Что такое надф н. Витамин В3 (PP, ниацин, антипеллагрический)

НАДН – основа энергии и жизни


В обычном смысле биологическую жизнь можно определить как способность генерировать энергию внутри клетки. Эта энергия – макроэргические фосфатные связи химических веществ, синтезируемые в организме. Наиболее важными макроэргическими соединениями являются аденозинтрифосфат (АТФ), гуанозинтрифосфат (ГТФ), креатинфосфорная кислота, никотинамиддинуклеотид фосфат (НАД(Н) и НАДФ(Н)), фосфорилированные углеводы.



Никотинамид-аденин-динуклеотид (НАДН, NADН) – кофермент, присутствующий во всех живых клетках, входит в состав ферментов группы дегидрогеназ, катализирующих окислительно-восстановительные реакции; выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ. Восстановленная форма (NADH) способна переносить их на другие вещества.




Как повысить работоспособность


Что такое NADH? Многие её называют “аббревиатурой жизни”. И это действительно так. NADH (коэнзим никотинамидадениндинуклеотид) содержится во всех живых клетках и является жизненно необходимым элементом, при помощи которого внутри клеток вырабатывается энергия. NADH участвует в выработке АТФ (АТР). НАД(Н), как универсальная молекула энергии, в отличие от АТФ, постоянно может разгружать митохондрии от избыточного накопления лактата в сторону образования из него пирувата, за счёт стимуляции пируватдегидрогеназного комплекса, который чувствительный именно к отношению НАД(Н)/НАД.



Синдром хронической усталости: фокус на митохондрии


Ряд клинических исследований показал эффективность препаратов НАДН при СХУ. Суточная доза составляла обычно 50 мг. Наиболее сильный эффект наступал после 2-4 недель лечения. Утомляемость снижалась на 37-52 %. Кроме того, улучшался такой объективный когнитивный параметр, как концентрация внимания.



НАДН в лечении синдрома хронической усталости


НАДН (кофермент витамина В3), присутствующий во всех живых клетках, входит в состав ферментов группы дегидрогеназ, катализирующих окислительно-восстановительные реакции; выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ. Является резервным источником энергии в клетках. Он принимает участие практически во всех реакциях образования энергии, обеспечивая дыхание клеток. Воздействуя на соответствующие процессы в мозгу ко-фермент витамина В3, может предупреждать гибель нервных клеток при гипоксии или возрастных изменениях. Принимает участие в процессах детоксикации в печени. В последнее время установлено его свойство блокировать лактатдегидрогеназу и, тем самым, ограничивать ишемическое и/или гипоксическое повреждение миокарада. Исследования эффективности орального применения при лечении синдрома хронической усталости подтвердили его активизирующее влияние на состояние людей.



НАДН в спорте и медицине: обзор иностранной литературы


О НАДН (никотинамидадениндинуклеотидфосфате) мы писали в предыдущих статьях. Сейчас мы хотим предоставить информацию с англоязычных источников, о роли и значении этого вещества в обмене энергии в организме, его влиянии на нервную систему, и роли в развитии ряда патологических ситуаций и перспективах применения в медицине и спорте. (Скачать монографию о НАДН).



Herbalife Quickspark CoEnzyme 1 (NADH) ATP Energy

Natural Energy at a Cellular Level




Quickspark is a product of the company Herbalife. It is a stable form of Vitamin B3 CoEnzyme1. CoEnzyme1 was found in 1906 in Austria by a scientist called Professor George Birkmayer. CoEnzyme1 was developed for medical purposes and used in the second world war.



NADH (Enada)


Nicotinamide adenine dinucleotide (NADH) is a substance that helps the functionality of enzymes in the body. NADH plays a role in the production of energy and helps produce L-dopa, which the body turns into the neurotransmitter dopamine. NADH is being evaluated for many conditions and may be helpful for enhancing mental functionality and memory.

Недостаточное содержание в пище никотиновой кислоты (рис. 10-6) вызывает у людей заболевание, которое называется пеллагрой (от итальянского слова, означающего «шершавая кожа»). Пеллагра распространена во многих районах мира, где люди питаются в основном кукурузой и едят мало мяса, молока и яиц. В целях профилактики и лечения пеллагры можно использовать как никотиновую кислоту, так и ее амидникотинамид. Чтобы кому-нибудь не пришла в голову мысль о возможности употребления в пищу табака как источника этого витамина, никотиновой кислоте было дано другое (условное) название - ниацин.

