Корень и его свойства. Подробная теория с примерами (2019)

решим простую задачу по нахождению стороны квадрата площадь которого равна 9 см 2 . Если принимаем, что сторона квадрата А см, то составляем согласно условиям задачи уравнение:

А х А =9

А 2 =9

А 2 -9 =0

(А-3)(А+3)=0

А=3 или А=-3

Длина стороны квадрата не может быть отрицательным числом, поэтому искомая стороны квадрата 3 см.

При решении уравнения мы нашли числа 3 и -3, квадраты которых равны 9. Каждое из этих чисел называют квадратным корнем из числа 9. Неотрицательный из этих корней, то есть число 3, называют арифметическим корнем числа.

Вполне логично принять тот факт, что корень можно находит из чисел в третьей степени (кубический корень), четвертой степени и так далее. И в принципе корень - это обратная операция к возведению в степень .

Корнем n -й степени из числа α является такое число b , где b n = α .

Здесь n —натуральное число принято называть показателем корня (или степенью корня); как правило, оно больше или равно 2, потому что случай n = 1 банально.

Обозначают на письме так символ (знак корня) в правой части называется радикалом . Число α - подкоренное выражение . Для нашего примера со стороной решение могло иметь такой вид: потому что (± 3) 2 = 9 .

Мы получили положительное и отрицательное значение корня. Эта особенность усложняет расчеты. Чтобы добиться однозначность, было введено понятие арифметического корня , значение которого всегда со знаком плюс, то есть только положительное.

Корень называется арифметическим , если он извлекается из положительного числа и сам является положительным числом.

Например,

Арифметический корень заданной степени из заданного числа существуеттолько один.

Операцию расчетов принято называть «извлечением корня n -й степени» из числа α . По сути мы выполняем операцию обратную к возведению в степень , а именно — нахождение основания степени b по известному показателю n и результату возведения в степень

α = b n .

Корни второй и третьей степени используются на практике чаще остальных и поэтому им были даны специальные названия.

Квадратный корень: В этом случае показатель степени 2 принято не писать, а термин «корень» без указания степени чаще всего означает квадратный корень. Геометрически толкование, является длина стороны квадрата, площадь которого равна α .

Кубический корень: Геометрически толкованием, выступает длина ребра куба, объём которого равен α .

Свойства арифметических корней.

1) При вычислении арифметического корня из произведения , необходимо извлечь его из каждого сомножителя отдельно

Например,

2) Для расчета корня из дроби , необходимо извлечь его из числителя и знаменателя данной дроби

Например,

3) При расчете корня из степени , необходимо разделить показатель степени на показатель корня

Например,

Первые расчеты, связанные с извлечением квадратного корня, обнаружены в работах математиков древнего Вавилона и Китая, Индии, Греции (о достижениях древнего Египта в этом отношении в источниках информация отсутствует).

Математики древнего Вавилона (II тысячелетие до н. э.) применяли для извлечения квадратного корня особый численный метод. Начальное приближение для квадратного корня находили исходя из ближайшего к корню (в меньшую сторону) натурального числа n . Представив подкоренное выражение в виде: α=n 2 +r , получаем: x 0 =n+r/2n , затем применялся итеративный процесс уточнения:

Итерации в этом методе очень быстро сходятся. Для ,

Например, α=5; n=2; r=1; x 0 =9/4=2,25 и мы получаем последовательность приближений:

В заключительном значении верны все цифры, кроме последней.

Греки сформулировали проблему удвоения куба, которая сводилась к построению кубического корня с помощью циркуля и линейки. Правила вычисления любой степени из целого числа , изучены математиками Индии и арабских государств. Далее они получили широкое развитие в средневековой Европе.

Сегодня для удобства расчетов квадратных и кубических корней широко используются калькуляторы.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Арифметический корень второй степени

Определение 1

Корнем второй степени (или квадратным корнем) из числа $a$ называют такое число, которое при возведении в квадрат станет равным $a$.

