Вегетарианство и незаменимые аминокислоты.

Представляем список всех незаменимых аминокислот для организма. Какие продукты содержат незаменимые аминокислоты и какова их норма для человека. Информация будет особенно полезна вегетарианцам и веганам, поможет построить меню таким образом, чтобы получать все необходимые вещества из растительной пищи.

Немного теории

Незаменимые, или неотъемлемые аминокислоты представляют собой сложные химические вещества, которые не могут быть синтезированы с нуля организмом. Таким образом, они должны присутствовать в ежедневном рационе. Среди всего аминокислотного спектра примерно половина веществ (а именно - девять) не может быть «собрана» из базовых молекул.

Шесть других аминокислот считаются условно незаменимыми, то есть их синтез может быть ограничен особыми патофизиологическими условиями, например недоношенностью ребенка, тяжелыми случаями катаболического дистресса. Оставшиеся пять являются необязательными, то есть могут производиться в организме. В следующей таблице перечислены рекомендованные ВОЗ ежедневные дозы незаменимых аминокислот для взрослых людей:


Ежедневные дозы для детей от 3-х лет выше на 20%, а для младенцев могут достигать 150% на первом году жизни.

Хотя белки из растительных источников, как правило, имеют относительно более низкие концентрации аминокислот по массе, они все-таки в силах обеспечить полноценное питание. Некоторые природные комбинации продуктов (кукуруза и бобы, соевые бобы и рис, красная фасоль и рис) содержат незаменимые аминокислоты в полном объеме.

Часто источники растительного происхождения содержат даже больше белка на калорию, чем цельное сырое яйцо (аминокислотный эталон). Например: 100 г. сырой брокколи обеспечивает 28 ккал. и 3 г. белка, яйцо содержит в пять раз больше калорий (143 ккал), но только в четыре раза больше белка. Примерно 90 мг белка в ккал. Взрослым рекомендуется получать 10-35% калорий в виде белка.

Дефицит аминокислот влияет на все органы тела и многие из его систем. Особенно уязвимы функции головного мозга у младенцев и детей младшего возраста; иммунная система; слизистая кишечника; функции почек. Физические признаки белковой недостаточности включают отеки, задержку роста, плохо развитую мускулатуру, землистую кожу, тонкие и ломкие волосы, а также нервозность, головокружение, мышечную слабость и рассеянность.

Кроме очевидного содержания всех аминокислот в мясе и других продуктах животного происхождения, ниже приведен список растительных продуктов, которые являются их надежными источниками:

1. Лейцин

Одна из лучших незаменимых аминокислот для стимуляции мышечной силы. Помогает регулировать уровень сахара, в состоянии предотвратить депрессию, так как действует на уровне нейротрансмиттеров в головном мозге.

Растительные источники включают в себя: авокадо, морские водоросли, горох, зерна риса и подсолнечника, кунжут, кресс, зелень репы, сою, фасоль, инжир, изюм, финики, яблоки, чернику, оливки, тыкву, бананы. Не ограничивайте себя одной пищей их этого списка, стремитесь к разнообразию во время каждого приема.

2. Изолейцин

Помогает производить энергию и вырабатывать гемоглобин, вследствие чего имеет жизненно важное значение.

Растительные источники: рожь, кешью, миндаль, овес, соя, чечевица, черника, коричневый рис, капуста, кунжут, подсолнечник, фасоль, шпинат, тыква, клюква, лебеда, яблоки, киви.

3. Лизин

Отвечает за правильный рост и производство карнитина (важен для превращения жирных кислот в топливо и снижения уровня холестерина), помогает организму удерживать кальций для прочности костей, участвует в производстве коллагена. Его дефицит может привести к тошноте, усталости, истощению, остеопорозу.

Источники: бобы, кресс-салат, чиа, спирулина, авокадо, соя, петрушка, миндаль, чечевица, нут, кешью.

4. Метионин

Помогает в построении хрящевой и мышечной ткани, обновлении клеток, участвует в метаболизме серы. Недостаток вызовет артрит, повреждение тканей, плохое заживление ран.

Источники: растительное масло, семена подсолнечника и чиа, овес, морские водоросли, бразильские орехи, пшеница, рис, фасоль и другие бобы, инжир, лук, какао, изюм.

5. Фенилаланин

Выполняет важную роль, так как превращается в другую аминокислоту – тирозин, контролируя выработку гормонов. Недостаток способен привести к затуманенному сознанию, снижению энергии, депрессии, отсутствию аппетита, проблемам с памятью. Читайте нашу статью на смежную тему - : советы и действенные упражнения.

