Объект исследования и его модель. Физическое и математическое моделирование

Современный этап развития науки характеризуется усилением и углублением взаимодействия отдельных её отраслей, формированием новых форм и средств исследования, в т.ч. математизацией и компьютеризацией познавательного процесса. Распространение понятий и принципов математики в различные сферы научного познания оказывает существенное влияние, как на эффективность специальных исследований, так и на развитие самой математики.

В процессе математизации естественных, общественных, технических наук и её углубления происходит взаимодействие между методами математики и методами тех отраслей наук, которые подвергаются математизации, усиливается взаимодействие и взаимосвязь между математикой и конкретными науками, формируются новые интегративные направления в науке.

Говоря о применении математики в той или иной сфере науки, следует иметь в виду, что процесс математизации знания будет идти скорее тогда, когда объект исследования состоит из простых и однородных элементов. Если объект обладает сложной структурной, то применение математики затрудняется.

В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на фоне математизации, находит свое отражение и в динамике понятийного аппарата.

Воздействие научно-технической революции на прогресс математики чаще всего происходит опосредствованными и сложным путем. Обычно запросы техники, производства и экономики выдвигают различные проблемы перед наукам, которые стоят ближе к практике. Решая свои проблемы, естественные и технические науки ставят соответствующие задачи перед математикой, стимулируя ее дальнейшее развитие.

Говоря о современном этапе математизации научного познания, следует отметить повышение эвристической и интегративной роли математики в познании, а также влияние научно-технической революции на развитие современной математики, ее понятий и методов.

В процессе взаимодействия современных наук единство абстрактного и конкретного проявляется как в синтезе математических теорий в структурах научного знания, так и в синтезе самих математических теорий.

Развитие техники, производственной деятельности людей выдвигает исследование новых, неизвестных ранее процессов и явлений природы, которое зачастую немыслимо без совместных усилий различных отраслей науки. Если отдельно области современного научного знания не способны изучить эти процессы природы в отдельности, то эту задачу можно осуществить на основе интеграции наук, изучающих различные формы движения материи. Благодаря трудам ученых, работающих в различных областях науки, комплексные проблемы находят свое объяснение. В свою очередь, это области науки обогащаются новым содержанием, выдвигаются новые научные проблемы. В таком процессе взаимосвязи и взаимовлияния научных областей обогащается и математическое знание, начинают осваиваться новые количественные отношения, закономерности.

Синтетический характер математики состоит в том, что она обладает предметной общностью, т.е. абстрагируясь от количественных свойств социальных, природных и технических объектов, изучает специфические закономерности, присущие этим областям.

Другим важнейшим качеством математики является ее эффективность, которая достигается на основе восхождения к абстракциям высокого уровня. Сущность математики определяется соотношением чистой и прикладной математики. Прикладная математика ориентирована на решение различных конкретных проблем реального мира. Тем самым, в математическом творчестве различают три этапа: во-первых, движение от реальной действительности к абстрактным структурам, во-вторых, создание абстрактных понятий и математических теорий, в-третьих, непосредственное применение математики.

Современный этап математизации науки характеризуется широким использованием метода математического моделирования. Математика разрабатывает модели и совершенствует методы их применения. Создание математических моделей – первый шаг в математико-исследовательском направлении. В последующем модель изучается посредством особых математических методов.

Математика имеет множество конкретных методов. Универсальность математики связана с двумя моментами. Во-первых, единством языка математических моделей, вытекающих их качественно различных задач (единство языка составляет внешнее единство математики), во-вторых, наличием общих понятий, принципов и методов, применяемых к бесчисленным конкретным математическим моделям.

В XVII-XIX веках благодаря применению математических понятий в физике были получены первые результаты в области гидродинамики, разработаны теории, связанные с распространением теплоты, явлениями магнетизма, электростатики и электродинамики. А. Пуанкаре создал теорию диффузии на основе теории вероятности, Дж.Масквелл – электромагнитную теорию на основе дифференциального исчисления, идея случайного процесса сыграла существенную роль в изучении биологами динамики популяции и разработке основ математической экологии.

Современная физика является одной из наиболее математизированных областей естествознания. Движение математической формализации к физическим теориям является одним из важнейших признаков развития физического познания. Это можно видеть в закономерностях процесса познания, в создании теории относительности, квантовой механики, квантовой электромеханики, в развитии современной теории элементарных частиц.

Говоря о синтезе научного знания, необходимо отметить и роль математической логики в процессе создания понятий нового типа. Математическая логика по своему предмету является логикой, а по своему методу – математикой. Она оказывает существенное влияние как на создание и развитие обобщающих идей, понятий, так и на развитие познавательных функций других наук. Математическая логика сыграла важнейшую роль в создании алгоритмов и рекурсивных функций. Наряду с этим, трудно без математической логики представить себе создание и развитие электроники, кибернетики, структурного языкознания.

Математическая логика сыграла важнейшую роль в процессе возникновения таких общенаучных понятий, как алгоритм, информация, обратная связь, система, множество, функция и др.

Математизация науки есть в сущности двуединый процесс, включающий рост и развитие как конкретных наук, так и самой математики. При этом взаимодействие между конкретными науками и математикой носит диалектической характер. С одной стороны, решение проблем конкретных наук выдвигает множество задач, имеющих чисто математический характер, с другой стороны, математический аппарат дает возможность точнее сформулировать законы и теории конкретных наук.

Другая причина математизации современной науки связана с решением крупных научно-технических проблем. Это, в свою очередь, требует применения современной вычислительной техники, что нельзя представить без математического обеспечения. Можно отметить, что на стыке математики и других конкретных наук возникли дисциплины «пограничного» характера, такие как математическая психология, математическая социология и т.д. В методах исследования синтетических наук, таких как кибернетика, информатика, бионика и др. математика выполняет определяющую роль.

