У мухи уникальный мозг. Сколько глаз у мухи или пчелы

Насекомые. Мы с детства любовались красотой бабочки, ловили «божьих коровок», страдали от укусов комаров. И даже став взрослыми, боимся ос и пауков. Этот класс животных на латыни он звучит очень красиво «insecta» - самый многочисленный. Если рассматривать только описанные виды, то их около миллиона. На самом деле их намного больше. Сейчас ученые склоняются к мнению, что всего на нашей планете насчитывается около восьми миллионов видов насекомых. Мириады крошечных созданий ползают, летают, жужжат, стрекочут и смотрят на мир своими глазами.

Как же видят эти миниатюрные создания? Глаза насекомых, очень важный орган. У взрослых особей многих видов глаза занимают большую часть головы. Если их рассматривать с большим увеличением, то они покажутся похожими на мелкую решетку или сеточку. Это потому, что каждый глаз состоит из множества маленьких глазков. Их называют – фасеточными. Такой крошечный глазок-фасетка, называется омматидий. Длинные узкие конусы, на окончании которых расположены линзы в виде шестигранника, плотно прилегают друг к другу. Оси их, благодаря тому, что глаз круглый, расходятся лучеобразно. И не смотря на то, что у одного омматидия возможность обзора всего от одного до шести градусов, все вместе, а их у разных видов от 100 до 30 000, дают возможность глазу, охватывает предмет в целом. Изображение получается составленным из разных кусочков, как мозаика.

Мелких деталей насекомые не различают. Четкость изображения нарушается из за того, что оптические оси омматидий расходятся под углами 1 – 6 градусов. Видят насекомые не далеко. Всего на расстояние нескольких метров. Зато, когда солнца на небосклоне уже не видно, благодаря способности определять плоскость поляризации света, они хорошо ориентируются. Да и мелькания или мигания света они различают с частотой 250 - 300 герц. Для сравнения мы, люди, способны это делать с частотой около 50 герц.

Если говорить о том, различают ли эти крохи цвета, то это да. Конечно же, тоже не так как люди. Больше всего в этом плане были исследованы пчелы. Так из многочисленных опытов ученые узнали, что пчелы видят мир, окрашенный в четыре цвета. Красно–желто-зеленый. Да, да. Именно так. Не каждый отдельно, а неведомый нам цвет, слитый воедино. Еще сине-зеленый, сине-фиолетовый и ультрафиолетовый. Ультрафиолет различают и другие насекомые. Среди них некоторые бабочки, муравьи. Досконально этот вопрос не изучен. Многое только предстоит узнать.

Это еще не все. На лобно-теменной части головы насекомых в виде треугольника расположены еще три глазка. У некоторых два. Диаметр их от 0,03 до 0,5 миллиметра. Они намного проще фасеточных. Но играют не менее важную роль. Эти глазки увеличивают общую светочувствительность, то есть помогают насекомому ориентироваться по отношению к источнику света. Если глазки заклеить, то насекомое будет менее чувствительно к свету.

Изучая строение, привычки и повадки этих удивительных маленьких существ, все больше убеждаемся в том, как неповторим и уникален окружающий нас мир. И как бережно к нему надо относиться, чтобы не нарушить тот баланс, которым окружил нас Создатель.

Мухи живут меньше, чем слоны. В этом нет никаких сомнений. Но, с точки зрения мух, действительно ли их жизнь представляется им гораздо короче? Таким, по сути, был вопрос, который поставил Кевин Гили из Тринити-колледжа в Дублине в своей статье, только что опубликованной в Animal Behaviour. Его ответ: очевидно, нет. Эти небольшие существа мухи с быстрым метаболизмом видят мир в замедленном режиме. Субъективное переживание времени является по сути лишь субъективным. Даже отдельные люди, которые могут обмениваться впечатлениями, разговаривая друг с другом, не могут знать наверняка, совпадает ли их собственный опыт с опытом других людей.