Источники: спирулина и другие морские водоросли, фасоль, рис, тыква, авокадо, арахис, лебеда, миндаль, инжир, зелень, большинство ягод, изюм, маслины.

6. Треонин

Усиливает здоровье иммунной системы, сердца, печени, центральной нервной систем, контролирует баланс белков в организме, отвечает за выработку энергии, рост клеток, состояние волос и ногтей.

Источники: кресс-салат и спирулина, зелень, семена конопли и чиа, мякоть тыквы, соевые бобы, семена кунжута, подсолнечника, растительное масло, авокадо, инжир, миндаль, изюм, лебеда и пшеница (проросшие зерна).

7. Триптофан

Известный своим расслабляющим действием, триптофан имеет жизненно важное значение для крепкой нервной системы, наряду с нормальным сном, исполняя функцию нейромедиатора.Триптофан помогает , что создает чувство счастья, снижает уровень стресса и депрессии.

Источники: овес и овсяные отруби, шпинат, кресс-салат, морские водоросли, соевые бобы, тофу, тыква, сладкий картофель и перец, петрушка, фасоль, спаржа, грибы, кабачки, зелень, авокадо, инжир, сельдерей и другая зелень, морковь, горох, яблоки, апельсины, лук, бананы, лебеда, чечевица.

8. Валин

Еще одна аминокислота, важная для роста и восстановления мышц, повышающая выносливость и общее здоровье мышечных клеток.

Источники: фасоль, шпинат, бобовые, семена кунжута и чиа, соя, брокколи, арахис, цельное зерно, авокадо, яблоки, инжир, проросшие зерна, клюква, апельсины, черника и абрикосы.

9. Гистидин

Помогает производить транспорт химических веществ в мозг, отвечает за здоровье мышц в пределах мышечных клеток, помогает при детоксикации. Недостаток гистидина может привести к артриту, сексуальной дисфункции,глухоте, а также сделать тело более восприимчивым к вирусу СПИДа.

Источники: кукуруза, рис, пшеница, морские водоросли, фасоль, дыня, гречиха, картофель, цветная капуста.
Рекомендуем, в дополнение, ознакомиться .

Здравствуйте, уважаемые читатели моего блога! Если вы серьезно относитесь к собственному здоровью, предлагаю вместе окунуться в мир органических соединений. Сегодня я расскажу про аминокислоты в продуктах питания, таблица которых будет прилагаться для удобства в статье. Так же поговорим о необходимой суточной норме для человека.

Многие из нас знают об этих органических соединениях, но не все смогут объяснить, что это и зачем они нужны. Поэтому, начнем с азов.

Аминокислоты – это структурные химические единицы, которые образуют белки

Последние участвуют абсолютно во всех физиологических процессах организма. Они формируют мышцы, сухожилия, связки, органы, ногти, волосы и являются частью костей. Замечу, что гормоны и ферменты, регулирующие рабочие процессы в организме, тоже представляют собой белки. Они уникальны по своей структуре и цели у каждого из них свои. Белки синтезируются из аминокислот, которые человек получает из пищи. Отсюда напрашивается интересный вывод – не белки самый ценный элемент, а аминокислоты.

Заменимые, условно незаменимые и незаменимые

Удивительно, но растения и микроорганизмы способны самостоятельно синтезировать все аминокислоты. А вот человек и животные на такое не подписаны.

Заменимые аминокислоты . Производятся нашим организмом самостоятельно. К ним относятся:

  • глютаминовая кислота;
  • аспарагиновая кислота;
  • аспарагин;
  • глютамин;
  • орнитин;
  • пролин;
  • аланин;
  • глицин.

Условно незаменимые аминокислоты . Наш организм их создает, но не в достаточных количествах. К ним относятся гистидин и аргинин.

Продукты богатые аминокислотами

Для полноценной работы нашего организма каждому человеку следует знать в каких продуктах содержатся органические соединения:

  • Яйца – они подарят нам BCAA, метионин и фенилаланин. Усваиваются на ура гарантируя белковую подкормку для организма.
  • Молочные продукты – обеспечивают человека аргинином, валином, лизином, фенилаланином и триптофаном.
  • Белое мясо – содержит BCAA, гистидин, лизин, фенилаланин и триптофан.
  • Рыба – отличный источник белка, который легко усваивается организмом. Богата метионином, фенилаланином и BCAA.

Многие уверены, что получить белок можно лишь из продуктов животного происхождения. Это неверно. Растительная пища тоже богата им и является источником органических соединений:

  • Бобовые – богаты фенилаланином, лейцином, валином, метионином, триптофан и треонином.
  • Крупы подарят организму лейцин, валин, гистидин и изолейцин.
  • Орехи и семена – обеспечивают аргинином, треонином, изолейцином, гистидином и лизином.