Пример 1

$7^2=7 \cdot 7=49$, значит число $7$ является корнем 2-й степени из числа $49$;

$0,9^2=0,9 \cdot 0,9=0,81$, значит число $0,9$ является корнем 2-й степени из числа $0,81$;

$1^2=1 \cdot 1=1$, значит число $1$ является корнем 2-й степени из числа $1$.

Замечание 2

Проще говоря, для любого числа $a

$a=b^2$ при отрицательном $a$ неверно, т.к. $a=b^2$ не может быть отрицательным при любом значении $b$.

Можно сделать вывод, что для действительных чисел не может существовать корень 2-й степени из отрицательного числа .

Замечание 3

Т.к. $0^2=0 \cdot 0=0$, то из определения следует, что нуль – корень 2-й степени из нуля.

Определение 2

Арифметическим корнем 2-й степени из числа $a$ ($a \ge 0$) является неотрицательное число, которое при возведении в квадрат будет равно $a$.

Корни 2-й степени еще называются квадратными корнями .

Обозначают арифметический корень 2-й степени из числа $a$ как $\sqrt{a}$ или можно встретить обозначение $\sqrt{a}$. Но чаще всего для квадратного корня число $2$ – показатель корня – не указывается. Знак «$\sqrt{ }$» – знак арифметического корня 2-й степени, который еще называют «знак радикала ». Понятия «корень» и «радикал» – это названия одного и того же объекта.

Если под знаком арифметического корня стоит число, то его называют подкоренным числом , а если выражение, то – подкоренным выражением .

Читается запись $\sqrt{8}$ как «арифметический корень 2-й степени из восьми», причем слово «арифметический» зачастую не называют.

Определение 3

Согласно определению арифметического корня 2-й степени можно записать:

Для любого $a \ge 0$:

$(\sqrt{a})^2=a$,

$\sqrt{a} \ge 0$.

Мы показали разницу между корнем второй степени и арифметическим корнем второй степени. Далее будем рассматривать только корни из неотрицательных чисел и выражений, т.е. только арифметические.

Арифметический корень третьей степени

Определение 4

Арифметическим корнем 3-й степени (или кубическим корнем) из числа $a$ ($a \ge 0$) называют неотрицательное число, которое при возведении в куб станет равным $a$.

Часто слово арифметический опускают и говорят «корень 3-й степени из числа $а$».

Обозначают арифметический корень 3-й степени из $а$ как $\sqrt{a}$, знак «$\sqrt{ }$» – знак арифметического корня 3-й степени, а число $3$ в этой записи называется показателем корня . Число или выражение, которое стоит под знаком корня, называют подкоренным .

Пример 2

$\sqrt{3,5}$ – арифметический корень 3-й степени из $3,5$ или кубический корень из $3,5$;

$\sqrt{x+5}$ – арифметический корень 3-й степени из $x+5$ или кубический корень из $x+5$.

Арифметический корень n-ной степени

Определение 5

Арифметическим корнем n-й степени из числа $a \ge 0$ называют неотрицательное число, которое при возведении в $n$-ную степень станет равным $a$.

Обозначение арифметического корня степени $n$ из $a \ge 0$:

где $a$ – подкоренное число или выражение,

Корнем степени n из действительного числа a , где n - натуральное число, называется такое действительное число x , n -ая степень которого равна a .

Корень степени n из числа a обозначается символом . Согласно этому определению .

Нахождение корня n -ой степени из числа a называется извлечением корня. Число а называется подкоренным числом (выражением), n - показателем корня. При нечетном n существует корень n -ой степени для любого действительного числа a . При четном n существует корень n -ой степени только для неотрицательного числаa . Чтобы устранить двузначность корня n -ой степени из числа a , вводится понятие арифметического корня n -ой степени из числа a .