Мухи — зрение мухи и почему ее трудно убить

Но объективный показатель, который, вероятно, коррелирует с субъективным переживанием, все-таки существует. Он называется критической частотой слияния мерцание CFF — critical flicker-fusion frequency, и является самой низкой частотой, при которой мерцающий свет выдается постоянным источником освещения. Он измеряет то, как быстро глаза животных могут обновлять изображения и таким образом обрабатывать информацию.

Для людей средней критической частотой мерцания является 60 герц (то есть 60 раз в секунду). Именно поэтому частота обновления изображения на телевизионном экране, как правило, установлена на этом значении. Псы имеют критическую частоту мерцания в 80 Гц, и поэтому, наверное, кажется, что им не нравится смотреть телевизор. Для собаки телепрограмма выглядит как множество фотокадров, которые быстро меняют собой друг друга.

Высшая критическая частота мерцания должна означать биологические преимущества, поскольку она позволяет быстрее реагировать на угрозы и возможности. Мух, имеющих критическую частоту мерцания в 250 Гц, как известно, трудно прибить. Свернутая газета, которая, как представляется человеку, движется во время удара быстро, мухам кажется такой, будто она движется в мелассе.

Ученый Кевин Гили предположил, что основными факторами, ограничивающими критическую частоту мерцания у животного, является ее размеры и скорость обмена веществ. Небольшой размер означает, что сигналы в мозг проходят меньшее расстояние. Высокая скорость обмена веществ означает, что для их обработки доступно больше энергии. Поиск в литературе, однако, показал, что никто раньше не интересовался этим вопросом.

К счастью, для Гили, этот самый поиск также показал, что многие люди изучали критическую частоту мерцания у большого количества видов по другим причинам. Многие ученые так же изучали скорости обмена веществ у многих тех же видов. Зато данные о размерах видов общеизвестны. Таким образом, все, что ему нужно было сделать — это построить корреляции и применить с пользой для себя результаты других исследований. Что он и сделал.

Для облегчения задачи к своему исследованию ученый взял данные, касающиеся только позвоночных животных — 34 видов. На нижнем конце шкалы оказался европейский угорь, с критической частотой мерцания в 14 Гц. За ним сразу идет кожистая черепаха, с критической частотой мерцания в 15 Гц. Рептилии вида туатара (гаттерия) имеют CFF в 46 Гц. Акулы-молоты вместе с людьми имеют CFF в 60 Гц, а желтоперые птицы, как и псы, имеют CFF в 80 Гц.

Первое место занял суслик золотистый, с CFF в 120 Гц. И когда Гили построил графики зависимости CFF от размера животного и скорости обмена веществ (которые не являются, что нужно признать, независимыми переменными, поскольку у малых животных, как правило, скорость обмена веществ выше, чем у крупных), он нашел именно те корреляции, которые он и предсказал.

Получается, что его гипотеза — что эволюция заставляет животных видеть мир в как можно более медленном движении — выглядит правильной. Жизнь мухи может показаться людям кратковременной, но с точки зрения самих двукрылых, они могут доживать до глубокой старости. Помните об этом в следующий раз, когда попробуете (неудачно) прибить очередную муху.

У многих насекомых сложные фасеточные глаза, состоящие из многочисленных отдельных глазков - омматидий. Насекомые видят мир так, будто он собран из мозаики. Большинство насекомых являются «близорукими». Отдельные из них, как, например, муха диопсиду, видят на расстоянии 135 метров. Бабочка - а она имеет самое острое зрение среди наших насекомых - не видит дальше двух метров, а пчела ничего не видит уже на расстоянии одного метра. Насекомые, глаза которых состоят из большого количества омматидий, способны замечать малейшее движение вокруг себя. Если объект изменяет свое положение в пространстве, то его отражение в составных глазах также меняет место расположения, перемещаясь на некоторое количество омматидий, и насекомое это замечает. Сложные глаза играют огромную роль в жизни хищных насекомых. Благодаря такому строению органов зрения насекомое может сфокусировать глаза на нужном объекте или наблюдать за ним только частью сложного глаза. Интересно, что ночные бабочки ориентируются с помощью зрения и всегда летят к источнику света. Азимут их глаз по отношению к лунному свету всегда меньше 90°.