Отдельно хочется выделить киноа . Этот злак не так популярен, как привычные нам гречка и пшено, а зря.

Потому что на 100 грамм продукта приходится порядка 14 грамм белка. Поэтому киноа незаменима для вегетарианцев и прекрасно подойдет мясоедам. Не будем также забывать о православных постах, которые несколько раз в год запрещают есть мясо, рыбу и молочную продукцию.

Для удобства я предлагаю ознакомиться со списком продуктов в виде таблицы. Ее можно .

Суточная норма потребления аминокислот

Мы каждый день нуждаемся в органических соединениях, но бывают такие периоды в жизни, когда их надобность увеличивается:

  • во время занятий спортом;
  • в период болезни и выздоровления;
  • в период умственных и физических нагрузок.

И, наоборот, бывает, что потребность в них понижается в случае врожденных нарушений, которые связаны с усвояемостью аминокислот.

Следовательно, для комфорта и бесперебойной работы организма следует знать суточную норму потребления органических соединений. Согласно диетологическим таблицам она варьируется от 0,5 грамм до 2 грамм в сутки.

Усвояемость аминокислот зависит от типа тех продуктов, в которых они содержатся. Очень хорошо усваиваются органические соединения из белка яиц.

Тоже самое можно сказать про творог, рыбу и нежирное белое мясо. Также здесь огромную роль играет сочетание продуктов. Например, молоко и гречневая каша. В таком случае человек получает полноценный белок и комфортный для организма процесс его усвоения.

Нехватка и переизбыток аминокислот

Какие признаки могут означать нехватку органических соединений в организме:

  • слабая сопротивляемость инфекциям;
  • ухудшение состояния кожи;
  • задержка роста и развития;
  • выпадение волос;
  • сонливость;
  • анемия.

Помимо нехватки аминокислот в организме может возникнуть их переизбыток. Его признаки следующие: нарушения в работе щитовидной железы, заболевания суставов, гипертония.

Следует знать, что подобные проблемы могут возникнуть если в организме нехватка витаминов. В случае нормы, избыток органических соединений будет нейтрализован.

В случае нехватки и переизбытка аминокислот очень важно помнить, что определяющим фактором здесь является питание.

Грамотно составляя рацион, вы прокладываете себе путь к здоровью. Отметим, что такие болезни как сахарный диабет, нехватка ферментов или поражение печени. Они ведут к абсолютно неконтролируемому содержанию в организме органических соединений.

Как получить аминокислоты

Мы уже все поняли какую глобальную роль играют в нашей жизни аминокислоты. И поняли, сколь значимо контролировать их поступление в организм. Но, есть такие ситуации, когда стоит обратить на их примем особое внимание. Речь идет о занятиях спортом. Особенно, если мы говорим о профессиональном спорте. Тут зачастую спортсмены обращаются за дополнительными комплексами, не надеясь только на продукты питания.

Нарастить мышечную массу можно с помощью валина и лейцина изолейцина. Сохранить запас энергии на тренировке лучше при помощи глицина, метионина и аргинина. Но, все это будет бесполезным, если вы не будете питаться продуктами, которые богаты аминокислотами. Это важная составляющая активного и полноценного образа жизни.

Подводя итоги можно сказать – содержание аминокислот в пищевых продуктах способно удовлетворить потребность в них для всего организма. Не считая профессионального спорта, когда на мышцы идут колоссальные нагрузки, и они нуждаются в дополнительной помощи.

Или же в случае проблем со здоровьем. Тогда тоже лучше дополнить рацион специальными комплексами органических соединений. Их, кстати, можно заказать в интернете или же приобрести у поставщиков спортивного питания. Я хочу, чтобы вы запомнили в чем самое важное – в вашем ежедневном рационе. Обогащайте его продуктами богатыми аминокислотами и соответственно белками. Не зацикливайтесь только на молочной продукции или мясе. Готовьте разнообразные блюда. Не забывайте, что растительная пища тоже обогатит вас нужными органическими соединениями. Только в отличии от животной пищи, не оставит ощущение тяжести в животе.

Я говорю до свидания, уважаемые читатели. Делитесь статьей в социальных сетях и ждите новых постов.

Аминокислоты

UttУМ

Sm - о

С >

Puc. 7-Z Структурные символы аминокислот по Веллнеру и Мейстеру.

Принятая система сокращений помогает наглядно изображать схемы пептидных синтезов.

