Иммунологическая память. Лекция: Понятие об иммунологической памяти иммунологической толерантности Понятие иммунологическая память

Стафилококковой инфекции;

Синегнойной инфекции.

Их назначение определяется тяжестью течения заболевания и, в отличие от антитоксических, не является обязательным. При лечении больных с хроническими, длительно, вяло текущими формами инфекционных заболеваний возникает необходимость стимулировать собственные механизмы специфической зашиты путем введения различных антигенных препаратов и создания активного приобретенного искусственного иммунитета {иммунотерапия антигенными препаратами). Для этих целей используются в основном лечебные вакцины и значительно реже - аутовакцины или стафилококковый анатоксин.

Антитоксические сыворотки содержат антитела против экзотоксинов. Их получают путем гипериммунизации животных (лошадей) анатоксином.

Активность таких сывороток измеряется в АЕ (антитоксических единицах) или ME (международных единицах) - это минимальное количество сыворотки, способное нейтрализовать определенное количество (обычно 100 DLM) токсина для животных определенного вида и определенной массы. В настоящее время в России

антитоксические сыворотки:

Противодифтерийная;

Противостолбнячная;

широко используются следующие

Противогангренозная;

Противоботулиническая.

Применение антитоксических сывороток при лечении соответствующих инфекций обязательно.

Гомологичные сывороточные препараты получают из крови доноров, специально иммунизированных против определенного возбудителя или его токсинов. При введении таких препаратов в организм человека антитела циркулируют в организме несколько дольше, обеспечивая пассивный иммунитет или лечебный эффект в течение 4-5 недель. В настоящее время применяют донорские иммуноглобулины нормальные и специфические и донорскую плазму. Выделение иммунологически активных фракций из донорских сывороток производят с использованием спиртового метода осаждения. Гомологичные иммуноглобулины практически ареактогенны, поэтому реакции анафилактического типа при повторных введениях гомологичных сывороточных препаратов возникают редко.

Для изготовления гетерологичных сывороточных препаратов используют в основном крупных животных лошадей. Лошади обладают высокой иммунологической реактивностью, от них в сравнительно короткий срок можно получить сыворотку, содержащую антитела в высоком титре. Кроме этого, введение лошадиного белка человеку дает наименьшее количество побочных реакций . Животные других видов используются редко. Годные к эксплуатации в возрасте от 3 лет и выше животные подвергаются гипериммунизации, т.е. процессу многократного введения возрастающих доз антигена с целью накопления в крови животных максимального количества антител и поддержания его на достаточном уровне в течение возможно более длительного времени. В период максимального нарастания титра специфических антител в крови животных осуществляют 2-3 кровопускания с интервалом в 2дня. Кровь берут из расчета 1 литр на 50 кг веса лошади из яремной вены в стерильную бутыль, содержащую антикоагулянт. Полученная от лошадей-продуцентов кровь передается в лабораторию для дальнейшей обработки. Плазма отделяется на сепараторах от форменных элементов и дефибринируется раствором хлористого кальция . Использование цельной гетерологичной сыворотки сопровождается аллергическими реакциями в форме сывороточной болезни и анафилаксии. Одним из путей уменьшения побочных реакций сывороточных препаратов, а также повышения их эффективности является их очистка и концентрация. Сыворотку очищают от альбуминов и некоторых глобулинов, которые не относятся к иммунологически активным фракциям сывороточных белков. Иммунологически активными являются псевдоглобулины с электрофоретической подвижностью между гамма- и бета-глобулинами, к этой фракции относятся антитоксические антитела. Также к иммунологически активным фракциям относятся гамма-

глобулины, в эту фракцию входят антибактериальные и антивирусные антитела. Очистка сывороток от балластных белков проводится по методу «Диаферм-3». При использовании этого метода сыворотка очищается путем осаждения под влиянием сернокислого аммония и путем пептического переваривания. Помимо метода «Диаферм 3»,разработаны и другие (Ультраферм, Спиртоферм, иммуносорбцииидр.), имеющие ограниченное применение

Содержание антитоксина в антитоксических сыворотках выражается в международных единицах (ME), принятых ВОЗ. Например, 1 ME противостолбнячной сыворотки соответствует ее минимальному количеству, нейтрализующему 1000 минимальных смертельных доз (DLm) столбнячного токсина для морской свинки массой 350 г. 1 ME противоботулинического антитоксина - наименьшее количество сыворотки, нейтрализующее 10000 DLm ботулинического токсина для мышей массой 20 г. 1 ME противодифтерийной сыворотки соответствует ее минимальному количеству, нейтрализующему 100 DLm дифтерийного токсина для морской свинки массой 250 г.

