Формула для l в бросили под углом. Полет тела, брошенного под углом к горизонту

Движение тела, брошенного под углом к горизонту

Рассмотрим движение тела, брошенного со скоростью V 0 , вектор которой направлен под углом α к горизонту, в плоскости XOY, расположив тело в момент бросания в начало координат, как это изображено на рисунке 1.

В отсутствии сил сопротивления, движение тела, брошенного под углом к горизонту, можно рассматривать как частный случай криволинейного движения под действием силы тяжести. Применяя 2 - ой закон Ньютона

∑ F i

получаем

mg = ma ,

a = g

Проекции вектора ускорения a на оси ОХ и ОУ равны:

= −g

где g = const - это

ускорение свободного падения,

которого всегда

направлен вертикально вниз,

численное значение g = 9,8м/с2 ;

= −g

т.к. ось ОУ на

рисунке 1 направлена вверх, в случае, когда ось OY направлена вниз, то проекция вектора

2 a на ось ОУ будет положительна (читая условия задач, выбирайте сами направление осей, если это не прописано в условии).

Значения проекций вектора ускорения a на оси ОХ и ОУ дают основание сделать

следующий вывод:

тело, брошенное под углом к горизонту, одновременно участвует в двух движениях - равномерном по горизонтали и равнопеременном по

вертикали.

Скорость тела в таком случае

V = Vx + Vy

Скорость тела в начальный момент времени (в момент бросания тела)

V 0 = V 0 x

V 0 y .

Проекции вектора начальной скорости на оси ОХ и ОУ равны

V cosα

V 0 y

V 0 sin α

Для равнопеременного движения зависимости скорости и перемещения от времени задаются уравнениями:

V 0 + at

S 0 + V 0 t +

и S 0 - это скорость и перемещение тела в начальный момент времени,

и S t - это скорость и перемещение тела в момент времени t.

Проекции векторного уравнения (8) на оси ОХ и ОУ равны

V 0 x

Ax t ,

V ty = V 0 y + a y t

Const

V 0 y - gt

Проекции векторного уравнения (9) на оси ОХ и ОУ равны

S ox + V ox t +

a y t 2

S 0 y

V oy t +

с учетом равенств (4), получаем

S 0 y

V oy t -

gt 2

где Sox и Soy -

координаты тела

в начальный момент времени,

а Stx и Sty -

координаты тела в момент времени t.

За время своего движения t (от момента бросания до момента падения на тот же

уровень) тело поднимается на максимальную высоту hmax , спускается с неё и отлетает от места бросания на расстояние L (дальность полета) - см. рисунок 1.

1) Время движения тела t можно найти, учитывая значения координат тела Sy в

Soy = 0, Sty = 0,

подставив значения Voy и (14) во второе уравнение системы (13), получаем

2) Дальность полета L можно найти, учитывая значения координат тела Sх в

начальный момент времени и в момент времени t (см. рис.1)

Soх = 0, Stх = L,

подставив значения Vox и (17) в первое уравнение системы (13), получаем

L = V 0 cosα × t ,

откуда, с учетом (16), получаем

L = V cosα ×

2V sin α

3) Максимальную высоту подъёма тела h max можно найти, учитывая значение

скорости тела V в точке максимального подъёма тела

V 0 x

Т.к. в этой точке V y

Используя вторые уравнения систем (11) и (13) ,

значение Voу , а также тот факт,

что в точке максимального подъёма тела Sy = hmax , получаем

0 = V 0 sin α - g × t под

gt под2

V 0 sin α × t -

h max

где tпод - время подъёма - время движения на высоту максимального подъёма тела.

Решая эту систему, получаем

t под =

V 0 sin α

sin 2 α

Сравнение значений (16) и (22), даёт основание сделать вывод

· время движения на высоту максимального подъёма тела (t под ) равно времени спуска тела (tсп ) с этой высоты и равно половине времени всего движения тела от момента бросания до момента падения на тот же уровень

t под

T сп

Изучать движение тела, брошенного со скоростью V 0 , вектор которой направлен под углом α к горизонту, в плоскости XOY, очень наглядно на компьютерной модели

"Свободное падение тел" в сборнике компьютерных моделей "Открытая физика"

компании ФИЗИКОН. В этой модели можно задавать разные начальные условия.