Рассмотренные сокращения (и сокращения, которые будут употребляться в дальнейшем) соответствуют правилам, принятым Международным союзом по чистой и прикладной химии (IUPAC) и Международным союзом по биохимии (ШВ). Кроме того, введены также однобуквенные символы, которые применяются для изображения структур белков и длинных пептидных последовательностей, а также для расчетов с помощью ЭВМ.

Первая система сокращений для аминокислот и пептидов была опубликована Бранном и Эдсалом в 1947 г. Система графического изображения аминокислот, предложенная Веллнером и Мейстером, учитывает структурные особенности аминокислотных цепей (рис. 1-2).

1.2. Природные аминокислоты

В настоящее время известно около 180 различных природных аминокислот. Особенно много аминокислот выделено за последние годы после того, как благодаря развитию методов очистки и успехам аминокислотного анализа были предприняты систематические исследования животного и растительного материала.

Первой выделенной природной аминокислотой был аспарагин. Он был изолирован в 1806 г. Вокелином и Робике из сока спаржи. Эта аминокислота относится к 20 аминокислотам, являющимся основными составными частями животных и растительных белков, причем их встраивание в молекулу белка регулируется информацией генетического кода. Этим так называемым «протеиногенным» аминокислотам посвящен следующий раздел.

1.2.1. Протеиногенные аминокислоты

Аминокислоты, участвующие в образовании белков, можно классифицировать по разным признакам. По положению изоэлектрической точки различают кислые, основные и нейтральные аминокислоты, по строению боковой цепи R - алифатические, ароматические и гетероциклические. Гидроксиаминокислоты содержат дополнительно ОН-группы, серусодержащие аминокислоты имеют в боковой цепи тиольные или тиоэфирные группы. Самостоятельную группу образуют иминокислоты пролин и гидроксипролин, у которых вторичная аминогруппа -NH- входит в состав пирролидинового кольца.

По полярности боковой цепи R различают полярные и неполярные аминокислоты. К неполярным аминокислотам относятся глицин и аланин, а также гидрофобные аминокислоты - валин, лейцин, изолейцин, пролин, метионин и фенилаланин. Кполярным аминокислотам причисляют серии, треонин, цистеин, аспарагин, глутамин и триптофан (нейтральные соединения), аспарагиновую и глутаминовую кислоты и тирозин (кислые гидрофильные аминокислоты), а также лизин, аргинин и гистидин (основные гидрофильные аминокислоты). Гидрофильные полярные соединения увеличивают растворимость пептидов и белков в водных системах, в то время как цейтрально-полярные аминокислоты ответственны за каталитическую активность ферментов. В противоположность неполярным гидрофобным аминокислотам полярные аминокислоты обычно находятся на поверхности молекулы белка.

По строению соединений, получающихся при расщеплении углеродной цепи протеиногенных аминокислот, различают глюкопластичные (глюкогенные) икетопластичные (кетогенные) аминокислоты. Глюкопластичные аминокислоты - глицин, аланин, серии, треонин, валин, аспарагиновая кислота, глутаминовая кислота, аргинин, гистидин, метионин и пролин. При недостатке углеводов в организме они через щевелевоуксусную кислоту и фосфоэнолпировиноградную кислоту превращаются в глюкозу (глюконеогенеэ) или гликоген. Единственной кетопластичной аминокислотой является лейцин. Изолейцин, тирозин и фенилаланин могут быть и глюко-, и кетопластичными.

Кроме того, биохимики различают заменимые и незаменимые аминокислоты, смотря по тому, могут ли они образоваться в организме или должны быть доставлены с пищей.

Незаменимые аминокислоты . Растения и некоторые микроорганизмы могут производить все аминокислоты, нужные им для синтеза клеточных белков. Животные организмы способны синтезировать только 10 протеиногенных аминокислот. Остальные 10 не могут быть получены с помощью биосинтеза и должны постоянно поступать в организм в виде пищевых белков. Отсутствие их в организме ведет к угрожающим жизни явлениям (задержка роста, отрицательный азотный баланс, расстройство биосинтеза белков и т. д.). Розе и сотр. предложили для этих аминокислот название «незаменимые аминокислоты» (HAK). В табл. 1-2 приведены незаменимые для организма человека аминокислоты и минимальная суточная потребность в них.

Таблица 1-2. Минимальная суточная потребность организма человека в незаменимых аминокислотах (HAK)

Аминокислота

Потребность ин-

Аминокислота

Потребность массы тела

дивидуума, г

Взрослый организм

не нуждается

Некоторые незаменимые аминокислоты, как, например, метионин, могут вводиться в организм животного в форме DLИЛИ D-соединений, но скорость их усвоения значительно ниже по сравнению с аминокислотами L- ряда. Сначала происходит окислительное дезаминирование с помощью специфической D-аминокислотной оксидазы. Затем полученная а- кетокислота стереоспецифически переаминируется в L-аминокислоту. Вообще говоря,HAK можно заменить промежуточными продуктами их биосинтеза, например соответствующими кетокислотами.

