Модуль силы лоренца действующей на частицу. Что такое сила лоренца, каковы величина и направления этой силы

РЕФЕРАТ

По предмету «Физика»
Тема: «Применение силы Лоренца»

Выполнил: Студент группы Т-10915Логунова М.В.

ПреподавательВоронцов Б.С.

Курган 2016

Введение. 3

1. Использование силы Лоренца. 4

.. 4

1. 2 Масс-спектрометрия . 6

1. 3 МГД генератор . 7

1. 4 Циклотрон . 8

Заключение. 11

Список использованной литературы.. 13


Введение

Сила Лоренца - сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует наточечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью υ заряд q лишь со стороны магнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического E и магнитного B полей.

В Международной системе единиц (СИ) выражается как:

F Л = q υ B sin α

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено О. Хевисайдом.

Макроскопическим проявлением силы Лоренца является сила Ампера.


Использование силы Лоренца

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

Основным применением силы Лоренца (точнее, её частного случая - силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках , в масс-спектрометрии и МГД-генераторах .

Также в созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

1. 1. Электронно-лучевые приборы

Электронно-лучевые приборы (ЭЛП) - класс вакуумных электронных приборов, в которых используется поток электронов, сконцентрированный в форме одиночного луча или пучка лучей, которые управляются как по интенсивности (току), так и по положению в пространстве, и взаимодействуют с неподвижной пространственной мишенью (экраном) прибора. Основная сфера применения ЭЛП - преобразование оптической информации в электрические сигналы и обратное преобразование электрического сигнала в оптический - например, в видимое телевизионное изображение.

В класс электронно-лучевых приборов не включаются рентгеновские трубки, фотоэлементы, фотоумножители, газоразрядные приборы (декатроны) и приёмно-усилительные электронные лампы (лучевые тетроды, электровакуумные индикаторы, лампы со вторичной эмиссией и тому подобное) с лучевой формой токов.

Электронно-лучевой прибор состоит, как минимум, из трёх основных частей:

· Электронный прожектор (пушка) формирует электронный луч (или пучок лучей, например, три луча в цветном кинескопе) и управляет его интенсивностью (током);

· Отклоняющая система управляет пространственным положением луча (отклонением его от оси прожектора);

· Мишень (экран) приёмного ЭЛП преобразует энергию луча в световой поток видимого изображения; мишень передающего или запоминающего ЭЛП накапливает пространственный потенциальный рельеф, считываемый сканирующим электронным лучом

Рис. 1 Устройство ЭЛТ

Общие принципы устройства.

В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

1. 2 Масс-спектрометрия

Рис. 2

Действие силы Лоренца используют и в приборах, называемых масс-спектрографами, которые предназначены для разделения заряженных частиц по их удельным зарядам.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества, основанный на определении отношения массы к заряду ионов, образующихся приионизации представляющих интерес компонентов пробы. Один из мощнейших способов качественной идентификации веществ, допускающий также и количественное определение. Можно сказать, что масс-спектрометрия - это «взвешивание» молекул, находящихся в пробе.

Схема простейшего масс-спектрографа показана на рисунке 2.

В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция B⃗ B→перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А и В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле

можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

История масс-спектрометрии ведётся с основополагающих опытов Дж. Дж. Томсона в начале XX века. Окончание «-метрия» в названии метода появилось после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Особенно широкое применение масс-спектрометрия находит в анализе органических веществ, поскольку обеспечивает уверенную идентификацию как относительно простых, так и сложных молекул. Единственное общее требование - чтобы молекула поддавалась ионизации. Однако к настоящему времени придумано

столько способов ионизации компонентов пробы, что масс-спектрометрию можно считать практически всеохватным методом.

1. 3 МГД генератор

Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть - на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.

Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

На заряженную частицу действует сила Лоренца.

Рабочим телом МГД-генератора могут служить следующие среды:

· электролиты;

· жидкие металлы;

· плазма (ионизированный газ).

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты). В настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы. Под действием магнитного поля носители зарядов отклоняются от траектории, по которой газ двигался бы в отсутствие поля. При этом в сильном магнитном поле может возникать поле Холла (см. Эффект Холла) - электрическое поле, образуемое в результате соударений и смещений заряженных частиц в плоскости, перпендикулярной магнитному полю.