Например, рассмотренный нами случай нужно задавать (команда "Очистить") при начальном условии h = 0 и выбранных V0 и α. Команда "Старт" продемонстрирует движение тела и даст картинку траектории движения и направление векторов скорости тела в фиксированные моменты времени.

Рис.2. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело движется из точки начала координат и падает на том же уровне .

Если условие задачи отличается от рассмотренного нами случая, то необходимо

для решения задачи, выбрав направление осей, разместить тело в начальный момент

времени, изобразить траекторию движения тела до точки падения, таким образом

определив координаты тела в начальный и конечный моменты времени. Затем

использовать уравнения (3), (5), (8) и (9) как основу для решения и рассмотренный выше

алгоритм решения задачи.

Рассмотрим частные случаи.

6 1. Тело бросили со скоростью V 0 , вектор которой направлен под углом α к

горизонту, с высоты h и оно упало на расстоянии L от места бросания. y в начальный

Soy = h,

а значения остальных координат будут выбраны так же, как мы выбирали.

Рис.3. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело движется из точки h = 50м и падает на нулевой уровень .

2. Тело бросили горизонтально со скоростью V 0 , с высоты h и оно упало на расстоянии L от места бросания. Отличие от рассмотренного нами случая заключается в том, значения координат тела S y в начальный момент определится так же уравнением (25),

а значения остальных координат будут выбраны так же, как мы выбирали. Но в этом случае начальная скорость тела в проекции на ось ОУ равна нулю (так как α = 0), т.е.

проекции вектора начальной скорости на оси ОХ и ОУ равны

V 0 y

Рис.4. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело, брошенное горизонтально, движется из точки h = 50м и падает на нулевой уровень .

Когда изучают механическое движение в физике, то после ознакомления с равномерным и равноускоренным перемещением объектов, переходят к рассмотрению движения тела под углом к горизонту. В данной статье изучим подробнее этот вопрос.

Что собой представляет движение тела под углом к горизонту?

Этот тип перемещения объектов возникает, когда человек бросает камень в воздух, пушка совершает выстрел ядром, или вратарь выбивает от ворот футбольный мяч. Все подобные случаи рассматриваются наукой баллистикой.

Отмеченный вид перемещения объектов в воздухе происходит по параболической траектории. В общем случае проведение соответствующих расчетов является делом не простым, поскольку необходимо учитывать сопротивление воздуха, вращение тела во время полета, вращение Земли вокруг оси и некоторые другие факторы.

В данной статье мы не будем учитывать все эти факторы, а рассмотрим вопрос с чисто теоретической точки зрения. Тем не менее, полученные формулы достаточно хорошо описывают траектории тел, перемещающихся на небольшие расстояния.

Получение формул для рассматриваемого вида движения

Выведем тела к горизонту под углом. При этом будем учитывать только одну-единственную силу, действующую на летящий объект - силу тяжести. Поскольку она действует вертикально вниз (параллельно оси y и против нее), то, рассматривая горизонтальную и вертикальную составляющие движения, можно сказать, что первая будет иметь характер равномерного прямолинейного перемещения. А вторая - равнозамедленного (равноускоренного) прямолинейного перемещения с ускорением g. То есть, компоненты скорости через значение v 0 (начальная скорость) и θ (угол направления движения тела) запишутся так:

v x = v 0 *cos(θ)

v y = v 0 *sin(θ)-g*t

Первая формула (для v x) справедлива всегда. Что касается второй, то тут нужно отметить один нюанс: знак минус перед произведением g*t ставится только в том случае, если вертикальная компонента v 0 *sin(θ) направлена вверх. В большинстве случаев так и происходит, однако, если бросить тело с высоты, направив его вниз, тогда в выражении для v y следует поставить знак "+" перед g*t.

Проинтегрировав формулы для компонент скорости по времени, и учитывая начальную высоту h полета тела, получаем уравнения для координат:

x = v 0 *cos(θ)*t

y = h+v 0 *sin(θ)*t-g*t 2 /2

Вычисление дальности полета

При рассмотрении в физике движения тела к горизонту под углом, полезным для практического применения, оказывается расчет дальности полета. Определим ее.