Потребность в HAK, определяемая по методу азотного баланса, различна для разных яидов животных и в большой степени зависит от физиологического состояния организма. Так, например, необходимые молодым млекопитающим во время роста незаменимые аминокислоты аргинин и гистидин для поддержания обмена веществ взрослой особи не нужны. Обе эти аминокислоты наряду с другими входят в состав активных центров многих ферментов. Они служат для узнавания и связывания отрицательно заряженных субстратов и кофакторов . Недостаток аргинина может быть причиной импотенции мужской особи.

Во время беременности повышается потребность женского организма в триптофане и лизине, у грудных детей - в триптофане и изолейцине. Особенно увеличивается потребность организма в незаменимых аминокислотах после больших потерь крови, ожогов, а также во время других процессов, сопровождаемых регенерацией тканей.

Для птиц незаменимой аминокислотой является глицин. У жвачных животных биосинтез всех HAK производится микроорганизмами кишечного тракта, при этом необходимы в достаточном количестве соединения азота (аммонийные соли, мочевина). Для человека обеспечение организма HAK - важнейшая задача питания. Высокую «биологическую ценность» имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат HAK не только в достаточном количестве, но и в необходимом для человека соотношении. Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). Важными компонентами смешанного корма являются рыбная и соевая мука. В белке соевой муки и в белке кормовых дрожжей мало метионина, в кукурузе - лизина и триптофана. Дефицит может компенсироваться добавлением недостающей аминокислоты или подходящей комбинацией других белков.

В табл. 1-3 приведено содержание HAK в некоторых важных природных белках. Бросается в глаза высокое содержание лизина в дрожжах, культивируемых на нефтепродуктах, бедных, однако, метионином.

В гидролизатах некоторых белков кроме протеиногенных аминокислот находятся и другие аминокислоты, появление которых обусловлено изменением боковых цепей после биосинтеза белка (разд. 3.6.2.1). Таковыми являются 4-гидроксипролин и 5-гидроксилизин коллагена, пиридиновые аминокислотыдезмозин иизодезмозин эластина, а также N-метилированный лизин некоторых мышечных белков.

Таблица 1-3. Содержание HAK в белках различного происхождения

пшеничная

говядина

кормовые

1.2.2. Непротеиногенные аминокислоты

В растениях и микроорганизмах, в частности, встречаются аминокислоты, не принимающие участия в образовании белков. Они образуются во время повышенной потребности в азоте, например при образовании почек или прорастании семян, или же запасаются в виде растворимых веществ. Многие аминокислоты, образовавшиеся при обмене веществ низших организмов, имеют свойства антибиотиков. Они действуют как аминокислотыантагонисты, т, е. являются конкурентными ингибиторами при обмене веществ, задерживая определенные ступени биосинтеза аминокислот или способствуя образованию ложных последовательностей при биосинтезе белков.

Между непротеиногенными и протеиногенными аминокислотами иногда существует близкое структурное родство. Так, аланину соответствуют свыше 30 производных, различающихся заместителями водородного атома метильной группы. Заместителем может быть аминогруппа, как, например, у

а, ß-диаминопропионовой кислоты H2 N-CH2 -CH(NH2 )-COOH, существующей в растениях семейства мимозовых; может образоваться циклопропановое кольцо, как у найденной в различных фруктах аминокислотыгипоглицина У4(1) И 1-аминоциклопропанкарбоновой кислоты (2).

С - - С Н - СМ 2 ~СН-СООН

СМа

Стизолобиновая кислота (3) в проростках гороха содержит пироновое кольцо, гормон щитовидной железытироксин (4) - иодзамещенную ароматическую боковую цепь:

сн2 -сн-соон

К производным аланина принадлежит изомерный 0-аланин H2 N-CH2 - -СН2 -СООН (основная составляющая кофермента А) и необходимый для образования меланина 3,4-дигидроксифенилаланин, или ДОФА (5). ДОФА существует в свободном состоянии в фасоли. Этой аминокислоте приписывают побочное действие усиливать половое возбуждение, которое бывает после употребления фасоли. Большое значение имеет ДОФА при лечении болезни Паркинсона. Из других производных аланина отметим ß-пиразолил- аланин (6) и ь-3-(2-фуроил)аланин (7) из гречихи и ракитника.