Возрастание взаимосвязи естественных, общественных и технических наук и процесс их математизации представляет собой ту основу, на которой формируются и приобретают общенаучный статус такие понятия, как функция, система, структура, модель, элемент, множество, вероятность, оптимальность, дифференциал, интеграл и др.

Моделирование – метод научного познания, основанный на изучении реальных объектов посредством изучения моделей этих объектов, т.е. посредством изучения более доступных для исследования и (или) вмешательства объектов-заместителей естественного или искусственного происхождения, обладающих свойствами реальных объектов (аналоги объектов, подобные реальным в структурном или функциональном плане).

При мысленном (образном) моделировании свойства реального объекта изучаются через мысленно-наглядные представления о нем (с этого варианта моделирования начинается, вероятно, любое первое изучение интересующего объекта).

При физическом (предметном) моделировании модель воспроизводит определенные геометрические, физические, функциональные свойства реального объекта, при этом являясь более доступной или удобной для исследования благодаря отличию от реального объекта в некотором не существенном для данного исследования плане (например, устойчивость небоскреба или моста, в некотором приближении, можно изучать на сильно уменьшенной физической модели – рискованно, дорого и вовсе не обязательно «крушить» реальные объекты).

При знаковом моделировании модель, являющаяся схемой, графиком, математической формулой, воспроизводит поведение определенной интересующей характеристики реального объекта благодаря тому, что существует и известна математическая зависимость этой характеристики от прочих параметров системы (построить приемлемые физические модели изменяющегося земного климата или электрона, излучающего электромагнитную волну при межуровневом переходе – задача безнадежная; да и устойчивость небоскреба, вероятно, неплохо заранее просчитать поточнее).

По степени адекватности модели прототипу их принято подразделять на эвристические (приблизительно соответствующие прототипу по изучаемому поведению в целом, но не позволяющие дать ответ на вопрос, насколько интенсивно должен происходить тот или иной процесс в реальности), качественные (отражающие принципиальные свойства реального объекта и качественно соответствующие ему по характеру поведения) и количественные (достаточно точно соответствующие реальному объекту, так что численные значения исследуемых параметров, являющиеся результатом исследования модели, близки к значениям тех же параметров в реальности).

Свойства любой модели не должны, да и не могут, точно и полностью соответствовать абсолютно всем свойствам соответствующего реального объекта в любых ситуациях. В математических моделях любой дополнительный параметр может привести к существенному усложнению решения соответствующей системы уравнений, при численном моделировании непропорционально вырастает время обработки задачи компьютером, нарастает ошибка счета. Таким образом, при моделировании является существенным вопрос об оптимальной, для данного конкретного исследования, степени соответствия модели оригиналу по вариантам поведения исследуемой системы, по связям с другими объектами и по внутренним связям исследуемой системы; в зависимости от вопроса, на который хочет ответить исследователь, одна и та же модель одного и того же реального объекта может быть признана адекватной или абсолютно не отражающей реальность.

Модель - это система, исследование которой служит средством для получения информации о другой системе ”. Модели классифицируют исходя из наиболее существенных признаков объектов. Понятие “модель” возникло в процессе опытного изучения мира. Первыми, кто применил модели на практике, были строители.

Способы создания моделей различны : физический, математический, физико-математический.

Физическое моделирование характеризуется тем, что исследования проводятся на установках, обладающих физическим подобием, т. е. сохраняющих полностью или хотя бы в основном природу явлений.

Более широкими возможностями обладает математическое моделирование . Это способ исследования различных процессов путем изучения явлений, имеющих различное физическое содержание, но описываемых одинаковыми математическими моделями. Математическое моделирование имеет огромное преимущество перед физическим, поскольку нет необходимости сохранять размеры модели. Это дает существенный выигрыш во времени и стоимости исследования.

Моделирование широко применяется в технике. Это и исследование гидроэнергетических объектов и космических ракет, специальные модели для наладки приборов управления и тренировки персонала, управляющего различными сложными объектами. Многообразно применение моделирования в военной технике. В последнее время особое значение пробрело моделирование биологических и физиологических процессов.

Общеизвестна роль моделирования общественно-исторических процессов. Применение моделей позволяет проводить контролируемые эксперименты в ситуациях, где экспериментирование на реальных объектах является практически невозможным или по каким-то причинам (экономическим, нравственным и т. д.) нецелесообразным.

Большое значение на современном этапе развития науки и техники приобретают задачи предсказания, управления, распознавания. Метод эволюционного моделирования возник при попытке воспроизведения на ЭВМ поведения человека. Эволюционное моделирование было предложено как альтернатива эвристическому и бионическому подходу, моделировавшему мозг человека в нейронных структурах и сетях. При этом основная идея звучала так: заменить процесс моделирования интеллекта моделированием процесса его эволюции.

Таким образом, моделирование превращается в один из универсальных методов познания в сочетании с ЭВМ. Особо хочется подчеркнуть роль моделирования - бесконечную последовательность уточненных представлений о природе.

В общем случае процесс моделирования состоит из следующих этапов:

1. Постановка задачи и определение свойств оригинала, подлежащих исследованию.

2. Констатация затруднительности или невозможности исследования оригинала в натуре.

3. Выбор модели, достаточно хорошо фиксирующей существенные свойства оригинала и легко поддающейся исследованию.

4. Исследование модели в соответствии с поставленной задачей.

5. Перенос результатов исследования модели на оригинал.

6. Проверка этих результатов.

Основными задачами являются: во-первых, выбор моделей и, во-вторых, перенос результатов исследования моделей на оригинал.