Поскольку это перемещение представляет собой равномерное движения без ускорения, то достаточно подставить в него время полета и получить необходимый результат. Дальность полета определяется исключительно перемещением вдоль оси x (параллельно горизонту).

Время нахождения тела в воздухе можно вычислить, приравняв к нулю координату y. Имеем:

0 = h+v 0 *sin(θ)*t-g*t 2 /2

Это квадратное уравнение решаем через дискриминант, получаем:

D = b 2 - 4*a*c = v 0 2 *sin 2 (θ) - 4*(-g/2)*h = v 0 2 *sin 2 (θ) + 2*g*h,

t = (-b±√D)/(2*a) = (-v 0 *sin(θ)±√(v 0 2 *sin 2 (θ) + 2*g*h))/(-2*g/2) =

= (v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

В последнем выражении один корень со знаком минуса отброшен, в виду его незначительного физического значения. Подставив время полета t в выражение для x, получаем дальность полета l:

l = x = v 0 *cos(θ)*(v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

Проще всего это выражение проанализировать, если начальная высота равна нулю (h=0), тогда получим простую формулу:

l = v 0 2 *sin(2*θ)/g

Это выражение свидетельствует, что максимальную дальность полета можно получить, если тело бросить под углом 45 o (sin(2*45 o) = м1).

Максимальная высота подъема тела

Помимо дальности полета, также полезно найти высоту над землей, на которую может подняться тело. Поскольку этот тип движения описывается параболой, ветви которой направлены вниз, то максимальная высота подъема является ее экстремумом. Последний рассчитывается путем решения уравнения для производной по t для y:

dy/dt = d(h+v 0 *sin(θ)*t-g*t 2 /2)/dt = v 0 *sin(θ)-gt=0 =>

=> t = v 0 *sin(θ)/g.

Подставляем это время в уравнение для y, получаем:

y = h+v 0 *sin(θ)*v 0 *sin(θ)/g-g*(v 0 *sin(θ)/g) 2 /2 = h + v 0 2 *sin 2 (θ)/(2*g).

Это выражение свидетельствует, что на максимальную высоту тело поднимется, если его бросить вертикально вверх (sin 2 (90 o) = 1).

Кинематика - это просто!


После броска, в полете, на тело действуют сила тяжести и сила сопротивления воздуха .
Если движение тела происходит на малых скоростях, то при расчете силу сопротивления воздуха обычно не учитывают.
Итак, можно считать, что на тело действует только сила тяжести, значит движение брошенного тела является свободным падением .
Если это свободное падение, то ускорение брошенного тела равно ускорению свободного падения g .
На малых высотах относительно поверхности Земли сила тяжести Fт практически не меняется, поэтому тело движется с постоянным ускорением.

Итак, движение тела, брошенного под углом к горизонту является вариантом свободного падения, т.е. движением с постоянным ускорением и криволинейной траекторией (т.к. векторы скорости и ускорения не совпадают по направлению).

Формулы этого движения в векторном виде: Для расчета движения тела выбирают прямоугольную систему координат XOY, т.к. траекторией движения тела является парабола, лежащая в плоскости, проходящей через векторы Fт и Vo .
За начало координат обычно выбирают точку начала движения брошенного тела.


В любой момент времени изменение скорости движения тела по направлению совпадает с ускорением.

Вектор скорости тела в любой точке траектории можно разложить на 2 составляющих: вектор V x и вектор V y .
В любой момент времени скорость тела будет определяться, как геометрическая сумма этих векторов:

Согласно рисунку, проекции вектора скорости на координатные оси OX и OY выглядят так:


Расчет скорости тела в любой момент времени:

Расчет перемещения тела в любой момент времени:

Каждой точке траектории движения тела соответствуют координаты X и Y:


Расчетные формулы для координат брошенного тела в любой момент времени:


Из уравнения движения можно вывести формулы для расчета максимальной дальности полета L:

и максимальной высоты полета Н:


P.S.
1. При равных по величине начальных скоростях Vo дальность полета:
- возрастает, если начальный угол бросания увеличивать от 0 o до 45 o ,
- убывает, если начальный угол бросания увеличивать от 45 o до 90 o .

2. При равных начальных углах бросания дальность полета L возрастает с увеличением начальной скорости Vo.