Производное глицина саркозин CH3 -NH-CH2 -COOH - промежуточное звено метаболизма аминокислот; входит в состав актиномицина. а-(2-Ими- ногексагидро-4-пиримидил)глииин (8) является структурной единицей химостатина - тетрапептида микробного происхождения (эта группа тетрапептидов.- ингибиторы протеаз химотрипсина и папаина). Изолированная из

Streptomyces sviceus а-амино-3-хлоро-2-изоксалш-5-уксусная кислопш(9) - антибиотик с противоопухолевым действием.

/Представителями цистеинового ряда являются дьенколовая кислота (10) из восточноазиатских бобов, содержащийся в волосах и шерстилантионин (11),аллиин (12) лука, гомолог метионинаэтионин H5 C2 -S-CH2 -CH2 - -CH(NH2)-COOH, а также часто встречающийся в грибахгомоцистеин HS-CH2 -CH2 -CH(NH2)-COOH.

Н К S-CH,-CH(NHj)-COOH

< CHj-CH(NH,)-COOH

Л $-СН2 -СН(НН2 )-СООН

CHa -CH(NHj)-COOH

CHj-CH-CHj-S-CHj-CHfNHjbCOCm

Из соединений, принадлежащих к ряду аминомасляной кислоты, интересны гомосерин HOCHJ - CHJ - QNHJJ - COOH изPisum sativum, содержащаяся в полимиксинах ь-а, у-диаминамасляная кислота H2 N- -CH2 -CH2 -CH(NH2)-COOH, а также антибиотик ъ-2-амино-4-(4"-амино-

22 Природные аминокислоты

2",5"-циклогексадиенил)масляная кислота (13) и составная часть одного из пептидных антибиотиков 1.-2-амино-4-(метилфосфино)масляная кисло-

та (14).

Канаванин как конкурентный ингибитор препятствует проникновению аргинина через клеточные мембраны и может встраиваться в белки вместо аргинина.

Представители ряда иминокислот - это распространенная в бобовых и микроорганизмах пипеколиновая кислота (17), а также встречающаяся в лилейных и агавах азетидин-2-карбоновая кислота (18).

Антагонист пролина азетидин-2-карбоновая кислота, - токсин, входящий в состав эндемического ландыша. Действие этого токсина основано на том, что аппарат биосинтеза белка не может отличить пролин от азетидинкарбоновой кислоты. Сам же ландыш защищен от неконтролируемого встраивания этой кислоты в собственные белки благодаря наличию высокоспецифичной пролил-тРНК-синтетазы.

К ряду иминокислот принадлежит также ь-транс-2,3-дикарбоксиазири- дин (19) из культурыStreptomyces. Антибиотик о-циклосерин (20) действует как антагонист D-аланина и препятствует синтезу D-аланина, необходимого для построения стенок бактериальных клеток.

Диетологи до некоторых пор считали, что полноценные белки (то есть белки содержащие все 8 незаменимых аминокислот, которые не вырабатываются человеческим организмом) находятся только в мясе, рыбе, яйцах и молочных продуктах и что все растительные белки якобы неполноценны (из-за отсутствия в них одной или нескольких незаменимых аминокислот).

Но исследования, проведённые в Каролинском институте (Швеция) и в институте Макса Планка (Германия), показали, что большинство овощей, фруктов, семян, орехов и зерновых являются источниками полноценных белков, которые к тому же легче усваиваются организмом, чем белки животного происхождения, и в отличие от животных белков, не содержат токсических примесей. Употребление в пищу в достаточном количестве натуральных продуктов полностью исключает возможность недостатка белка в организме. Не следует забывать, что растительный мир в конечном счёте является источником всех видов белка.

Вегетарианцы получают белок непосредственно из этого источника, а не "через вторые руки" (чужую систему пищеварения), как те, кто питается мясом травоядных животных. Одна из основных причин, по которым большинство людей сторонится вегетарианства - боязнь вызвать в организме дефицит белков. "Как можно получить все необходимые качественные белки, питаясь исключительно растительными и молочными продуктами?" - вопрошают такие люди.

Прежде чем ответить на этот вопрос, нелишне вспомнить, что такое, собственно белок. В 1838 году голландский химик Ян Мюльдщер получил вещество, содержащее азот, углерод, водород, кислород и в меньших количествах - другие химические элементы. Это соединение, лежащее в основе всего живого на Земле, ученый назвал "первостепенный". Впоследствии была доказана действительная незаменимость белка: для выживания любого организма должно потребляться определенное его количество. Как оказалось, причина этого - аминокислоты, "первоисточники жизни", из которых образуются белки.