Цветовое зрение

Для того, чтобы видеть определенный цвет, глаз насекомого должен воспринимать электромагнитные волны определенной длины. Насекомые хорошо воспринимают как ультракороткие, так и ультрадолгие световые волны и цвета спектра, видимого человеческим глазом. Известно, что человек видит цвета от красного до фиолетового, однако его глаз не способен воспринимать ультрафиолетовое излучение - волны, которые длиннее красных и короче фиолетовых. Насекомые видят ультрафиолетовый свет, но не различают цвета красного спектра (только бабочки видят красный цвет). Например, цветок мака воспринимается насекомыми как бесцветный, зато на других цветах глаза насекомые видят такие ультрафиолетовые узоры, которые человеку даже трудно представить. Насекомые ориентируются по этими узорам в поисках нектара. На крыльях бабочек также есть ультрафиолетовые рисунки, которые невидимы для человека. Пчелы различают такие цвета: голубовато-зеленый, фиолетовый, желтый, синий, пчелиный пурпурный и ультрафиолетовый. Насекомые также способны ориентироваться при помощи поляризованного света. При прохождении сквозь атмосферу Земли луч света преломляется, и в результате того, что возникает поляризация света, на разных участках неба длина волн разная. Благодаря этому, даже когда солнца не видно из-за туч, насекомое точно определяет направление.

Интересные факты

У личинок некоторых жуков развиты простые глазки, благодаря которым они хорошо видят и спасаются от хищников. У взрослых жуков развиваются сложные глаза, однако зрение у них не лучше, чем у личинок. Сложные фасеточные глаза есть не только у насекомых, но и в некоторых ракообразных, таких как крабы и омары. Вместо хрусталиков в омматидиях в них расположены миниатюрные зеркальца. Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Число мелких глазков у насекомых (в зависимости от вида) варьирует от 25 до 25 000. Глаза насекомых, например, жуков, которые плавают на поверхности воды, разделенные на две части: верхняя часть служит для того, чтобы видеть в воздухе, а нижняя - под водой. Фасеточные глаза насекомых видят не так хорошо, как глаза птиц и млекопитающих, поскольку они не способны передавать мелкие детали (у насекомых может быть от 25 до 25 000 фасеток). Зато они хорошо воспринимают объекты, которые двигаются, и регистрируют даже те цвета, которые недоступны для человеческого глаза.

Каждый, кто хоть раз пытался прихлопнуть муху, прекрасно понимает, что задача эта не из легких. Одни списывают промахи на мгновенную реакцию мух, другие – на остроту ее зрения и панорамное видение. Надо сказать, что в равной степени правы и те, и другие. Летает муха действительно быстро, снимается с места – моментально, поэтому и поймать ее так сложно.

Но главная причина кроется как раз в зрении этого насекомого, а также в строении и количестве его глаз.

Расположены органы зрения мухи обыкновенной по бокам головы, где очень сложно не заметить огромные выпуклые глаза насекомого. Глаз этого насекомого обладает сложным строением и называется фасеточным (от французского слова fasette – грань). Дело в том, что орган зрения образован как раз из таких 6-гранных единиц – фасеток, внешне напоминающих по форме медовую соту (каждая такая часть глаза мухи отлично просматривается под микроскопом). Эти единицы называются омматидиями.

В глазу мухи находится около 4 тысяч таких фасеток, но это не предел: у многих других насекомых их гораздо больше. Например, у пчел – 5 000 фасеток, у некоторых бабочек – до 17 000, а у стрекоз количество омматидиев близится к 30 000.

Каждая из этих 4 тысяч фасеток способна видеть только маленькую часть от целого изображения, а в общую цельную картинку этот «пазл» собирает мозг насекомого.

Самый древний экземпляр мухи, возраст которой около 145 миллионов лет, нашли в Китае.

Как мухи видят

В среднем острота зрения мух превышает человеческие возможности в 3 раза.