Лекция 1.

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ

    Современное состояние проблемы моделирования систем

Понятия модели и моделирования

Моделирование можно рассматривать как замещение исследуемогообъекта (оригинала) его условным образом, описанием или другим объектом,именуемым моделью и обеспечивающим близкое к оригиналу поведениев рамках некоторых допущений и приемлемых погрешностей. Моделированиеобычно выполняется с целью познания свойств оригинала путем исследованияего модели, а не самого объекта. Разумеется, моделирование оправдано в томслучае когда оно проще создания самого оригинала или когда последний покаким-то причинам лучше вообще не создавать.

Под моделью понимается физический или абстрактный объект, свойствакоторого в определенном смысле сходны со свойствами исследуемого объекта.При этом требования к модели определяются решаемой задачей и имеющимисясредствами. Существует ряд общих требований к моделям:

2) полнота – предоставление получателю всей необходимой информации

об объекте;

3) гибкость – возможность воспроизведения различных ситуаций во всем

диапазоне изменения условий и параметров;

4) трудоемкость разработки должна быть приемлемой для имеющегося

времени и программных средств.

Моделирование – это процесс построения модели объекта и исследованияего свойств путем исследования модели.

Таким образом, моделирование предполагает 2 основных этапа:

1) разработка модели;

2) исследование модели и получение выводов.

При этом на каждом из этапов решаются разные задачи и используются

отличающиеся по сути методы и средства.

На практике применяют различные методы моделирования. В зависимостиот способа реализации, все модели можно разделить на два больших класса:физические и математические.

Математическое моделирование принято рассматривать как средствоисследования процессов или явлений с помощью их математических моделей.

Под физическим моделированием понимается исследование объектов иявлений на физических моделях, когда изучаемый процесс воспроизводятс сохранением его физической природы или используют другое физическоеявление, аналогичное изучаемому. При этом физические модели предполагают, как правило, реальное воплощение тех физических свойстворигинала, которые являются существенными в конкретной ситуации.Например, при проектировании нового самолета создается его макет,обладающий теми же аэродинамическими свойствами; при планированиизастройки архитекторы изготавливают макет, отражающий пространственноерасположение ее элементов. В связи с этим физическое моделированиеназывают также макетированием .

Полунатурное моделирование представляет собой исследованиеуправляемых систем на моделирующих комплексах с включением в составмодели реальной аппаратуры. Наряду с реальной аппаратурой в замкнутуюмодель входят имитаторы воздействий и помех, математические моделивнешней среды и процессов, для которых неизвестно достаточно точноематематическое описание. Включение реальной аппаратуры или реальныхсистем в контур моделирования сложных процессов позволяет уменьшитьаприорную неопределенность и исследовать процессы, для которых нет точногоматематического описания. С помощью полунатурного моделированияисследования выполняются с учетом малых постоянных времени инелинейностей, присущих реальной аппаратуре. При исследовании моделей свключением реальной аппаратуры используется понятие динамическогомоделирования , при исследовании сложных систем и явлений -эволюционного , имитационного и кибернетического моделирования .

Очевидно, действительная польза от моделирования может быть полученатолько при соблюдении двух условий:

1) модель обеспечивает корректное (адекватное) отображение свойств

оригинала, существенных с точки зрения исследуемой операции;

2) модель позволяет устранить перечисленные выше проблемы, присущие

проведению исследований на реальных объектах.

2. Основные понятия математического моделирования

Решение практических задач математическими методами последовательноосуществляется путем формулировки задачи (разработки математическоймодели), выбора метода исследования полученной математической модели,анализа полученного математического результата. Математическаяформулировка задачи обычно представляется в виде геометрических образов,функций, систем уравнений и т.п. Описание объекта (явления) может бытьпредставлено с помощью непрерывной или дискретной, детерминированнойили стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявлениезакономерностей протекания различных явлений окружающего мира илиработы систем и устройств путем их математического описания имоделирования без проведения натурных испытаний. При этом используютсяположения и законы математики, описывающие моделируемые явления,системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованноеописание системы (или операции) на некотором абстрактном языке, например,в виде совокупности математических соотношений или схемы алгоритма,т. е. такое математическое описание, которое обеспечивает имитацию работысистем или устройств на уровне, достаточно близком к их реальномуповедению, получаемому при натурных испытаниях систем или устройств.

Любая ММ описывает реальный объект, явление или процесс с некоторойстепенью приближения к действительности. Вид ММ зависит как от природыреального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических,биологических и физических явлений, объектов, систем и различных устройствявляется одним из важнейших средств познания природы и проектированиясамых разнообразных систем и устройств. Известны примеры эффективногоиспользования моделирования в создании ядерных технологий, авиационных иаэрокосмических систем, в прогнозе атмосферных и океанических явлений,погоды и т.д.

Однако для таких серьезных сфер моделирования нередко нужнысуперкомпьютеры и годы работы крупных коллективов ученых по подготовкеданных для моделирования и его отладки. Тем не менее, и в этом случаематематическое моделирование сложных систем и устройств не толькоэкономит средства на проведение исследований и испытаний, но и можетустранить экологические катастрофы – например, позволяет отказаться отиспытаний ядерного и термоядерного оружия в пользу его математическогомоделирования или испытаний аэрокосмических систем перед их реальнымиполетами.Между тем математическое моделирование на уровне решения болеепростых задач, например, из области механики, электротехники, электроники,радиотехники и многих других областей науки и техники в настоящее времястало доступным выполнять на современных ПК. А при использованииобобщенных моделей становится возможным моделирование и достаточносложных систем, например, телекоммуникационных систем и сетей,радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальныхпроцессов (в природе или технике) математическими методами. В своюочередь, это требует формализации ММ процесса, подлежащего исследованию.Модель может представлять собой математическое выражение, содержащеепеременные, поведение которых аналогично поведению реальной системы.Модель может включать элементы случайности, учитывающие вероятностивозможных действий двух или большего числа «игроков», как, например, втеории игр; либо она может представлять реальные переменные параметрывзаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик системможно разделить на аналитическое, имитационное и комбинированное. В своюочередь, ММ делятся на имитационные и аналитические.