1. 4 Циклотрон

Циклотрон - резонансный циклический ускоритель нерелятивистских тяжёлых заряженных частиц (протонов, ионов), в котором частицы двигаются в постоянном и однородном магнитном поле, а для их ускорения используется высокочастотное электрическое поле неизменной частоты.

Схема устройства циклотрона показана на рис.3. Тяжелые заряженные частицы (протоны, ионы) попадают в камеру из инжектора вблизи центра камеры и ускоряются переменным полем фиксированной частоты, приложенным к ускоряющим электродам (их два и они называются дуантами). Частицы с зарядом Ze и массой m движутся в постоянном магнитном поле напряженностью B, направленном перпендикулярно плоскости движения частиц, по раскручивающейся спирали. Радиус R траектории частицы, имеющей скорость v, определяется формулой

где γ = -1/2 – релятивистский фактор.

В циклотроне для нерелятивистской (γ ≈ 1) частицы в постоянном и однородном магнитном поле радиус орбиты пропорционален скорости (1), а частотаобращения нерелятивистской частицы (циклотронная частота не зависит от энергии частицы

E = mv 2 /2 = (Ze) 2 B 2 R 2 /(2m) (3)

В зазоре между дуантами частицы ускоряются импульсным электрическим полем (внутри полых металлических дуантов электрического поля нет). В результате энергия и радиус орбиты возрастают. Повторяя ускорение электрическим полем на каждом обороте, энергию и радиус орбиты доводят до максимально допустимых значений. При этом частицы приобретают скорость v = ZeBR/m и соответствующую ей энергию:

На последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу. Постоянство магнитного поля и частоты ускоряющего поля делают возможным непрерывный режим ускорения. Пока одни частицы двигаются по внешним виткам спирали, другие находятся в середине пути, а третьи только начинают движение.

Недостатком циклотрона является ограничение существенно нерелятивистскими энергиями частиц, так как даже не очень большие релятивистские поправки (отклонения γ от единицы) нарушают синхронность ускорения на разных витках и частицы с существенно возросшими энергиями уже не успевают оказаться в зазоре между дуантами в нужной для ускорения фазе электрического поля. В обычных циклотронах протоны можно ускорять до 20-25 МэВ.

Для ускорения тяжёлых частиц в режиме раскручивающейся спирали до энергий в десятки раз больших (вплоть до 1000 МэВ) используют модификацию циклотрона, называемую изохронным (релятивистским) циклотроном, а также фазотрон. В изохронных циклотронах релятивистские эффекты компенсируются радиальным возрастанием магнитного поля.


Заключение

Скрытый текст

Письменное заключение (самое основное по всем подпунктам первого раздела – принципы действия, определения)

Список использованной литературы

1. Википедия [Электронный ресурс]: Сила Лоренца. URL: https://ru.wikipedia.org/wiki/Сила_Лоренца

2. Википедия [Электронный ресурс]: Магнитогидродинамический генератор. URL: https://ru.wikipedia.org/wiki/ Магнитогидродинамический_генератор

3. Википедия [Электронный ресурс]: Электронно-лучевые приборы. URL: https://ru.wikipedia.org/wiki/ Электронно-лучевые_приборы

4. Википедия [Электронный ресурс]: Масс-спектрометрия. URL: https://ru.wikipedia.org/wiki/Масс-спектрометрия

5. Ядерная физика в Интернете [Электронный ресурс]: Циклотрон. URL: http://nuclphys.sinp.msu.ru/experiment/accelerators/ciclotron.htm

6. Электронный учебник физики [Электронный ресурс]: Т. Применения силы Лоренца// URL: http://www.physbook.ru/index.php/ Т._Применения_силы_Лоренца

7. Академик [Электронный ресурс]: Магнитогидродинамический генератор// URL: http://dic.academic.ru/dic.nsf/enc_physics/МАГНИТОГИДРОДИНАМИЧЕСКИЙ

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Вы сейчас здесь: Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

    РОССИЙСКОЙ ФЕДЕРАЦИИ

    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    «КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

    РЕФЕРАТ

    По предмету «Физика» Тема: «Применение силы Лоренца»

    Выполнил: Студент группы Т-10915 Логунова М.В.