Всего известно 22 аминокислоты, 8 из которых считаются основными /они не вырабатываются организмом и должны потребляться вместе с пищей/. Вот эти 8 аминокислот: лецин, изолецин, валин, лизин, трипофан, треонин, метионин, фенилаланин. Все они должны входить в соответствующих пропорциях в сбалансированный питательный рацион. До середины 1950-х годов мясо рассматривалось как наилучший источник белков: ведь в него входят все 8 основных аминокислот, причем как раз в нужных пропорциях.

Однако сегодня специалисты в области питания пришли к выводу, что растительная пища в качестве источника белков не только не хуже мяса, но даже и превосходит его. В составе растений также имеются все 8 аминокислот. Растения обладают способностью синтезировать аминокислоты из воздуха, почвы и воды, но животные могут получать белки только через растения: либо поедая их, либо поедая животных, питавшихся растениями и усвоивших все их питательные вещества.

Кроме этого, здоровая микрофлора человека (у многих людей она является патогенной гнилостной культурой, выросшей на мясной пище) эффективно перерабатывает клетчатку в белок отличного качества. Вы никогда не задумывались о том, каким образом коровы, поедая бедную белком траву, строят свое мощное тело и еще ухитряются давать высокобелковый продукт - молоко?

Стало быть, у человека есть выбор: получать их напрямую через растения или обходным путем, ценой больших экономических и ресурсных издержек - из мяса животных. Таким образом, мясо не содержит никаких аминокислот кроме тех, которые животные получают из растений - и сам человек может получать их из растений. Более того, растительная пища имеет еще одно важное преимущество: вместе с аминокислотами вы получаете вещества, необходимые для наиболее полного усвоения белков: углеводы, витамины, микроэлементы, гормоны, хлорофилл и т.д.

В 1954 г. группа ученых Гарвардского университета провела исследования и установила: если человек одновременно потребляет овощи, крупы, молочные продукты - он с лихвой покрывает ежедневную норму белка. Они заключили, что весьма затруднительно, придерживаясь разнообразной вегетарианской диеты, не превысить этот показатель. Несколько позднее, в 1972 г., доктор Ф.Стеар провел собственные исследования потребления белков вегетарианцами. Результаты оказались потрясающими: большинство испытуемых получили свыше двух норм белка! Так был развенчан " миф о белках".

Доктор Пааво Айрола, ведущий специалист в области диетологии и естественной биологии, утверждает: "Двадцать лет назад считалось, что ежедневная норма потребления белка составляет 150 г, а сегодня официально признанная норма снизилась до 45 г. Почему? Благодаря исследованиям, проведённым в ряде стран, теперь достоверно известно, что организм не нуждается в большом количестве белка и что ежедневная норма его составляет не более 30-45 г. Избыточное потребление белков не только не бесполезно, но и приносит большой вред организму человека, более того, оно может стать причиной таких серьёзных болезней, как рак и сердечно-сосудистые заболевания. Чтобы получить 45 г белка в день, совсем не обязательно есть мясо. Полноценная вегетарианская диета, состоящая из злаков, бобовых, орехов, овощей и фруктов, вполне обеспечивает человека необходимым количеством белка".

Избыточное потребление белка снижает работоспособность человека. Доктор Ирвинг Фишер из Йельского университета провёл серию экспериментов, в которых показал, что вегетарианцы имеют вдвое большую выносливость, чем те, кто употребляет в пищу мясо. Когда же он уменьшил потребляемое невегетарианцами количества белка на 20%, их работоспособность возросла на 33%. В ряде других аналогичных исследований было установлено, что правильно подобранные вегетарианские продукты содержат больше питательных веществ, чем мясо.

О незаменимых аминокислотах

Еще совсем недавно в известной книге "Популярно о питании" (М., 1989 г.) можно было прочесть следующее: "Мясо и мясная продукция широко используются в питании человека. Они являются одним из основных источников полноценных белков, жиров, витаминов, минеральных веществ. В мясе содержатся незаменимые аминокислоты. Молодое мясо очень полезно детям". Подобная парадигма была очень популярна в СССР в середине XX столетия. Однако за последние годы ученые-медики обнаружили, что употребление в пищу мяса является главной причиной смертности после алкоголизма и курения. Кроме того, проводимые исследования неопровержимо доказали, человеческий организм не в состоянии справиться с избытком жиров и холестерина, что приводит к ряду серьезных заболеваний.

Так ли уж незаменимо мясо? В настоящее время диетологией признано, что все незаменимые аминокислоты, а также витамины и минеральные вещества, могут быть получены из растительных продуктов. Однако, бывшие заблуждения науки об отсутствии незаменимых аминокислот в растениях успели сформироваться в распространённый стереотип, и нередко цитируются в СМИ и в настоящее время, со ссылками на советские источники XX столетия.