Понятие арифметического корня степени N

Если и n - натуральное число, большее 1 , то существует, и только одно, неотрицательное число х , такое, что выполняется равенство . Это число х называется арифметическим корнем n -й степени из неотрицательного числа а и обозначается . Число а называется подкоренным числом, n - показателем корня.

Итак, согласно определению запись , где , означает, во-первых, что и, во-вторых, что , т.е. .

Понятие степени с рациональным показателем

Степень с натуральным показателем: пусть а - действительное число, а n - натуральное число, большее единицы, n -й степенью числа а называют произведение n множителей, каждый из которых равен а , т.е. . Число а - основание степени, n - показатель степени. Степень с нулевым показателем: полагают по определению, если , то . Нулевая степень числа 0 не имеет смысла. Степень с отрицательным целым показателем: полагают по определению, если и n - натуральное число, то . Степень с дробным показателем: полагают по определению, если и n - натуральное число, m - целое число, то .

Операции с корнями.

Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

2. Корень из отношения равен отношению корней делимого и делителя:

3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и одновременно возвести в n-ую степень подкоренное число, то значение корня не изменится:

5. Если уменьшить степень корня в n раз и одновременно извлечь корень n-ой степени из подкоренного числа, то значение корня не изменится:

Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным, нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.


Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной величине отрицательного показателя:

Теперь формула a m: a n = a m - n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

П р и м е р. a 4: a 7 = a 4 - 7 = a -3 .

Если мы хотим, чтобы формула a m: a n = a m - n была справедлива при m = n , нам необходимо определение нулевой степени.

Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

П р и м е р ы. 2 0 = 1, (– 5) 0 = 1, (– 3 / 5) 0 = 1.

Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n–ой степени из m-ой степени этого числа а:

О выражениях, не имеющих смысла. Есть несколько таких выражений.

Случай 1.

Где a ≠ 0 , не существует.

В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x, т.e. a = 0, что противоречит условию: a ≠ 0

Случай 2.

Любое число.

В самом деле, если предположить, что это выражение равно некоторому числу x, то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x, что и требовалось доказать.

Действительно,

Р е ш е н и е. Рассмотрим три основных случая:

1) x = 0 – это значение не удовлетворяет данному уравнению

2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует, что x – любое число; но принимая во внимание, что внашем случае x > 0 , ответом является x > 0 ;

3) при x < 0 получаем: – x / x = 1, т.e. –1 = 1, следовательно,

в этом случае нет решения. Таким образом, x > 0.

В этой статье мы введем понятие корня из числа . Будем действовать последовательно: начнем с квадратного корня, от него перейдем к описанию кубического корня, после этого обобщим понятие корня, определив корень n-ой степени. При этом будем вводить определения, обозначения, приводить примеры корней и давать необходимые пояснения и комментарии.

Квадратный корень, арифметический квадратный корень

Чтобы понять определение корня из числа, и квадратного корня в частности, нужно иметь . В этом пункте мы часто будем сталкиваться со второй степенью числа - квадратом числа.

Начнем с определения квадратного корня .

Определение

Квадратный корень из числа a - это число, квадрат которого равен a .

Чтобы привести примеры квадратных корней , возьмем несколько чисел, например, 5 , −0,3 , 0,3 , 0 , и возведем их в квадрат, получим соответственно числа 25 , 0,09 , 0,09 и 0 (5 2 =5·5=25 , (−0,3) 2 =(−0,3)·(−0,3)=0,09 , (0,3) 2 =0,3·0,3=0,09 и 0 2 =0·0=0 ). Тогда по данному выше определению число 5 является квадратным корнем из числа 25 , числа −0,3 и 0,3 есть квадратные корни из 0,09 , а 0 – это квадратный корень из нуля.