    Преподаватель Воронцов Б.С.

    Курган 2016

    Введение 3

    1. Использование силы Лоренца 4

    1.1. Электронно-лучевые приборы 4

    1.2 Масс-спектрометрия 5

    1.3 МГД генератор 7

    1.4 Циклотрон 8

    Заключение 10

    Список использованной литературы 11

    Введение

    Сила Лоренца -сила, с которойэлектромагнитное полесогласно классической (неквантовой)электродинамикедействует наточечнуюзаряженнуючастицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростьюυ зарядq лишь со сторонымагнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще, иначе говоря, со стороныэлектрическогоE имагнитногоB полей.

    В Международной системе единиц (СИ)выражается как:

    F Л =q υB sin α

    Названа в честь голландского физикаХендрика Лоренца, который вывел выражение для этой силы в1892 году. За три года до Лоренца правильное выражение было найденоО. Хевисайдом.

    Макроскопическим проявлением силы Лоренца является сила Ампера.

      Использование силы Лоренца

    Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

    Основным применением силы Лоренца (точнее, её частного случая - силы Ампера) являютсяэлектрические машины(электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроныи иногдаионы), например, в телевизионныхэлектронно-лучевых трубках , вмасс-спектрометрии иМГД-генераторах .

    Также в созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

      1. Электронно-лучевые приборы

    Электронно-лучевые приборы (ЭЛП) - класс вакуумных электронных приборов, в которых используется поток электронов, сконцентрированный в форме одиночного луча или пучка лучей, которые управляются как по интенсивности (току), так и по положению в пространстве, и взаимодействуют с неподвижной пространственной мишенью (экраном) прибора. Основная сфера применения ЭЛП - преобразование оптической информации в электрические сигналы и обратное преобразование электрического сигнала в оптический - например, в видимое телевизионное изображение.

    В класс электронно-лучевых приборов не включаются рентгеновские трубки,фотоэлементы,фотоумножители, газоразрядные приборы (декатроны) и приёмно-усилительныеэлектронные лампы(лучевые тетроды, электровакуумные индикаторы, лампы со вторичной эмиссией и тому подобное) с лучевой формой токов.

    Электронно-лучевой прибор состоит, как минимум, из трёх основных частей:

      Электронный прожектор(пушка) формирует электронный луч (или пучок лучей, например, три луча в цветном кинескопе) и управляет его интенсивностью (током);

      Отклоняющая системауправляет пространственным положением луча (отклонением его от оси прожектора);

      Мишень(экран) приёмного ЭЛП преобразует энергию луча в световой поток видимого изображения; мишень передающего или запоминающего ЭЛП накапливает пространственныйпотенциальный рельеф, считываемый сканирующим электронным лучом

    Рис. 1 Устройство ЭЛТ

    Общие принципы устройства.

    В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

      2 Масс-спектрометрия

    Рис. 2

    Действие силы Лоренца используют и в приборах, называемых масс-спектрографами, которые предназначены для разделения заряженных частиц по их удельным зарядам.

    Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - методисследованиявещества, основанный на определении отношениямассыкзарядуионов, образующихся приионизациипредставляющих интерес компонентов пробы. Один из мощнейших способов качественной идентификации веществ, допускающий также и количественное определение. Можно сказать, что масс-спектрометрия - это «взвешивание» молекул, находящихся в пробе.

    Схема простейшего масс-спектрографа показана на рисунке 2.

    В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция B⃗B→перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А и В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле

    (1)

    можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

    История масс-спектрометрии ведётся с основополагающих опытов Дж. Дж. Томсонав начале XX века. Окончание «-метрия» в названии метода появилось после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическимизмерениямионных токов.

    Особенно широкое применение масс-спектрометрия находит в анализе органических веществ, поскольку обеспечивает уверенную идентификацию как относительно простых, так и сложных молекул. Единственное общее требование - чтобы молекула поддавалась ионизации. Однако к настоящему времени придумано

    столько способов ионизации компонентов пробы, что масс-спектрометрию можно считать практически всеохватным методом.