В составе растений также имеются все 8 аминокислот.
Растения обладают способностью синтезировать аминокислоты из воздуха, почвы и воды. Поэтому перед каждым стоит выбор: получить аминокислоты напрямую из растений или получить их из мяса убитого животного вместе с «подарком» из насыщенных жиров, холестерина и разнообразной химии, которой животных кормят для быстрого роста перед убоем.

Приведу здесь содержание незаменимых аминокислот в еде:
Валин содержится в зерновых, мясе, грибах, молочных продуктах, арахисе, сое
Изолейцин содержится в миндале, кешью,турецком горохе (нут), чечевице, ржи, большинстве семян, сое.
Лейцин содержится в буром рисе, чечевице, орехах, большинстве семян.
Лизин содержится в молочных продуктах, пшенице, орехах.
Метионин содержится в молоке, бобах, фасоли, чечевице и сое.
Треонин содержится в молочных продуктах, в умеренных количествах в орехах и бобах.
Триптофан содержится в овсе, бананах, сушёных финиках, арахисе, кунжуте, кедровых орехах, молоке, йогурте, твороге,
Фенилаланин содержится в соевых бобах, яйцах, твороге, молоке.
Аргинин содержится в семенах тыквы, арахисе, кунжуте, йогурте, швейцарском сыре.

Любая несбалансированная диета, в том числе вегетарианская, может нанести вред здоровью.
Рассмотрим подробнее вопрос, связанный с содержанием белка, как наиболее часто встречающийся.
Сегодня официально признана норма 45 граммов белка в день. Почему? Благодаря исследованиям, проведенным в ряде стран достоверно известно, что организм не нуждается в большом количестве белка. Избыточное его употребление не только бесполезно, но и приносит большой вред организму человека. Столь часто рекомендуемая норма белка в день (2,5г. На 1 кг веса тела) – это норма для спортсменов!, то есть людей, жизнь которых постоянно сопряжена с тяжелыми физическими нагрузками. Она не допустима для людей, работающих в офисе.
Интересен так же факт, что именно в литературе для спортсменов вы редко найдете совет «поесть мясца». Вот например отрывок из книги "ПИТАНИЕ ДЛЯ СПОРТСМЕНОВ" - М. В. Арансон: « Мясо - отдельный вопрос. Вообще говоря, белковые волокна мяса не предназначены для поедания. Их задача близка нам как спортсменам: вырабатывать силу. Поэтому они жесткие, белок пронизан поперечными связями, и переваривать его трудно. Денатурация при варке несколько разрушает поперечные связи, но все же мясо усваивается гораздо труднее, чем молоко. А наш пищеварительный тракт скорее приспособлен для усвоения растительной пищи».

Если же внимательно сравнить содержание белка в различных продуктах питания, то становится очевидным, что миф о необходимости поедания мяса, рыбы ради белка родился от незнания. Например, самым «белочным» продуктом является сыр. Причем белок из сыра усваивается практически полностью.

Белок содержится во многих растительных продуктах. Особенно много его в бобовых и зерновых, а также в орехах и зелени. Сочетание зерновых и бобовых обеспечивает полный набор незаменимых аминокислот, а соя уникальна тем, что содержит абсолютно все необходимые человеку аминокислоты.

Жирные кислоты, в том числе необходимые омега-3 и омега-6, содержатся во всех растительных маслах (особенно ценны рапсовое, конопляное, льняное масло, а также масло из зародышей пшеницы). Многие орехи - источник ценных жиров (грецкие орехи особенно богаты кислотой омега-3).
Железо содержится в бобовых (особенно много его в чечевице и сое), орехах и семенах. Особенно много цинка в цельном зерне, зародышах пшеницы, арахисе, сушёных финиках, орехах и семенах. Кальций, кроме молочных продуктов, легко получить тоже из бобовых, особенно сои. Йодом особенно богаты водоросли,но можно просто употреблять йодированную соль. Единственный витамин, который отсутствует в растительных продуктах - B12 - тем не менее содержится в ферментированных продуктах, вытяжке дрожжей, водорослях, и, например, в проростках люцерны. Лакто-ово-вегетарианцы получают достаточное количество В12 из молочных продуктов и яиц.
Таким образом можно с уверенностью утверждать, что растительная пища превосходит мясо по количеству витаминов, микроэлементов и отсутствию вредных веществ. А если добавить в свой рацион ряд молочных продуктов, то можно получить разнообразное и очень здоровое меню.
Удачи!

В статье использованы материалы Ильичева Т.С., кандидат медицинских наук "Вред мяса"