Аналитическое моделирование

Для аналитического моделирования характерно, что процессыфункционирования системы записываются в виде некоторых функциональныхсоотношений (алгебраических, дифференциальных, интегральных уравнений). Аналитическая модель может быть исследована следующими методами:

1) аналитическим, когда стремятся получить в общем виде явныезависимости для характеристик систем;

2) численным, когда не удается найти решение уравнений в общем виде иих решают для конкретных начальных данных;

3) качественным, когда при отсутствии решения находят некоторые егосвойства.

Аналитические модели удается получить только для сравнительно простыхсистем. Для сложных систем часто возникают большие математическиепроблемы. Для применения аналитического метода идут на существенноеупрощение первоначальной модели. Однако исследование на упрощенноймодели помогает получить лишь ориентировочные результаты. Аналитическиемодели математически верно отражают связь между входными и выходнымипеременными и параметрами. Но их структура не отражает внутреннююструктуру объекта.

При аналитическом моделировании его результаты представляются в видеаналитических выражений. Например, подключив RC -цепь к источникупостоянного напряжения E (R , C и E - компоненты данной модели), мыможем составить аналитическое выражение для временной зависимостинапряжения u (t ) на конденсаторе C :

Это линейное дифференциальное уравнение (ДУ) и являетсяаналитической моделью данной простой линейной цепи. Его аналитическоерешение, при начальном условии u (0) = 0 , означающем разряженныйконденсатор C в момент начала моделирования, позволяет найти искомуюзависимость – в виде формулы:

u (t ) = E (1− p (- t / RC )). (2)

Однако даже в этом простейшем примере требуются определенные усилиядля решения ДУ (1) или для применения систем компьютерной математики (СКМ) с символьными вычислениями – систем компьютернойалгебры. Для данного вполне тривиального случая решение задачимоделирования линейной RC -цепи дает аналитическое выражение (2)достаточно общего вида – оно пригодно для описания работы цепи при любыхноминалах компонентов R , C и E , и описывает экспоненциальный зарядконденсатора C через резистор R от источника постоянного напряжения E .

Безусловно, нахождение аналитических решений при аналитическоммоделировании оказывается исключительно ценным для выявления общихтеоретических закономерностей простых линейных цепей, систем и устройств.Однако его сложность резко возрастает по мере усложнения воздействий намодель и увеличения порядка и числа уравнений состояния, описывающихмоделируемый объект. Можно получить более или менее обозримыерезультаты при моделировании объектов второго или третьего порядка, но ужепри большем порядке аналитические выражения становятся чрезмерногромоздкими, сложными и трудно осмысляемыми. Например, даже простойэлектронный усилитель зачастую содержит десятки компонентов. Тем неменее, многие современные СКМ, например, системы символьной математикиMaple, Mathematica или среда MATLAB , способны в значительноймере автоматизировать решение сложных задач аналитическогомоделирования.

Одной из разновидностей моделирования является численное моделирование, которое заключается в получении необходимыхколичественных данных о поведении систем или устройств каким-либоподходящим численным методом, таким как методы Эйлера илиРунге-Кутта. На практике моделирование нелинейных систем и устройствс использованием численных методов оказывается намного болееэффективным, чем аналитическое моделирование отдельных частных линейныхцепей, систем или устройств. Например, для решения ДУ (1) или систем ДУв более сложных случаях решение в аналитическом виде не получается, но поданным численного моделирования можно получить достаточно полныеданные о поведении моделируемых систем и устройств, а также построитьграфики описывающих это поведение зависимостей.

Имитационное моделирование

Приимитационном 10имоделировании реализующий модель алгоритмвоспроизводит процесс функционирования системы во времени. Имитируютсяэлементарные явления, составляющие процесс, с сохранением их логическойструктуры и последовательности протекания во времени.

Основным преимуществом имитационных моделей по сравнениюсаналитическими является возможность решения более сложных задач.

Имитационные модели позволяют легко учитывать наличие дискретных илинепрерывных элементов, нелинейные характеристики, случайные воздействияи др. Поэтому этот метод широко применяется на этапе проектированиясложных систем. Основным средством реализации имитационногомоделирования служит ЭВМ, позволяющая осуществлять цифровоемоделирование систем и сигналов.

В связи с этим определим словосочетание «компьютерноемоделирование », которое все чаще используется в литературе. Будем полагать,что компьютерное моделирование - это математическое моделированиес использованием средств вычислительной техники. Соответственно,технология компьютерного моделирования предполагает выполнениеследующих действий:

1) определение цели моделирования;

2) разработка концептуальной модели;

3) формализация модели;

4) программная реализация модели;

5) планирование модельных экспериментов;

6) реализация плана эксперимента;

7) анализ и интерпретация результатов моделирования.

При имитационном моделировании используемая ММ воспроизводиталгоритм («логику») функционирования исследуемой системы во времени приразличных сочетаниях значений параметров системы и внешней среды.

Примером простейшей аналитической модели может служить уравнениепрямолинейного равномерного движения. При исследовании такого процессас помощью имитационной модели должно быть реализовано наблюдениеза изменением пройденного пути с течением времени.Очевидно, в одних случаях более предпочтительным являетсяаналитическое моделирование, в других - имитационное (или сочетание того идругого). Чтобы выбор был удачным, необходимо ответить на два вопроса.