      3 МГД генератор

    Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразнойэлектропроводящейсреды), движущегося вмагнитном поле, преобразуется непосредственно вэлектрическую энергию.

    Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явленииэлектромагнитной индукции, то есть - на возникновениитокав проводнике, пересекающемсиловые линиимагнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.

    Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

    На заряженную частицу действует сила Лоренца.

    Рабочим телом МГД-генератора могут служить следующие среды:

    Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты). В настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроныи положительныеионы. Под действием магнитного поля носители зарядов отклоняются от траектории, по которой газ двигался бы в отсутствие поля. При этом в сильном магнитном поле может возникать поле Холла (см.Эффект Холла) - электрическое поле, образуемое в результате соударений и смещений заряженных частиц в плоскости, перпендикулярной магнитному полю.

      4 Циклотрон

    Циклотрон - резонансный циклический ускорительнерелятивистских тяжёлых заряженных частиц (протонов,ионов), в котором частицы двигаются в постоянном и однородноммагнитном поле, а для их ускорения используется высокочастотноеэлектрическое поленеизменной частоты.

    Схема устройства циклотрона показана на рис.3. Тяжелые заряженные частицы (протоны, ионы) попадают в камеру из инжектора вблизи центра камеры и ускоряются переменным полем фиксированной частоты, приложенным к ускоряющим электродам (их два и они называются дуантами). Частицы с зарядом Ze и массой m движутся в постоянном магнитном поле напряженностью B, направленном перпендикулярно плоскости движения частиц, по раскручивающейся спирали. Радиус R траектории частицы, имеющей скорость v, определяется формулой

    Рис.5. Схема циклотрона: вид сверху и сбоку: 1 -источник тяжелых заряженных частиц (протонов, ионов), 2 - орбита ускоряемой частицы, 3 -ускоряющие электроды (дуанты), 4 - генератор ускоряющего поля, 5 - электромагнит. Стрелки показывают силовые линии магнитного поля). Они перпендикулярны плоскости верхнего рисунка

    где γ = -1/2 – релятивистский фактор.

    В циклотроне для нерелятивистской (γ ≈ 1) частицы в постоянном и однородном магнитном поле радиус орбиты пропорционален скорости (1), а частотаобращения нерелятивистской частицы (циклотронная частота не зависит от энергии частицы

    (2)

    E = mv 2 /2 = (Ze) 2 B 2 R 2 /(2m) (3)

    В зазоре между дуантами частицы ускоряются импульсным электрическим полем (внутри полых металлических дуантов электрического поля нет). В результате энергия и радиус орбиты возрастают. Повторяя ускорение электрическим полем на каждом обороте, энергию и радиус орбиты доводят до максимально допустимых значений. При этом частицы приобретают скорость v = ZeBR/m и соответствующую ей энергию:

    На последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу. Постоянство магнитного поля и частоты ускоряющего поля делают возможным непрерывный режим ускорения. Пока одни частицы двигаются по внешним виткам спирали, другие находятся в середине пути, а третьи только начинают движение.

    Недостатком циклотрона является ограничение существенно нерелятивистскими энергиями частиц, так как даже не очень большие релятивистские поправки (отклонения γ от единицы) нарушают синхронность ускорения на разных витках и частицы с существенно возросшими энергиями уже не успевают оказаться в зазоре между дуантами в нужной для ускорения фазе электрического поля. В обычных циклотронах протоны можно ускорять до 20-25 МэВ.

    Для ускорения тяжёлых частиц в режиме раскручивающейся спирали до энергий в десятки раз больших (вплоть до 1000 МэВ) используют модификацию циклотрона, называемую изохронным (релятивистским) циклотроном, а также фазотрон. В изохронных циклотронах релятивистские эффекты компенсируются радиальным возрастанием магнитного поля.