Следует отметить, что не для любого числа a существует , квадрат которого равен a . А именно, для любого отрицательного числа a не существует ни одного действительного числа b , квадрат которого равнялся бы a . В самом деле, равенство a=b 2 невозможно для любого отрицательного a , так как b 2 – неотрицательное число при любом b . Таким образом, на множестве действительных чисел не существует квадратного корня из отрицательного числа . Иными словами, на множестве действительных чисел квадратный корень из отрицательного числа не определяется и не имеет смысла.

Отсюда вытекает логичный вопрос: «А для любого ли неотрицательного a существует квадратный корень из a »? Ответ – да. Обоснованием этого факта можно считать конструктивный способ, используемый для нахождения значения квадратного корня .

Тогда встает следующий логичный вопрос: «Каково число всех квадратных корней из данного неотрицательного числа a – один, два, три, или еще больше»? Вот ответ на него: если a равно нулю, то единственным квадратным корнем из нуля является нуль; если же a – некоторое положительное число, то количество квадратных корней из числа a равно двум, причем корни являются . Обоснуем это.

Начнем со случая a=0 . Сначала покажем, что нуль действительно является квадратным корнем из нуля. Это следует из очевидного равенства 0 2 =0·0=0 и определения квадратного корня.

Теперь докажем, что 0 – единственный квадратный корень из нуля. Воспользуемся методом от противного. Предположим, что существует некоторое число b , отличное от нуля, которое является квадратным корнем из нуля. Тогда должно выполняться условие b 2 =0 , что невозможно, так как при любом отличном от нуля b значение выражения b 2 является положительным. Мы пришли к противоречию. Это доказывает, что 0 – единственный квадратный корень из нуля.

Переходим к случаям, когда a – положительное число. Выше мы сказали, что всегда существует квадратный корень из любого неотрицательного числа, пусть квадратным корнем из a является число b . Допустим, что существует число c , которое тоже является квадратным корнем из a . Тогда по определению квадратного корня справедливы равенства b 2 =a и c 2 =a , из них следует, что b 2 −c 2 =a−a=0 , но так как b 2 −c 2 =(b−c)·(b+c) , то (b−c)·(b+c)=0 . Полученное равенство в силу свойств действий с действительными числами возможно лишь тогда, когда b−c=0 или b+c=0 . Таким образом, числа b и c равны или противоположны.

Если же предположить, что существует число d , являющееся еще одним квадратным корнем из числа a , то рассуждениями, аналогичными уже приведенным, доказывается, что d равно числу b или числу c . Итак, число квадратных корней из положительного числа равно двум, причем квадратные корни являются противоположными числами.

Для удобства работы с квадратными корнями отрицательный корень «отделяется» от положительного. С этой целью вводится определение арифметического квадратного корня .

Определение

Арифметический квадратный корень из неотрицательного числа a – это неотрицательное число, квадрат которого равен a .

Для арифметического квадратного корня из числа a принято обозначение . Знак называется знаком арифметического квадратного корня. Его также называют знаком радикала. Поэтому можно часть слышать как «корень», так и «радикал», что означает один и тот же объект.

Число под знаком арифметического квадратного корня называют подкоренным числом , а выражение под знаком корня – подкоренным выражением , при этом термин «подкоренное число» часто заменяют на «подкоренное выражение». Например, в записи число 151 – это подкоренное число, а в записи выражение a является подкоренным выражением.

При чтении слово «арифметический» часто опускается, например, запись читают как «квадратный корень из семи целых двадцати девяти сотых». Слово «арифметический» произносят лишь тогда, когда хотят особо подчеркнуть, что речь идет именно о положительном квадратном корне из числа.

В свете введенного обозначения из определения арифметического квадратного корня следует, что и для любого неотрицательного числа a .

Квадратные корни из положительного числа a с помощью знака арифметического квадратного корня записываются как и . Например, квадратные корни из числа 13 есть и . Арифметический квадратный корень из нуля равен нулю, то есть, . Для отрицательных чисел a записи мы не будем придавать смысла вплоть до изучения комплексных чисел . Например, лишены смысла выражения и .