Никотинамид-компонент двух близких по структуре коферментов-никотинамидадениндинуклеотида (NAD) и никотинамидадениндинуклеотид фосфата (NADP). Строение этих коферментов показано на рис. 10-6. NADP отличается от NAD наличием в молекуле фосфатной группы. Эти коферменты могут находиться как в окисленной так и в восстановленной (NADH и NADPH) формах. Никотинамидный компонент этих коферментов играет роль промежуточного переносчика гидрид-иона, который ферментативно отщепляется от молекулы субстрата под действием специфических дегидрогеназ (рис. 10-7). В качестве примера можно привести реакцию, катализируемую малатдегидрогеназой, которая дегидрирует малат, превращая его в оксалоацетат; эта реакция представляет собой один из этапов окисления углеводов и жирных кислот. Малатдегидрогеназа катализирует также обратимый перенос гидрид-иона от малата к в результате чего образуется NADH; второй атом водорода отщепляется от гидроксильной группы молекулы малата в виде свободного иона

Известно большое число дегидрогеназ такого типа, из которых каждая обладает специфичностью по отношению к какому-нибудь определенному субстрату. Одни из этих ферментов используют в качестве кофермента другие - а третьи могут функционировать с любым из этих двух коферментов.

Рис. 10-7. Общее уравнение, показывающее, как действует в качестве кофермента в реакциях ферментативного дегидрирования. Молекула субстрата и продукты реакции выделены красным цветом. Изображена только иикотинамидная часть молекулы остальная же ее часть обозначена буквой R.

У большинства дегидрогеназ NAD (или NADP) связывается с белковой частью фермента только во время каталитического цикла, однако известны и такие ферменты, с которыми эти коферменты связаны очень прочно и постоянно присутствуют в активном центре.

Коферменты ФМН (РММ) и ФАД (РАО)


Биологическая роль флавиновых ферментов заключается в том, что они катализируют аэробные окислительно-восстановительные реакции в живых системах, например, окисляют восстановительные коферменты – НАД Н 2 , НАДФ Н 2 , несущие Н 2 в дыхательной цепи.

Тиоловые коферменты

К тиоловым коферментам относится кофермент ацилирования (КоА, СоА, НSСоА), биологическая роль которого заключается в переносе ацильных группировок. Если КоА переносит ацетил (СН 3 СО–), то он называется коферментом ацетилирования. В состав КоА входит ви­тамин В 3 (пантотеновая кислота):





Ацильные группы переносятся КоА за счет сложноэфирной связи кофермента А с тиоловой группой –SН.

Биологическая роль кофермента ацетилирования заключается в том, что он является:

1) ключевым веществом промежуточного метаболизма, переносчиком групп СН 3 СО–, которые вступают в цикл Кребса для окис­ления до Н 2 О и СО 2 и генерации энергии;



2) коферментом, участвующим в биосинтезе и распаде жирных кислот до аминокислот.

РАЗДЕЛ 4. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ФЕРМЕНТОВ

Ферменты – это высокомолекулярные соединения, амфотерные электролиты, характерными свойствами которых являются:

Гидрофильность;

Высаливание;

Денатурация;

Свойства коллоидных систем;

Оптимум рН;

Температурный оптимум;

Высокая специфичность действия;

Активация и ингибирование ферментов.

Влияние температуры на активность ферментов

Ддя ферментативных реакций справедливо правило Вант-Гоффа: с повышением температуры на 10 °С скорость реакции возрастает в 2–4 раза:

,

где V t2 – скорость при температуре t2; V t1 – скорость при температуре t1; Δt= t2 – t1; γ = 2–4 – температурный коэффициент.


Данная зависимость сохраняется до определенного температур­ного уровня – температурного оптимума. Для большинства фермен­тов температурный оптимум находится в диапазоне 35...45 °С. Повы­шение температуры выше оптимума приводит к снижению активности фермента, при t > 70 °С фермент инактивируется, т. е. теряет биоло­гическую активность. Так как фермент является белком, то при по­вышении температуры происходит его денатурация, меняется струк­тура активного центра, в результате фермент не может реагировать с субстратом. Исключением являются миокиназа, которая проявляет активность при 100 °С, и каталаза, активная при 0 °С.

Оптимум рН

Ферменты проявляют максимальную активность при оптималь­ном физиологическом диапазоне рН (см. приложение). Например, оптимум рН для сахаразы – 6,2, для пепсина – 1,5–2,5.

Обратимость действия

Некоторые ферменты могут катализировать прямую и обрат­ную реакции.