    Заключение

    Скрытый текст

    Письменное заключение (самое основное по всем подпунктам первого раздела – принципы действия, определения)

    Список использованной литературы

      Википедия [Электронный ресурс]: Сила Лоренца. URL: https://ru.wikipedia.org/wiki/Сила_Лоренца

      Википедия [Электронный ресурс]: Магнитогидродинамический генератор. URL: https://ru.wikipedia.org/wiki/Магнитогидродинамический_генератор

      Википедия [Электронный ресурс]: Электронно-лучевые приборы. URL: https://ru.wikipedia.org/wiki/Электронно-лучевые_приборы

      Википедия [Электронный ресурс]: Масс-спектрометрия. URL: https://ru.wikipedia.org/wiki/Масс-спектрометрия

      Ядерная физика в Интернете [Электронный ресурс]: Циклотрон. URL: http://nuclphys.sinp.msu.ru/experiment/accelerators/ciclotron.htm

      Электронный учебник физики [Электронный ресурс]: Т. Применения силы Лоренца //URL: http://www.physbook.ru/index.php/ Т._Применения_силы_Лоренца

      Академик [Электронный ресурс]: Магнитогидродинамический генератор //URL: http://dic.academic.ru/dic.nsf/enc_physics/МАГНИТОГИДРОДИНАМИЧЕСКИЙ

    Возникновение силы, действующей на электрический заряд, движущийся во внешнем электромагнитном поле

    Анимация

    Описание

    Силой Лоренца называетсясила, действующая на заряженную частицу, движущуюся во внешнем электромагнитном поле.

    Формула для силы Лоренца (F ) была впервые получена путем обобщения опытных фактов Х.А. Лоренцем в 1892 г. и представлена в работе «Электромагнитная теория Максвелла и ее приложение к движущимся телам». Она имеет вид:

    F = qE + q, (1)

    где q - заряженная частица;

    Е - напряженность электрического поля;

    B - вектор магнитной индукции, не зависящий от величины заряда и скорости его движения;

    V - вектор скорости заряженной частицы относительно системы координат, в которой вычисляются величины F и B .

    Первый член в правой части уравнения (1) - сила, действующая на заряженную частицу в электрическом поле F Е =qE, второй член - сила, действующая в магнитном поле:

    F м = q. (2)

    Формула (1) универсальна. Она справедлива как для постоянных, так и для переменных силовых полей, а также для любых значений скорости заряженной частицы. Она является важным соотношением электродинамики, так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.

    В нерелятивистском приближении сила F , как и любая другая сила, не зависит от выбора инерциальной системы отсчета. Вместе с тем магнитная составляющая силы Лоренца F м изменяется при переходе от одной системы отсчета к другой из-за изменения скорости, поэтому будет изменяться и электрическая составляющая F Е . В связи с этим разделение силы F на магнитную и электрическую имеет смысл только с указанием системы отсчета.

    В скалярной форме выражение (2) имеет вид:

    Fм = qVBsina , (3)

    где a - угол между векторами скорости и магнитной индукции.

    Таким образом магнитная часть силы Лоренца максимальна, если направление движения частицы перпендикулярно магнитному полю (a =p /2), и равна нулю, если частица движется вдоль направления поля В (a =0).

    Магнитная сила F м пропорциональна векторному произведению , т.е. она перпендикулярна вектору скорости заряженной частицы и поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле под действием магнитной силы искривляется лишь траектория движущейся заряженной частицы, но энергия ее всегда остается неизменной , как бы частица ни двигалась.

    Направление магнитной силы для положительного заряда определяется согласно векторному произведению (рис. 1).

    Направление силы, действующей на положительный заряд в магнитном поле

    Рис. 1

    Для отрицательного заряда (электрона) магнитная сила направлена в противоположную сторону (рис. 2).

    Направление силы Лоренца, действующей на электрон в магнитном поле

    Рис. 2

    Магнитное поле В направлено к читателю перпендикулярно рисунку. Электрическое поле отсутствует.

    Если магнитное поле однородно и направлено перпендикулярно скорости, заряд массой m движется по окружности. Радиус окружности R определяется по формуле:

    где - удельный заряд частицы.

    Период обращения частицы (время одного оборота) не зависит от скорости, если скорость частицы много меньше скорости света в вакууме. В противном случае период обращения частицы возрастает в связи с возрастанием релятивистской массы.

    В случае нерелятивистской частицы:

    где - удельный заряд частицы.

