Кроветворная система человека строение и функции. Кроветворные органы

Кровь - жидкая составляющая организма, непрерывно движущаяся по сосудам, проникающая во все органы и ткани и как бы связывающая их.

Вообще, человек практически состоит из одной воды (если его высушить, то останется всего 5 кг сухой субстанции). Воды в мозгу - 77%, а вместе с мозжечком и оболочками - до 90% (серое вещество весом всего 100 г); в мышцах - 83% воды; в легких - 71 %; в сердце - 71%; в печени - 75%; селезенке - 77%; в клетках - 83%. Наряду с важными жизненными потоками (артериями и венами), тело пронизывают ручейки кровеносных и лимфатических капилляров диаметром от 6 до 30 мкм.

Если 5 кг сухой субстанции человека (мицелл в цитоплазме размером в 5 миллионных частей миллиметра) разложить на поверхности, то они займут площадь в 200 гектаров (2000000 м2), а длина только кровеносных капилляров составит 100000 км! Лимфатических капилляров - около 200000 км! Поверхность развернутой крови (плазма + кровяные тельца) равна 6000 м2; лимфы - 2000 м2; всего 8000 м2!

Здоровье, да и вся наша жизнь зависят от того, какая и как протекает такая бесконечная река крови на этих огромных гектарах нашей плоти!

Функции крови многообразны: она переносит кислород от легких - к тканям, углекислоту - от тканей к легким; питательные вещества - к месту усвоения; подлежащие удалению продукты обмена веществ - к выделительным органам; гормоны, ферменты - от места их выработки к местам активного действия. Кровь участвует в поддержании постоянства внутренней среды организма (осмотического давления, количества воды, минеральных солей), постоянной температуры тела. Огромная роль принадлежит ей в защите организма от проникающих в него вредных элементов.

Количество крови в норме составляет, в среднем, у мужчин - 5200 мл, у женщин - 3900 мл.

Она состоит из жидкой части, плазмы (55-65%), и находящихся в ней взвешенных клеток - форменных элементов (35-45%). Форменные элементы (эритроциты, лейкоциты и тромбоциты) образуются в кроветворных органах; клетки крови и органы, в которых они образуются и разрушаются, называются системой крови.

Состав крови здорового человека довольно постоянен благодаря специальным механизмам регуляции. Кровь четко реагирует на любые изменения в организме как в обычном функциональном состоянии (например, на разные виды воды и пиши при пищеварении), так и при различных заболеваниях.

Эти изменения состава крови могут иметь диагностическое значение в ряде заболеваний человека, особенно глубокие изменения происходят при болезнях системы крови.

Плазма крови содержит примерно 94% воды, которая поступает, в основном, из пищеварительной системы (это уже переработанная организмом, так называемая структурированная вода; такая структурированная вода входит в состав соков фруктов, трав, овощей). В целях экономии энергии организма лучше употреблять готовую структурированную воду в виде этих соков, готовить эту воду самостоятельно для питья. В плазме содержится около 7% белков и разные соли. Плазма крови, по содержанию в ней солей, подобна воде океана, где миллионы лет назад появились первые многоклеточные существа с замкнутой полостью тела и циркулирующей в ней жидкостью.

Один из основных компонентов плазмы - разного типа белки, образующиеся, главным образом, в печени.

По форме и величине молекул белки разделяются на альбумины и глобулины. Одни типы белков выполняют функцию переноса различных веществ, обеспечивая органы и ткани питательными веществами и гормонами, другие (иммуноглобулины) - защитную функцию. К глобулинам относятся белки, участвующие в свертывании крови (например, протромбин и фибриноген). В частности, фибриноген имеет свойство превращаться в нерастворимый белок - фибрин, благодаря чему при повреждении кровеносного сосуда вытекающая из него кровь через некоторое время свертывается и образует кровяной сгусток, препятствующий дальнейшему кровотечению.

Белки плазмы вместе с гемоглобином, эритроцитами и солями (бикарбонатами и фосфатами) поддерживают строгое постоянство концентрации водородных ионов в крови на слабощелочном уровне (рН 7,39), что жизненно важно, т. к. обеспечивает нормальное протекание большинства биохимических процессов в организме.

Форменные элементы крови - эритроциты, лейкоциты и тромбоциты. Кроме них, в плазме находятся и другие клетки.

Объем нормального лейкоцита в 60 раз больше, чем объем тромбоцита. Объем эритроцита в 20 раз больше объема тромбоцита.

