 г/л (400-500 мг%) и выше. При этом резко возрастает осмотическое давление крови, что ведет к обезвоживанию клеток организма. В связи с обезвоживанием глубоко нарушаются функции центральной нервной системы (гиперосмолярная кома).

Сахарная кривая при диабете по сравнению с таковой у здоровых значительно растянута во времени. Значение гипергликемии в патогенезе заболевания двояко. Она играет адаптивную роль, так как при ней тормозится распад гликогена и частично усиливается его синтез. При гипергликемии глюкоза лучше проникает в ткани и они не испытывают резкого недостатка углеводов. Гипергликемия имеет и отрицательное значение.

При ней повышается концентрация глюко- и мукопротеидов, которые легко выпадают в соединительной ткани, способствуя образованию гиалина. Поэтому для сахарного диабета характерно раннее поражение сосудов атеросклерозом. Атеросклеротический процесс захватывает коронарные сосуды сердца (коронарная недостаточность), сосуды почек (гломерулонефриты). В пожилом возрасте сахарный диабет может сочетаться с гипертонической болезнью.

Глюкозурия

В норме глюкоза содержится в провизорной моче. В канальцах она реабсорбируется в виде глюкозофосфата, для образования которого необходима гексокиназа, и после дефосфорилирования поступает в кровь. Таким образом, в окончательной моче сахара в нормальных условиях не содержится.

При диабете процессы фосфорилирования и дефосфорилирования глюкозы в канальцах почек не справляются с избытком глюкозы в первичной моче. Развивается глюкозурия. При тяжелых формах сахарного диабета содержание сахара в моче может достигать 8-10%. Осмотическое давление мочи повышено; в связи с этим в окончательную мочу переходит много воды.

Суточный диурез возрастает до 5-10 л и более (полиурия). Развивается обезвоживание организм, развивается усиленная жажда (полидипсия). При нарушении углеводного обмена следует обратиться к эндокринологу за профессиональной помощью. Врач подберет необходимое медикаментозное лечение и разработает индивидуальную диету.

Углеводы или глюциды, также как и жиры и белки, являются основными органическими соединениями нашего тела. Поэтому, если вы хотите изучить вопрос углеводного обмена в организме человека, рекомендуем сначала ознакомиться с химией органических соединений. Если же вы хотите знать, что такое углеводный обмен, и как он происходит в организме человека, не внедряясь в подробности, то наша статья для вас. Мы постараемся в более простой форме рассказать об углеводном обмене в нашем организме.

Углеводы это обширная группа веществ, которая в основном состоит из водорода, кислорода и углерода. Некоторые сложные углеводы также имеют в своем составе серу и азот.

Все живые организме на нашей планете состоят из углеводов. Растения состоят из них практически на 80 %, животные и человек содержат в себе намного меньше углеводов. Углеводы, главным образом, содержаться в печени (5-10%), мышцах (1-3%), головном мозге (меньше 0,2%).

Углеводы нам нужны в качестве источника энергии. При окислении всего 1 грамма углеводов, мы получаем 4,1 ккал энергии. Кроме того, некоторые сложные углеводы являются запасными питательными веществами, а клетчатка, хитин и гиалуроновая кислота придают тканям прочность. Углеводы также являются одним из строительных материалов более сложных молекул, таких как , нуклеиновая кислота, гликолипиды и т.д. Без участия углеводов невозможно окисление белков и жиров.

Виды углеводов

В зависимости от того, насколько углевод способен разлагаться на более простые углеводы с помощью гидролиза (т.е. расщепление с участием воды), их классифицируют на моносахариды, олигосахариды и полисахариды. Моносахариды не гидролизуются и считаются простыми углеводами, состоящими из 1 частицы сахара. Это, например, глюкоза или фруктоза. Олигосахариды гидролизуются с образованием небольшого числа моносахаридов, а полисахариды гидролизуются на множество (сотни, тысячи) моносахаридов.

Глюкоза не переваривается и в неизменном виде всасывается в кровь из кишечника.