Для выявления чувствительности пациента к лошадиному белку ставят внутрикожную пробу с разведенной 1:100 лошадиной сывороткой, которую специально изготавливают для этой цели. Перед введением лечебной сыворотки пациенту внутрикожно на сгибательную поверхность предплечья вводят 0,1 мл разведенной лошадиной сыворотки и наблюдают за реакцией в течение 20 минут.

Гамма-глобулины и иммуноглобулины, их характеристика, получение, применение для профилактики и терапии инфекционных заболеваний, примеры;

Иммуноглобулинами (гамма-глобулинами) называют очищенные и концентрированные препараты гамма-глобулиновой фракции сывороточных белков, содержащие высокие титры антител. Освобождение от балластных сывороточных белков способствует снижению токсичности и обеспечивает быстрое реагирование и прочное связывание с антигенами. Применение гамма-глобулинов снижает количество аллергических реакций и осложнений, возникающих при введении гетерологичных сывороток. Современная технология получения человеческого иммуноглобулина гарантирует гибель вируса инфекционного гепатита . Основным иммуноглобулином в препаратах гамма-глобулина является IgG. Сыворотки и гамма-глобулины вводят в организм различными путями : подкожно, внутримышечно, внутривенно. Возможно также введение в спинномозговой канал. Пассивный иммунитет возникает через несколько часов и длится до двух недель.

Иммуноглобулин антистафилококковый человеческий. Препарат содержит иммунологически активную белковую фракцию, выделенную из плазмы крови доноров, иммунизированных стафилококковым анатоксином. Активным началом являются антитела к стафилококковому токсину. Создает пассивный антистафилококковый антитоксический иммунитет. Используется для иммунотерапии стафилококковой инфекции.

- препараты плазмы, получение, использование для терапии инфекционных заболеваний, примеры; Антибактериальная плазма.

1). Антипротейная плазма. Препарат содержит антипротейные антитела и получается от доноров,

иммунизированных протейной вакциной. При введении препарата создается пассивный

антибактериальный иммунитет. Используется для иммунотерапии ГВЗ протейной этиологии.

2). Антисинегнойная плазма. Препарат содержит антитела к синегнойной палочке. Получается от

доноров, иммунизированных синегнойной корпускулярной вакциной. При введении препарата

создается пассивный специфический антибактериальный иммунитет. Используется для

иммунотерапии синегнойной инфекции.

Антитоксическая плазма.

1) Плазма антитоксическая антисинегнойная. Препарат содержит антитела к экзотоксину А

синегнойной палочки. Получают от доноров, иммунизированных синегнойным анатоксином. При

введении препарата создается пассивный антитоксический антисинегнойный иммунитет.

Используется для иммунотерапии синегнойной инфекции.

2) Плазма антистафилококковая гипериммунная. Препарат содержит антитела к токсину

стафилококка. Получают от доноров, иммунизированных стафилококковым анатоксином. При

введениии создает пассивный антистафилококковый антитоксический иммунитет. Используется для

иммунотерапии стафилококковой инфекции.

Серотерапия (от лат. serum -- сыворотка и терапия), метод лечения заболеваний человека и животных (преимущественно инфекционных) при помощи иммунных сывороток. Лечебный эффект основан на явлении пассивного иммунитета -- обезвреживании микробов (токсинов) антителами (антитоксинами), содержащимися в сыворотках, которые получают путём гипериммунизации животных (главным образом лошадей). Для серотерапии применяют также очищенные и концентрированные сыворотки -- гамма-глобулины; гетерогенные (полученные из сывороток иммунизированных животных) и гомологичные (полученные из сывороток иммунизированных или переболевших людей).