С какой целью проводится моделирование?

К какому классу может быть отнесено моделируемое явление?

Ответы на оба эти вопроса могут быть получены в ходе выполнения двухпервых этапов моделирования.

Имитационные модели не только по свойствам, но и по структуресоответствуют моделируемому объекту. При этом имеется однозначное и явноесоответствие между процессами, получаемыми на модели, и процессами,протекающими на объекте. Недостатком имитационного моделированияявляется большое время решения задачи для получения хорошей точности.

Результаты имитационного моделирования работы стохастическойсистемы являются реализациями случайных величин или процессов. Поэтомудля нахождения характеристик системы требуется многократное повторение ипоследующая обработка данных. Чаще всего в этом случае применяетсяразновидность имитационного моделирования - статистическое

моделирование (или метод Монте-Карло), т.е. воспроизведение в моделяхслучайных факторов, событий, величин, процессов, полей.

По результатам статистического моделирования определяют оценкивероятностных критериев качества, общих и частных, характеризующихфункционирование и эффективность управляемой системы. Статистическоемоделирование широко применяется для решения научных и прикладных задачв различных областях науки и техники. Методы статистическогомоделирования широко применяются при исследовании сложныхдинамических систем, оценке их функционирования и эффективности.

Заключительный этап статистического моделирования основан наматематической обработке полученных результатов. Здесь используют методыматематической статистики (параметрическое и непараметрическое оценивание,проверку гипотез). Примером параметрической оценки являетсявыборочное среднее показателя эффективности. Среди непараметрическихметодов большое распространение получил метод гистограмм .

Рассмотренная схема основана на многократных статистическихиспытаниях системы и методах статистики независимых случайных величин.Эта схема является далеко не всегда естественной на практике и оптимальнойпо затратам. Сокращение времени испытания систем может быть достигнуто засчет использования более точных методов оценивания. Как известно изматематической статистики, наибольшую точность при заданном объемевыборки имеют эффективные оценки. Оптимальная фильтрация и методмаксимального правдоподобия дают общий метод получения таких оценок.В задачах статистического моделирования обработка реализацийслучайных процессов необходима не только для анализа выходных процессов.

Весьма важен также и контроль характеристик входных случайныхвоздействий. Контроль заключается в проверке соответствия распределенийгенерируемых процессов заданным распределениям. Эта задача частоформулируется как задача проверки гипотез .

Общей тенденцией моделирования с использованием ЭВМ у сложныхуправляемых систем является стремление к уменьшению временимоделирования, а также проведение исследований в реальном масштабевремени. Вычислительные алгоритмы удобно представлять в рекуррентнойформе, допускающей их реализацию в темпе поступления текущей информации.

ПРИНЦИПЫ СИСТЕМНОГО ПОДХОДА В МОДЕЛИРОВАНИИ

    Основные положения теории систем

Основные положения теории систем возникли в ходе исследованиядинамических систем и их функциональных элементов. Под системой понимают группу взаимосвязанных элементов, действующих совместнос целью выполнения заранее поставленной задачи. Анализ систем позволяетопределить наиболее реальные способы выполнения поставленной задачи,обеспечивающие максимальное удовлетворение поставленных требований.

Элементы, составляющие основу теории систем, не создаются с помощьюгипотез, а обнаруживаются экспериментальным путем. Для того чтобы начатьпостроение системы, необходимо иметь общие характеристикитехнологических процессов. Это же справедливо и в отношении принциповсоздания математически сформулированных критериев, которым долженудовлетворять процесс или его теоретическое описание. Моделированиеявляется одним из наиболее важных методов научного исследования иэкспериментирования.

При построении моделей объектов используется системный подход,представляющий собой методологию решения сложных задач, в основекоторой лежит рассмотрение объекта как системы, функционирующейв некоторой среде. Системный подход предполагает раскрытие целостностиобъекта, выявление и изучение его внутренней структуры, а также связейс внешней средой. При этом объект представляется как часть реального мира,которая выделяется и исследуется в связи с решаемой задачей построениямодели. Кроме этого, системный подход предполагает последовательныйпереход от общего к частному, когда в основе рассмотрения лежит цельпроектирования, а объект рассматривается во взаимосвязи с окружающейсредой.

Сложный объект может быть разделен на подсистемы, представляющие собой части объекта, удовлетворяющие следующим требованиям:

1) подсистема является функционально независимой частью объекта. Онасвязана с другими подсистемами, обменивается с ними информацией иэнергией;

2) для каждой подсистемы могут быть определены функции или свойства,не совпадающие со свойствами всей системы;

3) каждая из подсистем может быть подвергнута дальнейшему делению доуровня элементов.

В данном случае под элементом понимается подсистема нижнего уровня,дальнейшее деление которой нецелесообразно с позиций решаемой задачи.

Таким образом, систему можно определить как представление объектав виде набора подсистем, элементов и связей с целью его создания,исследования или усовершенствования. При этом укрупненное представлениесистемы, включающее в себя основные подсистемы и связи между ними,называется макроструктурой, а детальное раскрытие внутреннего строениясистемы до уровня элементов – микроструктурой.

Наряду с системой обычно существует надсистема – система болеевысокого уровня, в состав которой входит рассматриваемый объект, причёмфункция любой системы может быть определена только через надсистему.

Следует выделить понятие среды как совокупности объектов внешнего мира,существенно влияющих на эффективность функционирования системы, но невходящих в состав системы и ее надсистемы.