На базе определения квадратного корня доказываются свойства квадратных корней , которые часто применяются на практике.

В заключение этого пункта заметим, что квадратные корни из числа a являются решениями вида x 2 =a относительно переменной x .

Кубический корень из числа

Определение кубического корня из числа a дается аналогично определению квадратного корня. Только оно базируется на понятии куба числа, а не квадрата.

Определение

Кубическим корнем из числа a называется число, куб которого равен a .

Приведем примеры кубических корней . Для этого возьмем несколько чисел, например, 7 , 0 , −2/3 , и возведем их в куб: 7 3 =7·7·7=343 , 0 3 =0·0·0=0 , . Тогда, основываясь на определении кубического корня, можно утверждать, что число 7 – это кубический корень из 343 , 0 есть кубический корень из нуля, а −2/3 является кубическим корнем из −8/27 .

Можно показать, что кубический корень из числа a , в отличие от квадратного корня, всегда существует, причем не только для неотрицательных a , но и для любого действительного числа a . Для этого можно использовать тот же способ, о котором мы упоминали при изучении квадратного корня.

Более того, существует только единственный кубический корень из данного числа a . Докажем последнее утверждение. Для этого отдельно рассмотрим три случая: a – положительное число, a=0 и a – отрицательное число.

Легко показать, что при положительном a кубический корень из a не может быть ни отрицательным числом, ни нулем. Действительно, пусть b является кубическим корнем из a , тогда по определению мы можем записать равенство b 3 =a . Понятно, что это равенство не может быть верным при отрицательных b и при b=0 , так как в этих случаях b 3 =b·b·b будет отрицательным числом либо нулем соответственно. Итак, кубический корень из положительного числа a является положительным числом.

Теперь предположим, что помимо числа b существует еще один кубический корень из числа a , обозначим его c . Тогда c 3 =a . Следовательно, b 3 −c 3 =a−a=0 , но b 3 −c 3 =(b−c)·(b 2 +b·c+c 2) (это формула сокращенного умножения разность кубов ), откуда (b−c)·(b 2 +b·c+c 2)=0 . Полученное равенство возможно только когда b−c=0 или b 2 +b·c+c 2 =0 . Из первого равенства имеем b=c , а второе равенство не имеет решений, так как левая его часть является положительным числом для любых положительных чисел b и c как сумма трех положительных слагаемых b 2 , b·c и c 2 . Этим доказана единственность кубического корня из положительного числа a .

При a=0 кубическим корнем из числа a является только число нуль. Действительно, если предположить, что существует число b , которое является отличным от нуля кубическим корнем из нуля, то должно выполняться равенство b 3 =0 , которое возможно лишь при b=0 .

Для отрицательных a можно привести рассуждения, аналогичные случаю для положительных a . Во-первых, показываем, что кубический корень из отрицательного числа не может быть равен ни положительному числу, ни нулю. Во-вторых, предполагаем, что существует второй кубический корень из отрицательного числа и показываем, что он обязательно будет совпадать с первым.

Итак, всегда существует кубический корень из любого данного действительного числа a , причем единственный.

Дадим определение арифметического кубического корня .

Определение

Арифметическим кубическим корнем из неотрицательного числа a называется неотрицательное число, куб которого равен a .

Арифметический кубический корень из неотрицательного числа a обозначается как , знак называется знаком арифметического кубического корня, число 3 в этой записи называется показателем корня . Число под знаком корня – это подкоренное число , выражение под знаком корня – это подкоренное выражение .

Хотя арифметический кубический корень определяется лишь для неотрицательных чисел a , но удобно также использовать записи, в которых под знаком арифметического кубического корня находятся отрицательные числа. Понимать их будем так: , где a – положительное число. Например, .

О свойствах кубических корней мы поговорим в общей статье свойства корней .