Из класса олигосахаридов выделяют дисахариды – это, например, тростниковый или свекличный сахар (сахароза), молочный сахар (лактоза).

К полисахаридам относятся углеводы, которые состоят из множества моносахаридов. Это, например, крахмал, гликоген, клетчатка. В отличие от моно и дисахаридов, которые усваиваются в кишечнике практически сразу, полисахариды перевариваются продолжительное время, поэтому их называют тяжелыми или сложными. Их расщепление занимает продолжительное время, что позволяет поддерживать уровень сахара в крови в стабильном положении, без инсулиновых скачков, которые вызывают простые углеводы.

Основное переваривание углеводов происходит в соке тонких кишок.

Запас углеводов в виде гликогена в мышцах совсем маленький – около 0,1% от веса самой мышцы. А так как мышцы не могут работать без углеводов, они нуждаются в регулярной их доставке через кровь. В крови углеводы находятся в виде глюкозы, содержание которой составляет от 0,07 до 0,1%. Основные запасы углеводов в виде гликогена содержатся в печени. У человека весом в 70 кг где-то 200 гр(!) углеводов в печени. И когда мышцы «съедают» всю глюкозу из крови, в нее снова поступает глюкоза из печени (предварительно гликоген в печени расщепляется на глюкозу). Запасы в печени не вечные, поэтому необходимо восполнять ее с пищей. Если с пищей не поступают углеводы, то печень образует гликоген из жиров и белков.

Когда человек занимается физической работой, мышцы истощают все запасы глюкозы и возникает состояние, которое называется гипогликемией – в результате нарушается работа и самих мышц и еще нервных клеток. Именно поэтому важно соблюдать правильный рацион питания, в особенно питания до и после тренировки.

Регуляция углеводного обмена в организме

Как следует из вышесказанного, весь углеводный обмен сводится к уровню сахар в крови. Уровень сахара в крови зависит от того, сколько глюкозы поступает в кровь и сколько глюкозы удаляется из нее. От этого соотношения зависит весь углеводный обмен. Сахар в кровь поступает из печени и кишечника. Печень расщепляет гликоген до глюкозы только в том случае, если уровень сахара в крови падает. Эти процессы регулируются гормонами.

Уменьшение уровня сахара в крови сопровождается выделение гормона адреналина – он активизирует ферменты печени, которые отвечают за поступление глюкозы в кровь.

Углеводный обмен регулируется также двумя гормонами поджелудочной железы – инсулином и глюкагоном. Инсулин отвечает за транспорт глюкозы из крови в ткани. А глюкагон отвечает за расщепление глюкагона в печени на глюкозу. Т.е. глюкагон повышает уровень сахара в крови, а инсулин снижает. Их действие взаимосвязано.

Разумеется, если уровень сахара в крови завышен, а печень и мышцы насыщены гликогеном, то «ненужный» материал инсулин отправляет в жировое депо – т.е. откладывает глюкозу в виде жира.

Углеводный обмен в организме человека - процесс тонкий, но имеющий важное значение. Без глюкозы организм слабеет, а в центральной нервной системе снижение ее уровня вызывает галлюцинации, головокружения и потери сознания. Нарушение углеводного обмена в организме человека проявляется почти сразу, а длительные сбои уровня глюкозы в крови вызывают опасные патологии. В связи с этим уметь регулировать концентрацию углеводов необходимо каждому человеку.

Как усваиваются углеводы

Углеводный обмен в организме человека заключается в его преобразовании в энергию, необходимую для жизни. Это происходит в несколько этапов:

  1. На первом этапе углеводы, попавшие в организм человека, начинают расщепляться на простые сахариды. Происходит это уже во рту под воздействием слюны.
  2. В желудке на нераспавшиеся во рту сложные сахариды начинает воздействовать желудочный сок. Он расщепляет даже лактозу до состояния галатозы, которая впоследствии преобразуется в необходимую глюкозу.
  3. В кровь глюкоза всасывается через стенки тонкого кишечника. Часть ее, даже минуя этап накопления в печени, сразу преображается в энергию для жизни.
  4. Далее процессы переходят на клеточный уровень. Глюкоза заменяет собой молекулы кислорода в крови. Это становится сигналом для поджелудочной железы о начале выработки и выброса в кровь инсулина - вещества, необходимого для доставки гликогена, в который преобразовалась глюкоза, внутрь клеток. То есть гормон помогает организму усваивать глюкозу на молекулярном уровне.
  5. Гликоген синтезируется в печени, именно она перерабатывает углеводы в необходимое вещество и даже способна делать небольшой запас гликогена.
  6. Если глюкозы слишком много, печень превращает их в простые жиры, связав их в цепочку нужными кислотами. Такие цепочки при первой необходимости расходуются организмом для превращения в энергию. Если они остаются невостребованными, то переводятся под кожу в виде жировых тканей.
  7. Доставленный инсулином в клетки мышечных тканей гликоген при необходимости, а именно при дефиците кислорода, означающего физическую нагрузку, вырабатывает энергию для мышц.

Регулировка обмена углеводов

Кратко об углеводном обмене в организме человека можно сообщить следующее. Все механизмы расщепления, синтеза и усвоения углеводов, глюкозы и гликогена регулируются различными ферментами и гормонами. Это соматотропный, стероидный гормон и самое главное - инсулин. Именно он помогает гликогену преодолеть клеточную оболочку и проникнуть внутрь клетки.

Нельзя не упомянуть об адреналине, регулирующем весь каскад фосфоролиза. В регулировании химических процессов по усвоению углеводов принимают участие ацетил-КоА, жирные кислоты, ферменты и другие вещества. Нехватка или переизбыток того или иного элемента обязательно вызовет сбой во всей системе усвоения и переработки углеводов.

Нарушения углеводного обмена

Трудно переоценить важность углеводного обмена в организме человека, ведь без энергии нет и жизни. И любое нарушение процесса усвоения углеводов, а значит и уровня глюкозы в организме приводит к опасным для жизни состояниям. Два основных отклонения: гипогликемия - уровень глюкозы критически низкий, и гипергликемия - концентрация углевода в крови превышена. И то и другое крайне опасно, например, пониженный уровень глюкозы сразу же отрицательно сказывается на функциях мозга.

Причины отклонений

Причины отклонений в регулировке уровня глюкозы имеют различные предпосылки:

  1. Наследственное заболевание - галактоземия. Симптомы патологии: дефицит веса, заболевание печени с пожелтением кожного покрова, задержка психического и физического развития, нарушение зрения. Данная болезнь часто приводит к смерти еще на первом году жизни. Это красноречиво говорит о значении углеводного обмена в организме человека.
  2. Другой пример генетического заболевания - фруктозная непереносимость. У больного при этом нарушается работа почек и печени.
  3. Синдром мальабсорбации. Характеризуется заболевание невозможностью усваивать моносахариды через слизистую оболочку тонкого кишечника. Приводит к нарушению почечной и печеночной функции, проявляется диарея, метеоризм. К счастью, болезнь поддается лечению путем приема больным ряда необходимых ферментов, снижающих характерную при данной патологии лактозную непереносимость.
  4. Болезнь Сандахоффа характеризуется нарушением выработки фермента А и В.
  5. Болезнь Тея-Сакса развивается в результате нарушения выработки в организме AN-ацетилгексозаминидазы.
  6. Самое известное заболевание - диабет. При этом недуге глюкоза не попадает в клетки, так как поджелудочная железа перестала выделять инсулин. Тот самый гормон, без которого невозможно проникновение глюкозы в клетки.

Большинство болезней, сопровождаемых нарушением уровня глюкозы в организме, являются неизлечимыми. В лучшем случае врачам удается стабилизировать состояние больных путем введения в их организмы недостающих ферментов или гормонов.

Нарушения углеводного обмена у детей

Особенности метаболизма и питания новорожденных приводит к тому, что в их организмах гликолиз протекает на 30 % интенсивнее, чем у взрослого человека. Поэтому важно определить причины появления нарушений углеводного обмена у малыша. Ведь первые дни человека наполнены событиями, требующими массы энергии: рождение, стресс, возросшая физическая активность, потребление пищи, дыхание кислородом. Нормализуется уровень гликогена только через несколько дней.