В связи с системным подходом к построению моделей используетсяпонятие инфраструктуры, описывающей взаимосвязи системы с ееокружением (средой).При этом выделение, описание и исследование свойств объекта,существенных в рамках конкретной задачи называется стратификациейобъекта, а всякая модель объекта является его стратифицированнымописанием.

Для системного подхода важным является определение структуры системы, т.е. совокупности связей между элементами системы, отражающих ихвзаимодействие. Для этого вначале рассмотрим структурный ифункциональный подходы к моделированию.

При структурном подходе выявляются состав выделенных элементов системы и связи между ними. Совокупность элементов и связей позволяет судить о структуре системы. Наиболее общим описанием структуры является топологическое описание. Оно позволяет определить составные части системыи их связи с помощью графов. Менее общим является функциональное описание, когда рассматриваютсяо тдельные функции, т. е. алгоритмы поведения системы. При этом реализуетсяфункциональный подход, определяющий функции, которые выполняетсистема.

На базе системного подхода может быть предложена последовательностьразработки моделей, когда выделяют две основные стадии проектирования:макропроектирование и микропроектирование.

На стадии макропроектирования строится модель внешней среды,выявляются ресурсы и ограничения, выбирается модель системы и критериидля оценки адекватности.

Стадия микропроектирования в значительной степени зависит отконкретного типа выбранной модели. В общем случае предполагает созданиеинформационного, математического, технического и программногообеспечения системы моделирования. На этой стадии устанавливаютсяосновные технические характеристики созданной модели, оцениваются времяработы с ней и затраты ресурсов для получения заданного качества модели.

Независимо от типа модели при ее построении необходиморуководствоваться рядом принципов системного подхода:

1) последовательное продвижение по этапам создания модели;

2) согласование информационных, ресурсных, надежностных и другиххарактеристик;

3) правильное соотношение различных уровней построения модели;

4) целостность отдельных стадий проектирования модели.

Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.



Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

Задача реализации заключается в переходе от внешнего описания системы к ее внутреннему описанию. Задача реализации представляет собой одну из важнейших задач в исследовании систем и, по существу, отражает абстрактную формулировку научного подхода к построению математической модели. В такой постановке задача моделирования заключается в построении множества состояний и вход-выходного отображения исследуемой системы на основе экспериментальных данных. В настоящее время задача реализации решена в общем виде для систем, у которых отображение вход-выход линейно. Для нелинейных систем общего решения задачи реализации пока не найдено.

Научные исследования, связанные с созданием новых машин

Основными направлениями научных иссле­дований, связанных с повышением качества, надежности и безопасности машин и обо­рудования, являются:

фундаментальные исследования в области новых рабочих процессов, ресурсосберегаю­щих технологий и новых конструкционных материалов;

создание, освоение и внедрение современ­ных методов конструирования машин, обосно­вания их оптимальных рабочих параметров, конструктивных форм;

получение новых материалов, разработка деталей, узлов и агрегатов с соблюдением требований по технологическим параметрам;

разработка новых метрологических мето­дов, систем и средств;

проведение ускоренных и обычных испыта­ний на надежность и ресурс моделей и на­турных изделий;

организация эксплуатации машин с за­данной степенью надежности, безопасности, экономичности при соблюдении требований эргономики и экологии.

Первостепенное значение в современном машиностроении приобретают проблемы на­дежности и безопасности техники с учетом роли человеческого фактора.

Научной базой применения концептуаль­ных, конструкторских, технологических и материаловедческих решений для всех этапов создания машин и конструкций должны стать принципы и методы физического и ма­тематического моделирования.

Физическое и математическое моделиро­вание в машиностроении бази­руется на общих подходах, развиваемых на основе фундаментальных наук, прежде всего математики, физики, химии и др.

Математическое моделирование и вычис­лительный эксперимент становятся новым ме­тодом анализа сложных машин, рабочих про­цессов и системы машина - человек - сре­да. Физическое и математическое моделиро­вание проводится в несколько стадий.

Начинается моделирование с постановки и уточнения задачи, рассмотрения физи­ческих аспектов, определения степени влия­ния на моделируемые процессы различных факторов в программируемых условиях функ­ционирования моделируемых систем или про­цесса. На этой основе строится физическая модель.

Затем на ее базе строится математиче­ская модель, включающая в себя матема­тическое описание моделируемого процесса или механической системы в соответствии с закономерностями кинематики и динамики, поведения материалов под действием нагру­зок и температур и т. д. Модель исследуется по таким направлениям, как соответствие поставленной задаче, существование решения и т. п.

На третьей стадии выбирается вычислитель­ный алгоритм решения задачи моделирова­ния. Современные численные методы позво­ляют снять ограничения на степень сложно­сти математических моделей.

Далее используя современные математические пакеты программ, такие как MathCad, Matlab, которые обладают большим набором возможностей и функций и позволяют решать задачи как аналитическими, так и численными методами, проводят вычислительные эксперименты.


При проведении вычислений и получении результатов необходимо особое внимание уделять грамотности и правильности представления решений.

Завершающая стадия предусматривает анализ полученных результатов, сопостав­ление их с данными физических экспери­ментов на натурных образцах изделий. В слу­чае необходимости ставится задача уточне­ния выбранной математической модели с по­следующим повторением указанных выше стадий.

После завершения работ по физическому и математическому моделированию форми­руются общее заключение и выводы по конструкторским, технологическим и эксплуа­тационным мероприятиям, связанным с созда­нием новых материалов и технологий, обес­печением условий надежной и безопасной работы машин, удовлетворением требований эргономики и экологии.