3. Частным случаем движения тела, брошенного под углом к горизонту, является движение тела, брошенного горизонтально , при этом начальный угол бросания равен нулю.

До конца финального матча баскетбольного турнира Олимпиады в Мюнхене 1972-ого года оставалось 3 секунды. Американцы – сборная США — уже во всю праздновали победу! Наша команда – сборная СССР – выигрывала около 10-и очков у великой dream Team...

За несколько минут до окончания матча. Но, растеряв в концовке все преимущество, уже уступала одно очко 49:50. Дальше произошло невероятное! Иван Едешко бросает мяч из-за лицевой линии через всю площадку под кольцо американцев, где наш центровой Александр Белов принимает мяч в окружении двух соперников и вкладывает его в корзину. 51:50 – мы олимпийские чемпионы!!!

Я, будучи тогда ребенком, испытал сильнейшие эмоции – сначала разочарование и обиду, затем сумасшедший восторг! Эмоциональная память об этом эпизоде врезалась в мое сознание на всю жизнь! Посмотрите видео в Интернете по запросу «золотой бросок Александра Белова», не пожалеете.

Американцы тогда не признали поражения и отказались от получения серебряных медалей. Возможно ли за три секунды сделать то, что совершили наши игроки? Вспомним физику!

В этой статье мы рассмотрим движение тела, брошенного под углом к горизонту, составим в Excel программу решения этой задачи при различных сочетаниях исходных данных и попытаемся ответить на поставленный выше вопрос.

Это достаточно широко известная задача в физике. В нашем случае тело, брошенное под углом к горизонту – это баскетбольный мяч. Мы рассчитаем начальную скорость, время и траекторию полета мяча, брошенного через всю площадку Иваном Едешко и попавшего в руки Александра Белова.

Математика и физика полета баскетбольного мяча.

Представленные ниже формулы и расчет в excel являются универсальными для широкого круга задач о телах, брошенных под углом к горизонту и летящих по параболической траектории без учета влияния трения о воздух.

Расчетная схема представлена на рисунке, расположенном ниже. Запускаем программу MS Excel или OOo Calc.

Исходные данные:

1. Так как мы находимся на планете Земля и рассматриваем баллистическую задачу – движение тел в поле тяжести Земли, то первым делом запишем основную характеристику гравитационного поля – ускорение свободного падения g в м/с 2

в ячейку D3: 9,81

2. Размеры баскетбольной площадки – 28 метров длина и 15 метров ширина. Расстояние полета мяча почти через всю площадку до кольца от противоположной лицевой линии по горизонтали x в метрах впишем

в ячейку D4: 27,000

3. Если принять, что бросок Едешко совершил с высоты около двух метров, а Белов поймал мяч как раз где-то на уровне кольца, то при высоте баскетбольного кольца 3,05 метра расстояние между точками вылета и прилета мяча составит по вертикали 1 метр. Запишем вертикальное перемещение y в метрах

в ячейку D5: 1,000

4. По моим замерам на видеозаписи угол вылета мяча α 0 из рук Едешко не превышал 20°. Введем это значение

в ячейку D6: 20,000

Результаты расчетов:

Основные уравнения, описывающие движение тела, брошенного под углом к горизонту без учета сопротивления воздуха:

x =v 0 *cosα 0 *t

y =v 0 *sinα 0 *t -g *t 2 /2

5. Выразим время t из первого уравнения, подставим во второе и вычислим начальную скорость полета мяча v 0 в м/с

в ячейке D8: =(D3*D4^2/2/COS (РАДИАНЫ(D6))^2/(D4*TAN (РАДИАНЫ (D6)) -D5))^0,5 =21,418

v 0 =(g *x 2 /(2*(cos α 0 ) 2 *(x *tg α 0 -y )) 0,5

6. Время полета мяча от рук Едешко до рук Белова t в секундах рассчитаем, зная теперь v 0 , из первого уравнения

в ячейке D9: =D4/D8/COS (РАДИАНЫ(D6)) =1,342

t = x /(v 0 * cos α 0 )

7. Найдем угол направления скорости полета мяча α i в интересующей нас точке траектории. Для этого исходную пару уравнений запишем в следующем виде:

y =x *tg α 0 -g *x 2 /(2* v 0 2 *(cos α 0 ) 2)

Это уравнение параболы – траектории полета.