Серопрофилактика (лат. serum сыворотка + профилактика; син.: сывороточная профилактика,) - метод предупреждения инфекционных болезней путем введения в организм иммунных сывороток или иммуноглобулинов. Используется при заведомом или предполагаемом заражении человека. Наилучший эффект достигается при максимально раннем использовании гамма-глобулина или сыворотки.

В отличие от вакцинации при серопрофилактике в организм вводятся специфические антитела , и следовательно, организм практически немедленно становится в той или иной степени резистентным к определенной инфекции. В отдельных случаях серопрофилактика не предупреждая заболевания, приводит к снижению его тяжести, частоты осложнений и летальности. Вместе с тем серопрофилактика обеспечивает пассивный иммунитет лишь в пределах 2-3 нед. Введение сыворотки, полученной из крови животных, в отдельных случаях может вызвать сывороточную болезнь и такое грозное осложнение , как анафилактический шок.

Для предупреждения сывороточной болезни во всех случаях сыворотку вводят по методу Безредки поэтапно: в первый раз - 0,1 мл, через 30 мин - 0,2 мл и через 1 ч всю дозу.

Серопрофилактику проводят против столбняка, анаэробных инфекций, дифтерии, кори, бешенства, сибирской язвы, ботулизма, клещевого энцефалита и др. При ряде инфекционных болезней с целью серопрофилактики одновременно с сывороточными препаратами используют и другие средства: антибиотики при чуме, анатоксин при столбняке и др.

Сыворотки иммунные применяют при лечении дифтерии (преимущественно в начальной стадии болезни), ботулизма, при укусах ядовитых змей; гамма-глобулины -- при лечении гриппа, сибирской язвы, столбняка, оспы, клещевого энцефалита, лептоспироза, стафилококковых инфекций (особенно вызванных антибиотикоустойчивыми формами микробов) и других заболеваний.

Для предупреждения осложнений серотерапии (анафилактический шок, сывороточная болезнь) сыворотки и гетерогенные гамма-глобулины вводят по специальной методике с предварительной кожной пробой.

Оглавление темы "Клеточные имунные реакции. Иммунная память. Иммунное реагирование при инфекциях. Иммунодефициты.":









Иммунная память - способность иммунной системы отвечать на вторичное проникновение Аг быстрым развитием специфических реакций по типу вторичного иммунного ответа. Реализацию этого эффекта обеспечивают стимулированные Т- и В-лимфоциты, не выполняющие эффекторные функции. Феномен иммунной памяти проявляется как в гуморальных, так и в клеточных реакциях. Клетки памяти циркулируют в покоящемся состоянии, а при повторном контакте с Аг образуют обширный пул «Аг-представляющих» клеток (не следует путать с клетками макрофа-гально-моноцитарной системы, задействованных в первичном ответе). Иммунная память может сохраняться долгое время, поддерживаясь преимущественно Т-клетками памяти .

Бустер эффект

Бустер-эффект - феномен интенсивного развития иммунного ответа на вторичное попадание Аг [от англ. to boost, усиливать]. Его используют для получения лечебных и диагностических сывороток с высокими титрами AT (гипериммунные сыворотки) от иммунизированных животных. Для этого животных иммунизируют Аг, а затем проводят повторное, бустерное его введение. Иногда повторную иммунизацию проводят несколько раз. Бустер-эффект также применяют для быстрого создания невосприимчивости при повторных вакцинациях (например, для профилактики туберкулёза).

Вакцинопрофилактика

Эффект иммунной памяти составляет основу вакцинопрофилактики многих инфекционных болезней. Для этого человека вакцинируют, а затем (через определённый временной интервал) ревакцинируют. Например, вакцинопрофилактика дифтерии включает повторные ревакцинации с интервалом 5-7 лет.