Специфичность (избирательность) действия

Фермент может катализировать одну или несколько близких по природе химических реакций. В основе специфичности лежит гипоте­за Э. Фишера: строгое соответствие структуры субстрата и активного центра, как ключ к замку.

Специфичность может быть относительной и абсолютной. Относительная специфичность характерна для ферментов, дей­ствующих на определенный тип связи. К ферментам с относительной специфичностью относятся эстеразы (гидролиз по местоположению эфир­ных связей) и протеиназы (гидролиз пептидной связи).

Абсолютная специфичность (абсолютная избирательность) заключается в том, что фермент катализирует превращение только одного субстрата конкретной структуры.

Например:

Сахараза Сахароза

Аргиназа Аргинин

К абсолютной специфичности относится и стереохимическая специ­фичность, т. е. воздействие фермента на определенный стереоизомер.

Активация фермента. Активаторы. Ингибирование. Ингибиторы

Активацией называется увеличение активности ферментов, ак­тиваторами – вещества, повышающие активность ферментов.

Активаторами могут быть ионы металлов (Na + , К + , Мg 2+).

Одним из видов процесса активации является процесс самоак­тивации ферментов. Ферменты имеют проферменты (зимогены) –неактивные формы ферментов, когда активный центр замаскирован дополнительным участком пептидной цепи, в результате чего суб­страт не может подойти к активному центру. Превращение зимогена в активный фермент в результате удаления участка пептидной цепи и освобождения активного центра называется самоактивацией.

Понижение скорости ферментативной реакции под воздействием ингибиторов называется ингибированием, соответственно ингибиторы –это вещества, которые угнетают действие ферментов. Ингибиторами яв­ляются ионы тяжелых металлов, кислоты, щелочи, спирты и др.

Ингибирование может быть как обратимым, так и необратимым.

При необратимом ингибировании фермент теряет свою актив­ность полностью в связи с разрушением структуры (денатурацией). К ингибиторам относятся денатурирующие физические и химические факторы.

Обратимое ингибирование – это обратимое взаимодействие фер­мента с субстратом. Обратимое ингибирование может быть конку­рентным и неконкурентным.

При конкурентном обратимом ингибировании происходит "кон­куренция" между субстратом и ингибитором за взаимодействие с активным центром фермента.

Субстрат и ингибиторы – структурные аналоги. Ингибитор (У), конкурируя с субстратом (S), образует с ферментом (Е) ингибиторно-ферментный комплекс (ЕУ):

Е + S + У ↔ ЕУ + S

ннгибнторно-

ферментный

комплекс

Неконкурентное, или аллостерическое (от греч. allos – другой), Ингибирование основано на том, что ингибитор не является структур­ным аналогом субстрата и соединяется не с активным, а с аллостерическим центром, в результате чего происходит изменение структуры фермента, и активный центр не может присоединить субстрат.

Важную роль в регуляции действия ферментов играет их компартментация, т. е. локализация в субклеточных структурах.

Циклический аденозинмонофосфат (цамф) - производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану. Превращает ряд инертных белков в ферменты (цамф-зависимые протеинкиназы), под действием которых происходит ряд биохим. реакций (проведение нервного импульса).

Образование цАМФ стимулируется адреналином.

Циклический гуанозинмонофосфат (цГМФ ) - это циклическая форма нуклеотида, образующаяся из гуанозинтрифосфата (GTP) ферментом гуанилатциклазой. Образование стимулируется ацетилхолином.

· цГМФ вовлечен в регуляцию биохимических процессов в живых клетках в качестве вторичного посредника (вторичного мессенджера). Характерно, что многие эффекты цГМФ прямо противоположны цАМФ.

· цГМФ активирует G-киназу и фосфодиэстеразу, гидролизующую цАМФ.

· цГМФ принимает участизе в регуляции клеточного цикла. От соотношения цАМФ/цГМФ зависит выбор клетки: прекратить деление (остановиться в G0 фазе) или продолжить, перейдя в фазу G1.

· цГМФ стимулирует пролиферацию клеток (деление), а цАМФ подавляет

Аденозинтрифосфат (АТФ) - нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями. Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) и высвобождается порция энергии.

· Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

· АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

· АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата - вторичного посредника передачи в клетку гормонального сигнала.

· Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях

Аденозиндифосфат (АДФ) - нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты. АДФ участвует в энергетическом обмене во всех живых организмах, из него образуется АТФ путём фосфорилирования:

АДФ + H3PO4 + энергия → АТФ + H2O.