Нам необходимо найти угол наклона касательной к параболе в интересующей нас точке – это и будет угол α i . Для этого возьмем производную, которая представляет собой тангенс угла наклона касательной:

y’ =tg α 0 -g *x /(v 0 2 *(cos α 0 ) 2)

Рассчитаем угол прилета мяча в руки Белова α i в градусах

в ячейке D10: =ATAN (TAN (РАДИАНЫ(D6)) -D3*D4/D8^2/COS (РАДИАНЫ (D6))^2)/ПИ()*180 =-16,167

α i = arctg y ’ = arctg (tg α 0 — g * x /(v 0 2 *(cos α 0 ) 2))

Расчет в excel, в принципе, закончен.

Иные варианты расчетов:

Используя написанную программу, можно быстро и просто при других сочетаниях исходных данных произвести вычисления.

Пусть, даны горизонтальная x = 27 метров, вертикальная y = 1 метр дальности полета и начальная скорость v 0 = 25 м/с.

Требуется найти время полета t и углы вылета α 0 и прилета α i

Воспользуемся сервисом MS Excel «Подбор параметра». Я неоднократно в нескольких статьях блога подробно рассказывал, как им пользоваться. Детальнее об использовании этого сервиса можно почитать .

Устанавливаем в ячейке D8 значение 25,000 за счет изменения подбором значения в ячейке D6. Результат на рисунке внизу.

Исходные данные в этом варианте расчета в excel (как, впрочем, и в предыдущем) выделены синими рамками, а результаты обведены красными прямоугольными рамками!

Устанавливая в таблице Excel некоторое интересующее значение в одной из ячеек со светло-желтой заливкой за счет подбора измененного значения в одной из ячеек со светло-бирюзовой заливкой, можно получить в общем случае десять различных вариантов решения задачи о движении тела, брошенного под углом к горизонту при десяти разных наборах исходных данных!!!

Ответ на вопрос:

Ответим на вопрос, поставленный в начале статьи. Мяч, посланный Иваном Едешко, долетел до Белова по нашим расчетам за 1,342с. Александр Белов поймал мяч, приземлился, подпрыгнул и бросил. На все это у него было «море» времени – 1,658с! Это действительно достаточное с запасом количество времени! Детальный просмотр по кадрам видеозаписи подтверждает вышесказанное. Нашим игрокам хватило трех секунд, чтобы доставить мяч от своей лицевой линии до щита соперников и забросить его в кольцо, вписав золотом свои имена в историю баскетбола!

Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!

Рассмотрим движение тела в поле тяжести Земли, сопротивление воздуха учитывать не будем. Пусть начальная скорость брошенного тела направлена под углом к горизонту $\alpha $ (рис.1). Тело брошено с высоты ${y=h}_0$; $x_0=0$.

Тогда в начальный момент времени тело имеет горизонтальную ($v_x$) и вертикальную ($v_y$) составляющие скорости. Проекции скорости на оси координат при $t=0$ равны:

\[\left\{ \begin{array}{c} v_{0x}=v_0{\cos \alpha ,\ } \\ v_{0y}=v_0{\sin \alpha .\ } \end{array} \right.\left(1\right).\]

Ускорение тела равно ускорению свободного паления и все время направлено вниз:

\[\overline{a}=\overline{g}\left(2\right).\]

Значит, проекция ускорения на ось X равна нулю, а на ось Y равна $a_y=g.$

Так как по оси X составляющая ускорения равна нулю, то скорость движения тела в этом направлении является постоянной величиной и равна проекции начальной скорости на ось X (см.(1)). Движение тела по оси X равномерное.

При ситуации, изображенной на рис.1 тело по оси Y будет двигаться сначала вверх, а затем виз. При этом ускорение движения тела в обоих случаях равно ускорению $\overline{g}.$ На прохождение пути вверх от произвольной высоты ${y=h}_0$ до максимальной высоты подъема ($h$) тело тратит столько же времени, сколько на падение вниз от $h$ до ${y=h}_0$. Следовательно, точки симметричные относительно вершины подъема тела лежат на одинаковой высоте. Получается, что траектория движения тела симметрична относительно точки-вершины подъема - и это парабола.