Иммунологическая память: общая характеристика
Иммунологическая память - это способность иммунной системы отвечать более быстро и эффективно на антиген (патоген), с которым у организма был предварительный контакт.
Такая память обеспечивается предсуществующими антигенспецифическими клонами как В-клеток , так и Т-клеток , которые функционально более активны в результате прошедшей первичной адаптации к определенному антигену.
Пока неясно, устанавливается ли память в результате формирования долгоживущих специализированных клеток памяти или же память отражает собой процесс рестимуляции лимфоцитов постоянно присутствующим антигеном, попавшим в организм при первичной иммунизации.

Клетки иммунологической памяти

Вторичный иммунный ответ характеризуется более быстрой и эффективной продукцией антител .
Интенсивность ответа, осуществляемого популяцией примированных B-лимфоцитов, возрастает, главным образом, за счет увеличения клеток, способных воспринимать антигенный стимул ( рис. 2.13-R ). На рисунке схематически представлено образование эффекторных клеток и клеток памяти после первичного контакта с антигеном. Часть потомков антигенреактивных лимфоцитов после устранения инфекции превращается в неделящиеся клетки памяти, а остальные становятся эффекторными клетками клеточного иммунитета. Клеткам памяти требуется меньше времени для того, чтобы активироваться при повторной встрече с антигеном, что соответственно укорачивает интервал, необходимый для возникновения вторичного ответа.
B-клетки иммунологической памяти качественно отличаются от непремированных B- лимфоцитов не только тем, что начинают продуцировать IgG -антитела раньше, но они обычно обладают и более высокоаффинными антигенными рецепторами благодаря селекции в ходе первичного ответа.
T-клетки памяти вряд ли обладают рецепторами повышенной аффинности по сравнению с непримированными T-клетками. Однако T-клетки иммунологической памяти способны реагировать на более низкие дозы антигена, и это позволяет предполагать, что их рецепторный комплекс в целом (включая молекулы адгезии ) функционирует более эффективно.
Таким образом можно считать установленным, что иммунологическая память определяется не только накоплением популяций одинаковых по свойствам клеток; меняются также свойства индивидуальных клеток, о чем свидетельствуют изменения в экспрессии молекул клеточной поверхности и цитокинов.

B-клеточная иммунологическая память

Общая характеристика В-клеток при вторичном ответе, которая собственно и определяет В-клеточную память , включает следующие показатели.
1). На порядок увеличивается количество специфических В- клеток, вступающих во вторичный ответ, в сравнении с количеством этих клеток при первичном ответе. Например, отношение антигенспецифических В-клеток к общему содержанию В-клеток в селезенке при первичном иммунном ответе к патогенам составляет приблизительно 1:10000; в то же время при вторичном ответе это отношение равно 1:1000.
2). Сокращается латентный период и раньше достигается максимум продукции антител . Для разных антигенов эти показатели варьируют, однако, в среднем, время латентного периода и достижения пика антител при вторичном ответе уменьшается на 2-4 дня.
3). При первичном ответе доминирует продукция IgM . Вторичный ответ характеризуется преимущественной продукцией IgG .
4). Повышается аффинность антител.
Все эти характерологические признаки В-клеточной памяти закладываются при развитии первичного иммунного ответа. В это время происходит накопление антигенспецифического клона В-клеток, идет процесс его дифференцировки, осуществляется отбор клонов на наибольшую аффинность с помощью .
При вторичном ответе принципиальные события очевидно те же, что и при первичном ответе. Однако в реакцию на антиген вступают уже подготовленные клетки с высокоаффинными антигенраспознающими рецепторами. Возможно, при вторичном ответе идет дополнительное повышение аффинности рецепторов, что определяет еще большее сродство антител к антигену. Это предположение строится на экспериментальных данных по последовательному повышению аффинности антител после первичной, вторичной и третичной иммунизации. Зародышевый центр B-лимфоциты: экспрессия CD и этапы гемопоэза
B-лимфоциты: B-клеточные области
Мозг костный
B-лимфоциты: пролиферация тимус-зависимого клона
Антигены: пути распространения
Плазмацитома мышей Фолликулярная B-клеточная лимфома: ген BCL-2 и дифференцировка