    В вакууме в однородном магнитном поле, если вектор скорости не перпендикулярен вектору магнитной индукции (a№p /2), заряженная частица под действием силы Лоренца (ее магнитной части) движется по винтовой линии с постоянной по величине скоростью V . При этом ее движение складывается из равномерного прямолинейного движения вдоль направления магнитного поля В со скоростью и равномерного вращательного движения в плоскости перпендикулярной полю В со скоростью (рис. 2).

    Проекция траектории движения частицы на плоскость перпендикулярную В есть окружность радиуса:

    период обращения частицы:

    Расстояние h , которое проходит частица за время Т вдоль магнитного поля В (шаг винтовой траектории), определяется по формуле:

    h = Vcos a T . (6)

    Ось винтовой линии совпадает с направлением поля В , центр окружности перемещается вдоль силовой линии поля (рис. 3).

    Движение заряженной частицы, влетевшей под углом a№p /2 в магнитное поле В

    Рис. 3

    Электрическое поле отсутствует.

    Если электрическое поле E № 0, движение носит более сложный характер.

    В частном случае, если векторы E иB параллельны, в процессе движения изменяется составляющая скорости V 11 , параллельная магнитному полю, вследствие чего меняется шаг винтовой траектории (6).

    В том случае, если E иB не параллельны, происходит перемещение центра вращения частицы, называемое дрейфом, перпендикулярно полю В . Направление дрейфа определяется векторным произведением и не зависит от знака заряда.

    Воздействие магнитного поля на движущиеся заряженные частицы приводят к перераспределению тока по сечению проводника, что находит свое проявление в термомагнитных и гальваномагнитных явлениях.

    Эффект открыт нидерландским физиком Х.А. Лоренцем (1853-1928).

    Временные характеристики

    Время инициации (log to от -15 до -15);

    Время существования (log tc от 15 до 15);

    Время деградации (log td от -15 до -15);

    Время оптимального проявления (log tk от -12 до 3).

    Диаграмма:

    Технические реализации эффекта

    Техническая реализация действия силы Лоренца

    Техническая реализация эксперимента по прямому наблюдению действия силы Лоренца на движущийся заряд как правило довольно сложна, так как соответствующие заряженные частицы имеют молекулярный характерный размер. Поэтому наблюдение их траектории в магнитном поле требует вакуумирования рабочего объема во избежание столкновений, искажающих траекторию. Так что специально такие демонстрационные установки как правило не создаются. Легче всего для демонстрации использовать стандартный секторный магнитный масс-анализатор Ниера, см. Эффект 409005, - действие которого целиком основано на силе Лоренца.

    Применение эффекта

    Типичное испольтзование в технике - датчик Холла, широко используемый в измерительной технике.

    Пластинка из металла или полупроводника помещается в магнитное поле В . При пропускании через нее электрического тока плотности j в направлении перпендикулярном магнитному полю в пластине возникает поперечное электрическое поле, напряженность которого Е перпендикулярна обоим векторамj и В . По данным измерений находят В .

    Объясняется этот эффект действием силы Лоренца на движущийся заряд.

    Гальваномагнитные магнитометры. Масс-спектрометры. Ускорители заряженных частиц. Магнитогидродинамические генераторы.

    Литература

    1. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.

    2. Физический энциклопедический словарь.- М., 1983.

    3. Детлаф А.А., Яворский Б.М. Курс физики.- М.: Высшая школа, 1989.

    Ключевые слова

    • электрический заряд
    • магнитная индукция
    • магнитное поле
    • напряженность электрического поля
    • сила Лоренца
    • скорость частицы
    • радиус окружности
    • период обращения
    • шаг винтовой траектории
    • электрон
    • протон
    • позитрон

    Разделы естественных наук:

    Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

    Например, отклонение электронного пучка в кинескопах телевизоров осуществляют с помощью магнитного поля, которое создают специальными катушками. В ряде электронных приборов магнитное поле используется для фокусировки пучков заряженных частиц.

    В созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

    Действие силы Лоренца используют и в приборах, называемых масс-спектрографами , которые предназначены для разделения заряженных частиц по их удельным зарядам.

    Схема простейшего масс-спектрографа показана на рисунке 1.

    В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция \(~\vec B\) перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А ч В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле

    \(~\frac q m = \frac {v}{RB}\)

    можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

    Литература

    Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 328.