Т. к. глаза мух крупные и выпуклые, состоящие из омматидиев (фасеток) со всех сторон поверхности глаза, то это строение спокойно позволяет насекомому видеть сразу во всех направлениях – в стороны, вверх, вперед и назад. Такое панорамное зрение (его еще называют круговым) и помогает мухе вовремя заметить опасность и ретироваться прочь сразу же, поэтому ее так сложно прихлопнуть. Более того, муха не просто физически способна видеть в разных направлениях сразу, но и целенаправленно смотреть вокруг, словно обозревая все пространство вокруг себя одновременно.

Именно многочисленные омматидии позволяют мухе следить за мелькающими и очень быстро движущимися предметами без потери четкости изображения. Условно говоря, если зрение человека способно улавливать 16 кадров в секунду, то муха – 250 -300 кадров/сек. Это качество необходимо мухам не только для улавливания движений со стороны, но и для ориентации и качественного видения при быстром полете.

Что касается цвета окружающих предметов – мухи видят не только основные цвета, но и тончайшие их оттенки, включая ультрафиолет, который человеку видеть природой не дано. Получается, что муха видит окружающий мир более радужным, нежели люди. Кстати, объем предметов эти насекомые тоже видят.

Количество глаз

Как уже говорилось, 2 больших фасеточных глаза расположены по бокам головы мух. У самок расположение органов зрения несколько расширено (разделено широким лбом), у самцов же глаза находятся немного ближе друг к другу.

Но на средней линии лба, за сложными фасеточными глазами, находятся еще 3 обычных (не фасеточных) глаза для дополнительного видения. Чаще всего они включаются в работу, когда надо рассмотреть предмет вблизи, т. к. сложный глаз с идеальным зрением в этом случае не так необходим. Получается, что всего у мух 5 глаз.

Как видят насекомые ?

Муха резко уворачивается от летящего на нее предмета, бабочка выбирает определенный цветок, а гусеница ползет к самому высокому дереву. У насекомых, как у людей тоже есть органы зрения, но видят и воспринимают они мир по-особому. Своим исключительным зрением, недоступным для человека. Некоторые насекомые могут определять только светлое и темное, а кто-то хорошо разбирается в оттенках. Итак, как же насекомые видят мир?

Способы видеть мир у насекомых

Их возможность видеть делится на три способа.

Всей поверхностью тела

Интересная особенность, при которой не обязательно иметь глаза. Но ее большой минус в том, что насекомое может отличать только свет от темноты. Никаких предметов или цветов оно не видит. Как же это работает? Свет проходит через кутикулу, внешний слой кожи, и проникает к голове насекомого. Там происходит реакция в клетках мозга, и насекомое понимает, что на него падает свет. Такое устройство доступно не для всех, но очень помогает тем насекомым, которые живут под землей, например, дождевым червям или слепым пещерным жукам. Эта разновидность зрения есть у тараканов, тли и гусениц.

Материалы по теме:

Для чего нужна пыльца?

Простыми глазами


Насекомым, у которых простые глазки повезло больше. Они могут не только определять темноту от света, но и различать отдельные объекты и даже их форму. Такие глазки чаще всего встречаются у личинок насекомых. Например, личинки комаров вместо глаз имеют пигментные пятна, которые улавливают свет. Зато у гусениц по пять – шесть глазков с каждой стороны головы. Благодаря этому она хорошо разбирается в формах. Но вертикальные объекты она видит намного лучше, чем горизонтальные. Например, если ей предстоит выбрать дерево, то она скорее поползет к тому, что выше, а не к тому, что шире.

Сложными, или фасеточными, глазами


Такие глаза чаще всего встречаются у взрослых насекомых. Определить их можно сразу – обычно они находятся по бокам головы. Фасеточные глаза намного сложнее и разнообразнее всех остальных. Они могут распознавать формы объектов и определять цвета. Одни насекомые хорошо видят днем, а другие – ночью. Интересная особенность этих глаз и в том, что они не видят всю картину в целом, а только кусочки. И уже в мозгу насекомое собирает пазл из полученных изображений, чтобы увидеть полную картину. Как муха успевает в полете соединить все кусочки фрагмента? Удивительно, но именно в полете она видит лучше, чем в покое. И для места посадки любое насекомое скорее выберет то, что двигается или колышется.