T-клеточная иммунологическая память

Быстрота и напряженность вторичного ответа связаны не только с активностью В-клеток памяти , но и с функциональной подготовленностью Т-клеток - наличием Т-клеток памяти .
Т-клетки памяти отличаются от наивных Т-клеток изменением экспрессии функционально значимых рецепторов клеточной поверхности ( табл. 13.7 ).
Особое значение имеют различия по L-селектину , CD44 и CD45RO . Первые два белка участвуют в хоминге Т-клеток в лимфоидные органы и очаги проникновения патогена. CD45RO выступает в качестве передатчика сигнала внутрь клетки при формировании антигенраспознающего комплекса.
Изменение экспрессии рецепторов у Т-клеток памяти существенно отличает их от наивных Т-клеток. При этом следует помнить, что констатация подобных изменений не отвечает на вопрос: образуются ли Т-клетки памяти в результате дивергенции наивных Т-клеток в процессе дифференцировки на армированные эффекторные Т-клетки и Т-клетки памяти или же Т-клетки памяти - долгоживущая субпопуляция армированных Т-клеток.
Иначе, являются ли Т-клетки памяти результатом дивергентного или монофилетического развития? Гиперчувствительность типа IV
CD58

Антигены: роль в поддержании иммунологической памяти

Успешно развившийся специфический иммунитет как заключительный этап антиинфекционной защиты разрешает в итоге конфликт между патогеном и организмом в пользу последнего. Выздоровевший организм характеризуется отсутствием легко выявляемых эффекторных антигенспецифических клеток и антител и наличием клеток памяти .
Однако все эти факты еще не говорят о полном освобожденнии от антигенов, которыми обладал возбудитель. При работе с мечеными высокомолекулярными антигенами метка была обнаружена на поверхности фолликулярных дендритных клеток через несколько месяцев после иммунизации. Возможно, некоторые антигены того или иного возбудителя могут сохраняться в виде иммунных комплексов на дендритных клетках. Не исключена вероятность длительной персистенции незначительных количеств вирусов или бактериальных клеток, которым удалось "скрыться" от иммунной элиминации. Примером может служить вирус простого герпеса , длительно пребывающий в нервной ткани. Если возбудители действительно ведут себя именно так, то клонам наивных Т-клеток , покидающих тимус , постоянно предоставляется материал для распознавания и дифференцировки в армированные клоноспецифические Т-клетки, что и создает пул постоянно присутствующих подготовленных эффекторов для ответной реакции на повторное проникновение патогена.

Сфинголипиды: влияние на образование клеток памяти

При специфическом распознавании антигена молекула CD4 повышает авидность комплекса TCR/Ag/МНС II класса, а ко-стимуляция CD4 приводит к развитию синергичного пролиферативного ответа. Дифференцировка CD4 + -клеток в Th1 или Th2 происходит при генетически рестриктированном взаимодействии лимфоцита с антиген-презентирующей клеткой , а также определяется плотностью экспрессии рецепторов CD4, CD28 , MEL-14 и др. на лимфоцитах [ Noel, ea 1996 , Deeths, ea 1997 ]. Минорная субпопуляция CD4 + -клеток при этом экспрессирует фенотип активационно-индуцированных клеток памяти ( CD69 high , CD45RB low , CD44 high , L-селектин и т. д.) [ Muralidhar, ea 1996 ]. Образование клеток памяти на Т-зависимые антигены регулируется фумонизином В1 [ Martinova, ea 1995 ].

CD4 (T4, gp59)