Эритроциты

Ежедневно костный мозг производит 200 млрд эритроцитов. Каждые 2 месяца все количество эритроцитов обновляется.

Человеческий организм содержит 25 триллионов красных кровяных телец.

Молодые эритроциты в костном мозгу сохраняют ядро и динамический метаболизм. Образование гемоглобина в эритроците сопровождается уменьшением ядра и его вытеснением.

Эритроцит - безъядерная клетка, состоящая из оболочки и губчатого вещества, в ячейках которого содержится гемоглобин - железосодержащий пигмент, придающий крови красный цвет. Молекула гемоглобина состоит из белка - глобина и железосодержащей группы - гемы.

Железо, которое содержится в геме, способно образовывать с молекулами кислорода соединения, легко распадающиеся при прохождении эритроцита через капилляры легких, а при прохождении через сосуды других органов - отдавать кислород и связываться с углекислотой, которую гема затем отдаст - когда эритроцит вновь попадает в капилляры легких. Кровь, протекающая по артериям, насыщена кислородом, поэтому имеет ярко-алый цвет; после поглощения кислорода тканями и связывания углекислотой кровь приобретает темно-красный цвет (венозная кровь).

В здоровом организме содержится 4-5 млн. эритроцитов в 1 мкм. Гемоглобина у мужчин содержится 130-160 г/л, у женщин - 115-145 г/л.

"Взрослый" эритроцит (без ядра) покидает костный мозг и начинает свою жизнь в кровеносной системе. Основная его функция заключается в осуществлении газообмена организма с окружающей средой, т. е. дыхания.

Без ядра эритроцит не может размножаться, его жизнь продолжается от 42 до 127 дней. Когда он стареет, то переходит в капилляры печени и селезенки и оседает в эндотелиальных клетках стенок сосудов. Эндотелий капилляров фагоцитирует (захватывает) постаревшие эритроциты. Увеличение количества эритроцитов (гиперглобулия) - это не заболевание крови (как часто считают медики), а недостаточность ратикулоэндотелиальной системы капилляров печени и селезенки.

Т. е. отмирающие эритроциты не оседают на стенках капилляров, а продолжают "болтаться" по перенаселенным капиллярам, загромождая и замедляя кровоток. Такие заторы кровотока часто вызывают кровоизлияния. Каждый день в организме умирает 200 млрд эритроцитов, и почки должны обеспечить их удаление, поэтому первостепенное условие для лечения любого заболевания крови - здоровые, чистые почки, иначе будет нарастать интоксикация организма белковыми токсинами. Уменьшение содержания гемоглобина в эритроцитах, значительное уменьшение их количества и формы - характерные признаки анемии.

Лейкоциты

Лейкоциты - белые (бесцветные) кровяные клетки. Они имеют ядро разной формы, поэтому различают палочкоядерные, сегментоядерные лимфоциты, моноциты.

В цитоплазме одних лейкоцитов имеется специфическая зернистость (гранулоциты), в других лейкоцитах такой зернистости нет (агранулоциты). В зависимости от того, какой краской прокрашиваются лейкоциты при лабораторных исследованиях, различают нейтрофильные, базофильные и эозинофильные лейкоциты; разные лейкоциты несут определенные, свойственные им функции.

Лейкоциты способны»активно двигаться, выходить из кровяного русла, передвигаться в межклеточных пространствах.

Именно лейкоциты несут защитную функцию: при появлении в организме чужеродных веществ, лейкоциты, как по сигналу тревоги, проникают сквозь стенки капилляров и передвигаются к месту повреждения Здесь лейкоциты обволакивают инородное вещество, которое как бы приклеивается к их поверхности, и затем втягивается внутрь, где и подвергается перевариванию (как в желудке). Этот процесс называется фагоцитозом, а лейкоциты, осуществляющие его - фагоцитами.

При этом происходит ускоренный процесс выработки лейкоцитов. Доселе дремлющие клетки (макрофаги) по сигналу тревоги также перемещаются к месту "сражения". Лейкоциты, макрофаги и другие активные клетки крови и тканей поглощают не только бактерии и других болезнетворных агентов, но и отмершие клетки, очищая, таким образом, организм.

Поэтому при различных заболеваниях (чаще - воспалительного характера) лейкоцитов в крови обычно становится больше.