В последнее время чисто математическое моделирование крайне редко встречается при проектировании и конструировании механизмов и деталей. Традиционное математическое моделирование при проектировании современных механизмов и деталей, заменяется на компьютерное моделирование. Основным методом применяемым современными программными продуктами является метод конечных элементов. Подобное моделирование помимо точности вычисления и наглядного представления о поведении объекта исследования в заданных условиях ускоряет процесс проектирования и уменьшает затраты на проведение исследований с физическими моделями.

Создание новых машин и конструкций с повышенным уровнем рабочих параметров, экологических и эргономических требований представляет собой сложную комплексную проблему, эффективное решение которой ба­зируется на физическом и математическом моделировании.

Разработка эскизного проекта предусмат­ривает построение физических моделей на основании опыта создания прототипов. Ма­тематические модели включают новые зна­ния об анализе и синтезе структурных и ки­нематических схем, о динамических характе­ристиках взаимодействия между основными элементами с учетом рабочих сред и про­цессов. На этом же этапе формируются и решаются в общем виде вопросы экологии и эргономики.

При разработке технического проекта дол­жен осуществляться переход к физическим моделям основных узлов, испытываемым в лабораторных условиях. К математиче­скому обеспечению технического проекта от­носятся системы автоматизированного про­ектирования.

Создание принципиально новых машин (машин будущего) требует совершенствова­ния методов математического моделирова­ния и построения новых моделей. Это в зна­чительной мере относится к уникальным объ­ектам новой техники (атомная и термо­ядерная энергетика, ракетная, авиационная и криогенная техника), а также к новым технологическим, транспортным аппаратам и устройствам (лазерные и импульсные техно­логические установки, системы на магнит­ной подвеске, глубоководные аппараты, адиа­батные двигатели внутреннего сгорания и др.).

На этапе рабочего проектирования физи­ческое моделирование предполагает созда­ние макетов и испытательных стендов для проверки конструкторских решений. Мате­матическая сторона этого этапа связана с разработкой автоматизированных систем под­готовки технической документации. Матема­тические модели уточняют по мере детали­зации и уточнения граничных условий за­дач конструирования.

Одновременно с проектированием решают­ся конструкторско-технологические задачи вы­бора материалов, назначения технологий изготовления и контроля. В области конструк­ционного материаловедения используют экспе­риментальное определение физико-механи­ческих свойств на лабораторных образцах как при стандартных испытаниях, так и при испытаниях в условиях, имитирующих экс­плуатационные. При изготовлении высокоот­ветственных деталей и узлов из новых ма­териалов (высокопрочные коррозионно- и радиационно стойкие, плакированные, компо­зиционные и др.) необходимо проводить спе­циализированные испытания по определению предельных состояний и критериев повреж­дения. Математическое моделирование исполь­зуют для построения имитационных моделей механического поведения материалов в раз­личных условиях нагружения с учетом технологии получения материалов и формообразования деталей машин. Имитационные модели используют при выполнении слож­ного математического анализа тепловых, диффузионных, электромагнитных и других явлений, сопутствующих новым технологиям.

На основе физических и имитационных мо­делей получают сложный комплекс физико-механических свойств, характеристики ко­торых должны использоваться при создании на базе компьютеров банков данных о современных и перспективных материалах.

На этапе разработки технологии изготов­ления деталей, узлов и машин в целом физическое моделирование используют при ла­бораторной и опытно-промышленной отработ­ке технологических процессов как традици­онных (механообработка, литье и др.), так и новых (лазерная обработка, плазменная, взрывная, магнитно-импульсная и др.).

Параллельно с технологическими процес­сами разрабатываются физические модели, а также "принципы контроля и дефектоско­пии материалов и готовых изделий. Мате­матические модели технологических процес­сов позволяют решать сложные задачи теплопроводности, термоупругости, сверх пластичности, волновых и других явлений с целью рационального выбора для данных деталей эффективных методов и параметров обработки.

На этапе создания машин и конструкций, когда осуществляется доводка и испытания головных образцов и опытных партий, фи­зическое моделирование предусматривает про­ведение стендовых и натурных испытаний. Стендовые испытания обеспечивают высокую информативность и сокращают сроки довод­ки опытных образцов изделий массового и крупносерийного производства. Натурные ис­пытания необходимы для оценки работоспо­собности и надежности уникальных изделий на предельных режимах. При этом задачами математического моделирования становятся алгоритмы и программы управления испыта­ниями. Анализ получаемой эксперименталь­ной информации следует проводить на компьютере в реальном масштабе времени.

При эксплуатации машин физическое мо­делирование используют для диагностики со­стояния и обоснования продления ресурса безопасной работы. Математическое(компьютерное) модели­рование на этом этапе имеет целью построе­ние моделей эксплуатационных повреждений по комплексу принятых при проектировании критериев: Проработка таких моделей вы­полняется в настоящее время для объектов атомного и теплового энергетического маши­ностроения, ракетной и авиационной техники и других объектов.

Научной базой применения концептуальных, конструкторских, технологических и материаловедческих решений для всех этапов создания машин и конструкций должны стать принципы и методы физического и математического моделирования.

Физическое и математическое моделирование в машиностроении базируется на общих подходах, развиваемых на основе фундаментальных наук, прежде всего математики, физики, химии и др. Математическое моделирование и вычислительный эксперимент становятся новым методом анализа сложных машин, рабочих процессов и системы машина - человек - среда. Физическое и математическое моделирование проводится в несколько стадий.

Начинается моделирование с постановки и уточнения задачи, рассмотрения физических аспектов, определения степени влияния на моделируемые процессы различных факторов в программируемых условиях функционирования моделируемых систем или процесса. На этой основе строится физическая модель. Затем на ее базе строится математическая модель, включающая в себя математическое описание моделируемого процесса или механической системы в соответствии с закономерностями кинематики и динамики, поведения материалов под действием нагрузок и температур и т. д. Модель исследуется по таким направлениям, как соответствие поставленной задаче, существование решения и т. п.