CD4 (T4 , gp59 , у мышей L3T4 , рецептор ВИЧ ) - это гликопротеин, молекулярная масса которого равна 55 кДа. Полипептидная цепь состоит из 433 аминокислот. CD4 представляет собой одноцепочечную молекулу, состоящую из четырех иммуноглобулинподобных доменов ( рис. 3.17 ). Домены D1 и D2, а также D3 и D4 образуют между собой парные, плотноупакованные, жесткие структуры. Эти пары соединены гибким шарнирным участком. Хвостовая часть молекулы CD4 имеет достаточную длину для взаимодействия с цитоплазматическими белками-трансдукторами. На клеточной поверхности ТКР и CD4 представлены независимо друг от друга. Их встреча происходит в процессе формирования ответа на антиген. После распознавания ТКР антигенного комплекса происходит взаимодействие CD4 с молекулой II класса МНС . Реакция взаимодействия осуществляется между бета2-доменом молекулы МНС и первым доменом CD4. Предполагается также слабое включение во взаимодействие и второго D2-домена.
CD4 - представитель суперсемейства Ig , содержащий во внеклеточной части 4 домена. Ig-подобный характер первых двух с N-конца доменов подтвержден с помощью рентгеноструктурного анализа. Домены 3 и 4 гомологичны доменам 1 и 2 CD2 . 6 остатков Cys молекулы формируют три дисульфидные связи. Трансмембранный участок CD4 гомологичен (48%) трансмембранному домену продуктов MHC класса II . Цитоплазматический домен CD4 включает 40 аминокислотных остатка и содержит четыре сайта фосфорилирования. CD4 мышей, крыс, кроликов имеют аналогичное строение и высокую гомологию с CD4 человека (более 50%), особенно в цитоплазматическом участке. В N-концевой части молекулы содержится участок, обладающий сродством к молекуле gp120 ВИЧ .
ФУНКЦИИ. CD4 идентифицирован на поверхности Т-лимфоцитов с помощью моноклональных антител (ОКТ4) в 1979 г. как маркер Т-хелперов . CD4 содержится на поверхности кортикальных тимоцитов , части зрелых периферических Т-лимфоцитов (40-50% - почти исключительно T-хелперов), он обнаруживается также на моноцитах , некоторых клетках головного мозга . На мембране кортикальных тимоцитов CD4 сосуществует с CD8 , тогда как на зрелых Т-клетках экспрессируется CD4 или CD8.
Функция CD4 обусловлена в первую очередь его способностью связываться с молекулами MHC класса II . В связывании антигенов MHC класса II принимают участие два наружных домена CD4 и неполиморфная часть молекулы MHC. Связывание CD4 с антигенами MHC класса II не только обуславливает адгезию CD4плюс Т-хелперов к MHC-IIплюс макрофагам , но и значительно (100-кратно) повышает сродство Т-клеточного рецептора TcR (с которым CD4 необратимо связывается) к комплексу антигена с продуктами MHC класса II. В свою очередь, при связывании TcR-CD3 с антигенным пептидом между CD4 и рецептором формируется (при участии дельта-цепи CD3 ) физический контакт, облегчающий распознавание комплекса антиген- продукт MHC.
и т.д.................

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ, способность иммунной системы запоминать первый контакт организма с антигеном и реагировать на его повторное поступление более быстрой и интенсивной реакцией, направленной на его удаление. Субстратом иммунологической памяти являются её В- и Т-лимфоциты, формирующиеся из основных популяций В- и Т-лимфоцитов иммунной системы и отличающиеся от последних антигенраспознающими рецепторами [например, в В-лимфоцитах иммунологической памяти рецепторы представлены преимущественно иммуноглобулинами G (IgG) или А (IgA), а не иммуноглобулинами М или D обычных В-лимфоцитов]; они обладают более высоким сродством к антигену, приобретённому в ходе их развития, а также набором хемокиновых рецепторов и молекул клеточной адгезии. Это определяет различие путей их рециркуляции: если обычные лимфоциты мигрируют из кровотока во вторичные лимфоидные органы (лимфатические узлы, селезёнку, миндалины и другие фолликулярные структуры), то клетки иммунологической памяти - преимущественно в кожу, слизистые оболочки, паренхиматозные органы, особенно в очаги воспаления.

Ускорение и повышение эффективности иммунного ответа при повторном поступлении антигена, индуцировавшего формирование иммунологической памяти, связано с большей численностью клеток в клонах В- и Т-лимфоцитов иммунологической памяти по сравнению с клонами обычных В- и Т-лимфоцитов, «облегчённым» механизмом активации и отсутствием необходимости в прохождении некоторых этапов иммунного ответа. В результате за более короткий срок образуется большее число эффекторных клеток и гуморальных факторов иммунной защиты с более высоким сродством к антигену, что и обеспечивает более высокую результативность иммунного ответа. Продолжительность иммунологической памяти определяется сроком жизни её клеток, которая значительно превышает сроки жизни обычных лимфоцитов и составляет несколько лет. Полагают, что для поддержания жизнеспособности В-лимфоцитов иммунологической памяти требуется присутствие в организме антигена, тогда как численность Т-лимфоцитов иммунологической памяти не зависит от присутствия антигена и поддерживается цитокинами (в частности, интерлейкинами 15 и 7).