Циклическое фосфорилирование АДФ и последующее использование АТФ в качестве источника энергии образуют процесс, составляющий суть энергетического обмена (катаболизма).

ФАД - флавинадениндинуклеотид - кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. ФАД существует в двух формах - окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.

Никотинамидадениндинуклеотид (НАД) - динуклеотид, состоит из двух нуклеотидов, соединённых своими фосфатными группами. Один из нуклеотидов в качестве азотистого основания содержит аденин, другой - никотинамид. Никотинамидадениндинуклеотид существует в двух формах: окисленной (NAD) и восстановленной (NADH).

· В метаболизме NAD задействован в окислительно-восстановительных реакциях, перенося электроны из одной реакции в другую. Таким образом, в клетках NAD находится в двух функциональных состояниях: его окисленная форма, NAD+, является окислителем и забирает электроны от другой молекулы, восстанавливаясь в NADH, который далее служит восстановителем и отдаёт электроны.

· 1. Метаболизм белков, жиров и углеводов. Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях

· при синтезе и окислении жирных кислот,

· при синтезе холестерола,

· обмена глутаминовой кислоты и других аминокислот,

· обмена углеводов: пентозофосфатный путь, гликолиз,

· окислительного декарбоксилирования пировиноградной кислоты,

· цикла трикарбоновых кислот.

· 2. НАДН выполняет регулирующую функцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот.

· 3. Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК, что замедляет некробиоз и апоптоз клеток.

· 4. Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки.

Название витамина PP дано от итальянского выражения preventive pellagra – предотвращающий пеллагру.

Источники

Хорошим источником являются печень, мясо, рыба, бобовые, гречка, черный хлеб. В молоке и яйцах витамина мало. Также синтезируется в организме из триптофана – одна из 60 молекул триптофана превращается в одну молекулу витамина.

Суточная потребность

Строение

Витамин существует в виде никотиновой кислоты или никотинамида.

Две формы витамина РР

Его коферментными формами являются никотинамидадениндинуклеотид (НАД) и фосфорилированная по рибозе форма – никотинамидадениндинуклеотидфосфат (НАДФ).

Строение окисленных форм НАД и НАДФ

Биохимические функции

Перенос гидрид-ионов Н – (атом водорода и электрон) в окислительно-восстановительных реакциях.

Механизм участия НАД и НАДФ в биохимической реакции

Благодаря переносу гидрид-иона витамин обеспечивает следующие задачи:

1. Метаболизм белков, жиров и углеводов . Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях

  • при синтезе и окислении карбоновых кислот,
  • при синтезе холестерола ,
  • обмена глутаминовой кислоты и других аминокислот,
  • обмена углеводов: пентозофосфатный путь , гликолиз ,
  • окислительного декарбоксилирования пировиноградной кислоты,

Пример биохимической реакции с участием НАД

2. НАДН выполняет регулирующую функцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот.

3. Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК.

4. Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки.

5. НАДФН участвует в реакциях

  • ресинтеза тетрагидрофолиевой кислоты (кофермент витамина B9) из дигидрофолиевой после синтеза тимидилмонофосфата ,
  • восстановления белка тиоредоксина при синтезе дезоксирибонуклеотидов ,
  • для активации "пищевого" витамина К или восстановления тиоредоксина после реактивации витамина К .

Гиповитаминоз B3

Причина

Пищевая недостаточность ниацина и триптофана. Синдром Хартнупа .

Клиническая картина

Проявляется заболеванием пеллагра (итал.: pelle agra – шершавая кожа) как синдром трех Д :

  • дерматиты (фотодерматиты),
  • диарея (слабость, расстройство пищеварения, потеря аппетита).
  • деменция (нервные и психические расстройства, слабоумие),

При отсутствии лечения заболевание кончается летально. У детей при гиповитаминозе наблюдается замедление роста, похудание, анемия.

В США в 1912-1216 гг. число заболевших пеллагрой составляло 100 тысяч человек в год, из них около 10 тысяч умирало. Причиной являлось отсутствие животных продуктов питания, в основном люди питались кукурузой и сорго, которые бедны триптофаном и содержат неусвояемый связанный ниацин.
Интересно, что у индейцев Южной Америки, у которых с древних времен основу питания составляет кукуруза, пеллагра не встречается. Причиной такого феномена является то, что они отваривают кукурузу в известковой воде, при этом ниацин высвобождается из нерастворимого комплекса. Европейцы, взяв у индейцев кукурузу, не потрудились также позаимствовать и рецепты.