Но существуют и болезни, при которых количество лейкоцитов уменьшается (например, гипопластическая анемия), что ведет к снижению иммунитета. Количество лейкоцитов и даже у одного и того же человека оно колеблется: рано утром их меньше, во второй половине дня - больше. Отдельные формы лейкоцитов находятся в определенных соотношениях (так называемая лейкоцитарная формула), однако их соотношение также может значительно колебаться. Если лейкоцитов больше 9000 - речь идет о лейкоцитозе, если меньше 4000 - о лейкопении. Оба эти явления могут наблюдаться и в здоровом организме. Скажем, временная лейкопения может возникнуть после горячей бани, у спортсменов - после интенсивной тренировки, после тяжелого физического труда.

Лейкоцитоз (физиологический) может развиться в результате переохлаждения, непривычной тяжелой работы, при беременности.

Патологический лейкоцитоз возникает как защитная реакция организма при воспалениях, некрозе тканей (например, при инфаркте), после большой кровопотери, при травмах, аллергиях и т. д.

Лейкоцит является как бы и одноклеточной эндокринной железой. Учитывая количество лейкоцитов в нашей крови, можно говорить о том, что роль их не менее важна, чем роль 7 крупных эндокринных желез.

Зернистые лейкоциты, начиная промиелоцитом и заканчивая полинуклеаром, обладают способностью выделять фермент протеазу, действие которой можно сравнить с действием трипсина поджелудочной железы. Ноль Фиессинджер доказал, что лейкоциты могут вырабатывать и другие ферменты: пептазу, дезаминазу, амилазу. Липаза выделяется свободными лимфоцитами, а также лимфатическими железами и селезенкой.

Лимфоциты - кровяные клетки, относящиеся к группе лейкоцитов. Лимфоциты играют очень важную роль в повышении иммунитета: они фиксируют токсины и участвуют в образовании антител - сложных белков, препятствующих размножению микроорганизмов в теле человека или нейтрализующих токсические вещества, выделяемые микробами, и тем самым обеспечивающих повышение иммунитета.

Кроме того, лимфоциты могут превращаться в так называемые плазматические клетки, вырабатывающие гамма-глобулин. Их количество колеблется от 19-37 в 1 мкл крови. Подробнее о лимфоцитах мы поговорим в разделе о лимфосистеме и иммунитете.

Тромбоциты

Тромбоциты - безъядерные образования, их называют кровяными пластинками: в 1 мкл крови их содержится от 180000 до 320000; общее же количество достигает астрономических цифр. Несмотря на свою бесконечно малую величину, каждая частичка этой "тромбоцитной пыли" - живое существо, обладающее очень активным метаболизмом. Их неусыпная бдительность позволяет реагировать на любое повреждение травмированных стенок сосудов: они выделяют вещество серотонин, суживающее просвет капилляров и тромбопластин.

До сих пор основной функцией тромбоцитов считается их участие в свертывании крови. Можно предположить, что тромбоциты способны выполнять и некоторые другие функции, нам неизвестные; а также - что они обладают хорошо очерченной клеточной структурой со своим собственным метаболизмом. Тромбоциты усваивают, перерабатывают протеины, они должны удалять остатки своего метаболизма, для чего необходим приток кислорода.

Тромбоциты подготавливают поле деятельности для некоторых ферментов: дипептидаз, трипептидаз, аланинглициназ, белковых ферментов, ферментов типа фосфатаз. Кстати, у женщин во время месячных эти диастазы блокированы, поэтому свертывание крови замедлено.

Современные антикоагулянты вызывают торможение диастаз в тромбоцитах. Мы с трудом можем проникнуть в эту "оркестровку" диастаз в мириадах тромбоцитов, поэтому то вынуждены констатировать, что мы бессильны изменить что-либо в этом мире бесконечно малых сил, представляющих собой один из бесчисленных субстратов таинственной жизни.

Кроветворные органы - это органы, в которых образуются форменные элементы крови; к ним относятся костный мозг, селезенка и лимфатические узлы.

Костный мозг - главный кроветворный орган. Масса костного мозга составляет 2 кг. В костном мозгу грудины, ребер, позвонков, в диафизах трубчатых костей, в лимфатических узлах и в селезенке ежедневно рождается 300 млрд эритроцитов.

Основу костного мозга составляет особая ретикулярная ткань, образованная клетками звездчатой формы и пронизанная большим количеством кровеносных сосудов - в основном, капилляров, расширенных в виде синусов. Различают красный и желтый костный мозг. Вся ткань красного костного мозга заполняется созревшими клеточными элементами крови. У детей до 4 лет он заполняет все костные полости, а у взрослых сохраняется в плоских костях и в головках трубчатых костей. В отличие от красного, желтый костный мозг содержит жировые включения. В костном мозге происходит образование, кроме эритроцитов, разных форм лейкоцитов и тромбоцитов.