Скорость движения тела, брошенного под углом к горизонту можно выразить формулой:

\[\overline{v}\left(t\right)={\overline{v}}_0+\overline{g}t\ \left(3\right),\]

где ${\overline{v}}_0$ - скорость тела в момент броска. Формулу (3) можно рассматривать как результат сложения скоростей двух независимых движений по прямым линиям, в которых участвует тело.

Выражения для проекции скорости на оси принимают вид:

\[\left\{ \begin{array}{c} v_x=v_0{\cos \alpha ,\ } \\ v_y=v_0{\sin \alpha -gt\ } \end{array} \left(4\right).\right.\]

Уравнение для перемещения тела при движении в поле тяжести:

\[\overline{s}\left(t\right)={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(5\right),\]

где ${\overline{s}}_0$ - смещение тела в начальный момент времени.

Проектируя уравнение (5) на оси координат X и Y, получим:

\[\left\{ \begin{array}{c} x=v_0{\cos \left(\alpha \right)\cdot t,\ } \\ y={h_0+v}_0{\sin \left(\alpha \right)\cdot t-\frac{gt^2}{2}\ } \end{array} \left(6\right).\right.\]

Тело, двигаясь вверх, имеет по оси Y сначала равнозамедленное перемещение, после того, как тело достигает вершины, движение по оси Y становится равноускоренным.

Траектория движения материальной точки получается, задана уравнением:

По форме уравнения (7) видно, что траекторией движения является парабола.

Время подъема и полета тела, брошенного под углом к горизонту

Время, затрачиваемое телом для того, чтобы достигнуть максимальной высоты подъема получают из системы уравнений (4). . В вершине траектории тело имеет только горизонтальную составляющую, $v_y=0.$ Время подъема ($t_p$) равно:

Общее время движения тела (время полета ($t_{pol}))$находим из второго уравнения системы (6), зная, что при падении тела на Землю $y=0$, имеем:

Дальность полета и высота подъема тела, брошенного под углом к горизонту

Для нахождения горизонтальной дальности полета тела ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (6) следует подставить время полета ($t_{pol}$) (9). При $h=0,$ дальность полета равна:

Из выражения (9) следует, что при заданной скорости бросания дальность полета максимальна при $\alpha =\frac{\pi }{4}$.

Максимальную высоту подъема тела ($h_{max}$) находят из второго уравнения системы (6), подставляя в него время подъема ($t_p$) (8):

Выражение (11) показывает, что максимальная высота подъема тела прямо пропорциональна квадрату скорости бросания и увеличивается при росте угла бросания.

Примеры задач с решением

Пример 1

Задание. Во сколько раз изменится время полета тела, которое бросили с высоты $h$ в горизонтальном направлении, если скорость бросания тела увеличили в $n$ раз?

Решение. Найдем формулу для вычисления времени полета тела, если его бросили горизонтально (рис.2).

В качестве основы для решения задачи используем выражение для равноускоренного движения тела в поле тяжести:

\[\overline{s}={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(1.1\right).\]

Используя рис.2 запишем проекции уравнения (1.1) на оси координат:

\[\left\{ \begin{array}{c} X:x=v_0t;; \\ Y:y=h_0-\frac{gt^2}{2} \end{array} \right.\left(1.2\right).\]

Во время падения тела на землю $y=0,$ используем этот факт и выразим время полета из второго уравнения системы (1.2), имеем:

Как мы видим, время полета тела не зависит от его начальной скорости, следовательно, при увеличении начальной скорости в $n$ раз время полета тела не изменится.

Ответ. Не изменится.

Пример 2

Задание. Как изменится дальность полета тела в предыдущей задаче, если начальную скорость увеличить в $n$ раз?

Решение. Дальность полета - это расстояние, которое пройдет тело по горизонтальной оси. Это означает, что нам потребуется уравнение:

из системы (1.2) первого примера. Подставив вместо $t,$ время полета, найденное в (1.3), мы получим дальность полета ($s_{pol}$):

Из формулы (2.2) мы видит, что при заданных условиях движения дальность полета прямо пропорциональна скорости бросания тела, следовательно, во сколько раз увеличим начальную скорость, во столько раз увеличится дальность полета тела.

Ответ. Дальность полета тела увеличится в $n$ раз.