Обычно наличие иммунологической памяти эффективно предохраняет организм от развития заболевания при инфицировании или существенно облегчает течение болезни. С формированием иммунологической памяти связана вакцинация против инфекционных заболеваний, при которой введение антигенов возбудителя приводит к образованию клеток иммунологической памяти без развития инфекционного процесса.

Лит. смотри при ст. Иммунитет.

Иммунологическая память. При повторной встрече с антигеном организм формирует более активную и быструю иммуннуюреакцию - вторичный иммунный ответ. Этот феномен получил название иммунологической памяти.

Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

На сегодняшний день рассматривают два наиболее вероятных механизма формирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, поддерживая в напряжении иммунную систему. Вероятно также наличие долгоживущих дендритных АПК, способных длительно сохранять и презентировать антиген.

Другой механизм предусматривает, что в процессе развития в организме продуктивного иммунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2-3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата - ревакцинациями .

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию - криз отторжения.

Иммунологическая толерантность -явление,противоположное иммунному ответу и иммунологической памяти.Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в

организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличается специфичностью - она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена. Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы.Известно,что ее основу составляют нормальныепроцессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:

    Элиминация из организма антигенспецифических клонов лимфоцитов.

    Блокада биологической активности им-мунокомпетентных клеток.

    Быстрая нейтрализация антигена антителами.

Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения

многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.

64 Классификация гиперчувствительности по Джейлу и Кумбсу.

Изучение молекулярных механизмов аллергии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллергии: анафилактический (I тип), цитотоксический (IIтип), иммунокомплексный (IIIтип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый - к ГЗТ. Ведущая роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ - лимфоидно-макрофагальная реакция.

Аллергическая реакция I типа связана с биологическими эффектамиIgEиG4,названныхреагинами, которые обладаютцитофильностью - сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки - залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. В

результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез.

Цитотоксические антитела (IgG, IgM), направленные против поверхностных структур (антигенов) соматических клеток макроорганизма, связываются с клеточными мембранами клеток-мишеней и запускают различные механизмы антителозависимой цитотоксичности (аллергическая реакция II типа ). Массивный цитолиз сопровождается соот-ветствующими клиническими проявлениями. Классическим примером является гемолитическая болезнь в результате резус-конфликта или переливания иногруппной крови.

Цитотоксическим действием обладают также комплексы атиген-антитело, образующиеся в организме пациента в большом количестве после введения массивной дозы антигена (аллергическая реакция III типа ). В связи с кумулятивным эффектом клиническая симптоматика аллергической реакции III типа имеет отсроченную манифестацию, иногда на срок более 7 суток. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений от применения иммунных гетерологичных сывороток с лечебно-профилактической целью («сывороточная болезнь»), а также при вдыхании белковой пыли («легкое фермера»).

Тип реакции

ктор патогенеза

анизм патогенеза

Клинический пример

анафилактический (ГНТ)

IgE, IgG4

е рецепторного

я, анафилактический шок, полли

gE (G4)-АсК тучных

офилов →

вие эпитопа аллерген

м комплексом →

учных клеток и

→ Высвобождение

воспаления и других

и активных веществ

. цитотоксический (ГНТ)

цитотоксических ан

волчанка,

аустоимм

антителозавис

ммунокомплексный (ГНТ)

системные заболе

ной ткани, феномен Артюса, «л

комплексов на базал

эндотелии

нотканной

антителозавис

осредованной

воспаления

еточно-опосредованный (ГЗТ)

-лимфоциты

ация Т-лимфоцитовргическая

макрофага

→ З лковая аллергия замедленного ти

воспаления