Лимфатические умы - участвуют в процессах кроветворения, вырабатывая лимфоциты и плазматические клетки.

Селезенка расположена в брюшной полости, в левом подреберье, она заключена в плотную капсулу. Большая часть селезенки состоит из так называемой красной и белой пульпы. Красная пульпа заполнена форменными элементами крови (в основном, эритроцитами); белая пульпа образована лимфоидной тканью, в которой вырабатываются лимфоциты. Помимо кроветворной функции, селезенка осуществляет захват из крови поврежденных, старых (отживших) эритроцитов, микроорганизмов и других чуждых организму элементов, попавших в кровь; в ней вырабатываются антитела.

Поскольку в организме непрерывно разрушаются форменные элементы (например, тромбоциты распадаются примерно через неделю), основной функцией кроветворных органов является постоянное пополнение клеточных элементов крови.

Кроветворение
- это процесс образования, развития и созревания лейкоцитов, эритроцитов, тромбоцитов.

У зародыша человека кроветворение начинается в желточном мешке, после 6 недель эту функцию берет на себя печень (при хирургическом удалении лимфоузлов и селезенки и у взрослого человека эту функцию также берет на себя печень), а с 4-5-го месяца внутриутробной жизни кроветворение начинается в костном мозге. Лимфатические узлы появляются на 3-м месяце, в них образуются лимфоциты; кроветворение в селезенке начинается только после рождения.

Родоначальниками всех элементов крови являются так называемые стволовые клетки. Большая часть стволовых клеток кроветворных органов находится в покое; в цикле кроветворения их одновременно находится не более 20%. Остальные - в резерве, для экстренного пополнения крови при травмах, ряде заболеваний, недостатке витаминов В12, В6, отравлениях и т. д.

Стволовые клетки дают начало кроветворным росткам, из которых, в результате ряда превращений, образуются форменные элементы крови. Созревание происходит в кроветворных органах. В кровяное русло поступают только зрелые клетки, способные выполнять свои функции. Попадание в кровоток молодых (несозревших) клеток указывает на патологические процессы в костном мозге.

Группа крови
- передающиеся по наследству признаки крови, определяемые индивидуальным для каждого человека набором специфических веществ, получивших название групповых антигенов, или изоантигенов. На основании этих признаков кровь всех людей подразделяется на группы независимо от расовой принадлежности, возраста и пола.

Принадлежность человека к той или иной группе крови является его индивидуальной биологической особенностью, которая начинает формироваться уже в раннем периоде внутриутробного развития и не изменяется в течение всей последующей жизни.

Наибольшее практическое значение имеют изоантигены эритроцитов - изоантиген "Л" и изоантиген "В", а также имеющиеся, в норме, в сыворотке крови некоторых людей антитела против них, называемые изоантителами - изоантитело "a" и изоантитело "b". В крови человека вместе могут находиться только разнородные изоантигены и изоантитела (например, А + b или В + а), т. к. в присутствии однотипных изоантигенов и изоантител (например, А + а) происходит склеивание эритроцитов в комочки.

В зависимости от наличия или отсутствия в крови людей изоантигенов "А" и "В", а также изоантител "а" и "b", их условно разделяют на 4 группы, обозначаемые буквенными и цифровыми символами: Oab (I) - группа крови, содержащая только изоантитела "а" и "b"; Ab (II) - группа крови, содержащая изоантиген "А" и изоантитело "b"; Ва (III) - группа крови, содержащая изоантиген "В" и изоантитело "а"; АВО (IV) - группа крови, содержащая только изоантигены "А" и "В". В соответствии с этим при переливании крови от одного человека к другому учитывают, чтобы в переливаемой крови не было изоантител против изоантигенов крови того человека, которому вводят кровь. Идеально совместимой при переливании является кровь одной и той же группы.

Кроме изоантигенов "А" и "В", в эритроцитах некоторых людей обнаруживаются специфические антигены "Н" и "О" (например, эти антигены постоянно присутствуют в эритроцитах лиц группы крови Оа (I).

Антиген "Н", как и изоантигены "А" и "В", обнаруживается в биологических жидкостях у людей, способных выделять с секретами изоантигены, в то время как антиген "О" с секретами не выделяется. Важно учитывать возможность содержания (в большом количестве) иммунных антител и крови лиц группы Оа (I), что может привести к тяжелым осложнениям после ее переливания, Кровь таких доноров может быть перелита больным только с одноименной группой крови!