На следующей стадии выбирается вычислительный алгоритм решения задачи моделирования. Современные численные методы позволяют снять ограничения на степень сложности математических моделей.

Далее осуществляется программирование вычислительного алгоритма для ЭВМ . При этом создаются проблемно-ориентированные пакеты прикладных программ, позволяющие на их основе создавать сложные программы для комплексного описания процессов, машин и систем машин.
На следующей стадии выполняются расчеты на ЭВМ по разработанным программам. Существенное значение при этом имеет рациональное представление конечных результатов. Завершающая стадия предусматривает анализ полученных результатов, сопоставление их с данными физических экспериментов на натурных образцах изделий. В случае необходимости ставится задача уточнения выбранной математической модели с последующим повторением указанных выше стадий.

После завершения работ по физическому и математическому моделированию формируются общее заключение и выводы по конструкторским, технологическим и эксплуатационным мероприятиям, связанным с созданием новых материалов и технологий, обеспечением условий надежной и безопасной работы машин, удовлетворением требований эргономики и экологии. Создание новых машин и конструкций с повышенным уровнем рабочих параметров, экологических и эргономических требований представляет собой сложную комплексную проблему, эффективное решение которой базируется на физическом и математическом моделировании. Общая схема использования моделирования на различных этапах создания машин представлена на картинке ниже.

Разработка эскизного проекта предусматривает построение физических моделей на основании опыта создания прототипов. Математические модели включают новые знания об анализе и синтезе структурных и кинематических схем, о динамических характеристиках взаимодействия между основными элементами с учетом рабочих сред и процессов. На этом же этапе формируются и решаются в общем виде вопросы экологии и эргономики.

При разработке технического проекта должен осуществляться переход к физическим моделям основных узлов, испытываемым в лабораторных условиях. К математическому обеспечению технического проекта относятся системы автоматизированного проектирования.
Создание принципиально новых машин (машин будущего) требует совершенствования методов математического моделирования и построения новых моделей. Это в значительной мере относится к уникальным объектам новой техники (атомная и термоядерная энергетика, ракетная, авиационная и криогенная техника) , а также к новым технологическим, транспортным аппаратам и устройствам (лазерные и импульсные технологические установки, системы на магнитной подвеске, глубоководные аппараты, адиабатные двигатели внутреннего сгорания и др.) . При этом для реализации задач математического моделирования необходимы сверхмощные ЭВМ и дорогостоящие программы.
На этапе рабочего проектирования физическое моделирование предполагает создание макетов и испытательных стендов для проверки конструкторских решений. Математическая сторона этого этапа связана с разработкой автоматизированных систем подготовки технической документации. Математические модели уточняют по мере детализации и уточнения граничных условий задач конструирования.

Одновременно с проектированием решаются конструкторско-технологические задачи выбора материалов, назначения технологий изготовления и контроля. В области конструкционного материаловедения используют экспериментальное определение физико-механических свойств на лабораторных образцах как при стандартных испытаниях, так и при испытаниях в условиях, имитирующих эксплуатационные. При изготовлении высокоответственных деталей и узлов из новых материалов (высокопрочные коррозионно- и радиационно стойкие, плакированные, композиционные и др.) необходимо проводить специализированные испытания по определению предельных состояний и критериев повреждения. Математическое моделирование используют для построения имитационных моделей механического поведения материалов в различных условиях нагружения с учетом технологии получения материалов и формообразования деталей машин. Имитационные модели используют при выполнении сложного математического анализа тепловых, диффузионных, электромагнитных и других явлений, сопутствующих новым технологиям.

На основе физических и имитационных моделей получают сложный комплекс физико-механических свойств, характеристики которых должны использоваться при создании на базе ЭВМ банков данных о современных и перспективных материалах.
На этапе разработки технологии изготовления деталей, узлов и машин в целом физическое моделирование используют при лабораторной и опытно-промышленной отработке технологических процессов как традиционных (механообработка, литье и др.) , так и новых (лазерная обработка, плазменная, взрывная, магнитно-импульсная и др.) .

Параллельно с технологическими процессами разрабатываются физические модели, а также принципы контроля и дефектоскопии материалов и готовых изделий. Математические модели технологических процессов позволяют решать сложные задачи теплопроводности, термоупругости, сверхпластичности, волновых и других явлений с целью рационального выбора для данных деталей эффективных методов и параметров обработки.

На этапе создания машин и конструкций , когда осуществляется доводка и испытания головных образцов и опытных партий, физическое моделирование предусматривает проведение стендовых и натурных испытаний. Стендовые испытания обеспечивают высокую информативность и сокращают сроки доводки опытных образцов изделий массового и крупносерийного производства. Натурные испытания* необходимы для оценки работоспособности и надежности уникальных изделий на предельных режимах. При этом задачами математического моделирования становятся алгоритмы и программы управления испытаниями. Анализ получаемой экспериментальной информации следует проводить на ЭВМ в реальном масштабе времени.

При эксплуатации машин физическое моделирование используют для диагностики состояния и обоснования продления ресурса безопасной работы. Математическое моделирование на этом этапе имеет- целью построение моделей эксплуатационных повреждений по комплексу принятых при проектировании критериев: Проработка таких моделей выполняется в настоящее время для объектов атомного и теплового энергетического машиностроения, ракетной и авиационной техники и других объектов.

Математическое моделирование позволяет автоматизировать управление рабочими режимами с помощью ЭВМ по заданным программам, обеспечить оптимальное регулирование переходных процессов и исключить с помощью автоматизированных систем защиты достижение предельных ситуаций, ведущих к аварийным отказам.