Вычисление значения кубического корня называется извлечением кубического корня, это действие разобрано в статье извлечение корней: способы, примеры, решения .

В заключение этого пункта скажем, что кубический корень из числа a является решением вида x 3 =a .

Корень n-ой степени, арифметический корень степени n

Обобщим понятие корня из числа – введем определение корня n-ой степени для n .

Определение

Корень n -ой степени из числа a – это число, n -я степень которого равна a .

Из данного определения понятно, что корень первой степени из числа a есть само число a , так как при изучении степени с натуральным показателем мы приняли a 1 =a .

Выше мы рассмотрели частные случаи корня n -ой степени при n=2 и n=3 – квадратный корень и кубический корень. То есть, квадратный корень – это корень второй степени, а кубический корень – корень третьей степени. Для изучения корней n -ой степени при n=4, 5, 6, … их удобно разделить на две группы: первая группа – корни четных степеней (то есть, при n=4, 6, 8, … ), вторая группа – корни нечетных степеней (то есть, при n=5, 7, 9, … ). Это связано с тем, что корни четных степеней аналогичны квадратному корню, а корни нечетных степеней – кубическому. Разберемся с ними по очереди.

Начнем с корней, степенями которых являются четные числа 4, 6, 8, … Как мы уже сказали, они аналогичны квадратному корню из числа a . То есть, корень любой четной степени из числа a существует лишь для неотрицательного a . Причем, если a=0 , то корень из a единственный и равен нулю, а если a>0 , то существует два корня четной степени из числа a , причем они являются противоположными числами.

Обоснуем последнее утверждение. Пусть b – корень четной степени (обозначим ее как 2·m , где m – некоторое натуральное число) из числа a . Предположим, что существует число c – еще один корень степени 2·m из числа a . Тогда b 2·m −c 2·m =a−a=0 . Но мы знаем вида b 2·m −c 2·m = (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2) , тогда (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2)=0 . Из этого равенства следует, что b−c=0 , или b+c=0 , или b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2 =0 . Первые два равенства означают, что числа b и c равны или b и c – противоположны. А последнее равенство справедливо лишь при b=c=0 , так как в его левой части находится выражение, которое неотрицательно при любых b и c как сумма неотрицательных чисел.

Что касается корней n -ой степени при нечетных n , то они аналогичны кубическому корню. То есть, корень любой нечетной степени из числа a существует для любого действительного числа a , причем для данного числа a он является единственным.

Единственность корня нечетной степени 2·m+1 из числа a доказывается по аналогии с доказательством единственности кубического корня из a . Только здесь вместо равенства a 3 −b 3 =(a−b)·(a 2 +a·b+c 2) используется равенство вида b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m) . Выражение в последней скобке можно переписать как b 2·m +c 2·m +b·c·(b 2·m−2 +c 2·m−2 + b·c·(b 2·m−4 +c 2·m−4 +b·c·(…+(b 2 +c 2 +b·c)))) . Например, при m=2 имеем b 5 −c 5 =(b−c)·(b 4 +b 3 ·c+b 2 ·c 2 +b·c 3 +c 4)= (b−c)·(b 4 +c 4 +b·c·(b 2 +c 2 +b·c)) . Когда a и b оба положительны или оба отрицательны их произведение является положительным числом, тогда выражение b 2 +c 2 +b·c , находящееся в скобках самой высокой степени вложенности, является положительным как сумма положительных чисел. Теперь, продвигаясь последовательно к выражениям в скобках предыдущих степеней вложенности, убеждаемся, что они также положительны как суммы положительных чисел. В итоге получаем, что равенство b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m)=0 возможно только тогда, когда b−c=0 , то есть, когда число b равно числу c .

Пришло время разобраться с обозначениями корней n -ой степени. Для этого дается определение арифметического корня n -ой степени .

Определение

Арифметическим корнем n -ой степени из неотрицательного числа a называется неотрицательное число, n -я степень которого равна a .