Помимо наследственных заболеваний, связанных с обменом веществ, которые могут проявиться с первых дней жизни, ребенок подвержен самым разным состояниям, способным привести к глютеновой болезни. Например, расстройство желудка или тонкого кишечника.

Для того чтобы не допустить развития глютеновой болезни, уровень глюкозы в крови малыша подвергается изучению еще в период внутриутробного развития. Именно поэтому будущая мать должна во время беременности сдавать все назначаемые врачом анализы и проходить инструментальные обследования.

Восстановление углеводного обмена

Как восстановить углеводный обмен в организме человека? Все зависит от того, в какую сторону сместился уровень глюкозы.

Если у человека наблюдается гипергликемия, то ему назначают диету по снижению в рационе жиров и углеводов. А при гипогликемии, то есть низком уровне глюкозы, наоборот, предписывается употреблять большее количество углеводов и белков.

Следует понимать, что восстановить углеводный обмен в организме человека довольно трудно. Одной диеты обычно не хватает, часто больной должен пройти курс лечения медицинскими препаратами: гормонами, ферментами и так далее. Например, при сахарном диабете больной должен до конца жизни получать инъекции гормона инсулина. Причем дозировка и схема приема препарата назначаются индивидуально в зависимости от состояния пациента. Ведь в целом лечение направлено на устранение причины нарушения углеводного обмена в организме человека, а не только на его временную нормализацию.

Специальная диета и гликемический индекс

Что такое углеводный обмен в организме человека, знают те, кто вынужден жить с хроническим неизлечимым заболеванием, характеризующимся нарушением уровня глюкозы в крови. Такие люди на собственном опыте узнали, что такое гликемический индекс. Эта единица определяет, сколько глюкозы в том или ином продукте.

Кроме ГИ любой врач или больной диабетик знают наизусть, в каком продукте и сколько содержится углеводов. На основе всей этой информации составляется особый план питания.

Вот, например, несколько позиций из рациона таких людей (на 100 г):

  1. Сухие - 15 ГИ, 3,4 г углеводов, 570 ккал.
  2. Земляной орех - 20 ГИ, 9,9 г углеводов, 552 ккал.
  3. Брокколи - 15 ГИ, 6,6 г углеводов, 34 ккал.
  4. Белый гриб - 10 ГИ, 1,1 г углеводов, 34 ккал.
  5. Листья салата- 10 ГИ, 2 г углеводов, 16 ккал.
  6. Латук - 10 ГИ, 2,9 г углеводов, 15 ккал.
  7. Томаты - 10 ГИ, 4,2 г углеводов, 19,9 ккал.
  8. Баклажан - 10 ГИ, 5,9 г углеводов, 25 ккал.
  9. Перец болгарский -10 ГИ, 6,7 г углеводов, 29 ккал.

В данном списке приведены продукты с низким ГИ. При диабете человек может смело есть пищу с ингредиентами, в которых ГИ не превышает 40, максимум 50. Остальное находится под строжайшим запретом.

Что будет, если самостоятельно регулировать углеводный обмен

Есть еще один аспект, о котором нельзя забывать в процессе регулирования углеводного обмена. Организм обязательно должен получать предназначенную для жизни энергию. И если пища не попадает в организм вовремя, то он начнет расщеплять жировые клетки, а затем клетки мышц. То есть наступит физическое истощение организма.

Увлечение монодиетами, вегитарианством, фруторианством и другими экспериментальными методиками питания, призванными регулировать обмен веществ, приводит не просто к плохому самочувствию, но к нарушению жизненно важных функций в организме и разрушению внутренних органов и структур. Разрабатывать рацион и назначать препараты может только специалист. Любое самолечение приводит к ухудшению состояния или даже смерти.

Заключение

Углеводный обмен играет важнейшую роль в организме, при его нарушении происходят сбои в работе многих систем и органов. Важно поддерживать в норме количество поступающих в организм углеводов.