Второе место по значению в медицинской практике, после изоантигенов АВО, имеют группы крови системы Rh (Rhesus-резус). Этоодна из самых сложных систем крови,она включает в себя более 20 изоантигенов. Установлено,что у 85% людей эритроциты содержат резус-фактор (Rh-фактор), а у 15% он отсутствует. В зависимости от присутствия или отсутствия в крови Rh-фактора кровь делится на две группы - резус-положительную и резус-отрицательную.

Резус-конфликт проявляется в форме гемолитической болезни, иногда заканчивается смертельным исходом. Резус-конфликт может развиться также при повторных переливаниях резус-положительной крови лицам с резус-отрицательной. Супругам очень важно знать, что в организме беременной женщины с резус-отрицательной кровью, под влиянием антитела плода от отца с резус-положительной кровью, образуются антитела, которые, воздействуя на эритроциты плода, могут вызвать гемолиз (разрушение).

Кровяное давление - давление внутри кровеносных сосудов (внутри артерий - артериальное давление, внутри капилляров - капиллярное, внутри вен - венозное). Давление обеспечивает возможность продвижения крови по кровеносной системе и, тем самым, - осуществление обменных процессов в тканях организма. Величина артериального давления (АД) определяется, главным образом, силой сердечных сокращений, количеством крови, которое выбрасывает сердце при каждом сокращении, сопротивлением, оказываемым току крови стенками кровеносных сосудов (особенно периферических, в основном - капиллярных). На величину АД влияет также количество крови, ее вязкость, колебания давления в брюшной и грудной полостях, связанные с дыхательными движениями, и другие факторы.

Максимального уровня АД достигает во время сокращения (систолы) левого желудочка сердца. При этом из сердца выталкивается 60-80 мл крови. Такое количество крови не может пройти сразу через мелкие кровеносные сосуды (особенно капилляры), поэтому эластичная аорта растягивается, а давление в ней повышается (так называемое систолическое давление). В норме оно в крупных артериях достигает 100-140 мм ртутного столба.

Во время паузы между сокращениями желудочков сердца (диастолы) стенки кровеносных сосудов (аорты и крупных артерий), будучи растянутыми, начинают сокращаться и проталкивать кровь в капилляры. Давление крови постоянно падает, и к концу диастолы достигает минимальной величины (70-80 мм ртутного столба). Разницу в величине систолического давления, а точнее - колебания в их величинах, мы воспринимаем в виде пульсовой волны, которую называют пульсом.

Давление крови в кровеносных сосудах уменьшается по мере удаления от сердца. Так, в аорте АД составляет 140/90 мм рт. ст., в крупных артериях - 120/75 мм рт. ст., в артериолах разница в давлениях практически отсутствует и равна около 40 мм рт. ст., в капиллярах давление снижается до 10-15 мм рт. ст. При переходе крови в венозное русло ее давление снижается еще больше, и в наиболее крупных венах (верхняя и нижняя полые вены) может достигать отрицательной величины.

О величине кровяного давления обычно судят, определяя артериальное давление, т. к. измерение капиллярного или венозного давления произвести технически сложно. Хотя изменения кровяного давления играют защитно-приспособительную роль, при отклонениях его от нормы (а это бывает практически с каждым человеком) лучше проконсультироваться с умным, духовным врачом, поскольку на уровень кровяного давления влияет множество различных факторов.

Гипотония (пониженное давление) возникает при отравлениях, инфекционных заболеваниях, болезнях нервной и сердечно-сосудистой систем и т. д. Повышение давления (гипертония) наблюдается при возрастных нарушениях, эндокринных заболеваниях, заболеваниях почек, гипертонической болезни, в период полового созревания, во время климакса у женщин и мужчин и от многих других причин.

1. Центральные органы кроветворения

2. Строение тимуса

3. Строение лимфатических узлов

4. Строение селезенки

5. Строение миндалин

6. Функции аппендикса

1 . Все органы кроветворения и иммуногенеза делятся на:

· центральные - красный костный мозг, тимусдля Т-лимфопоэза;

· периферические - лимфоузлы, селезенка, скопление лимфоидной ткани по ходу желудочно-кишечного тракта и дыхательных путей.

Все органы имеют общий принцип строения и состоят из ретикулярной стромы и гемопоэтических клеток разной степени зрелости. Стромой почти всех кроветворных органов является ретикулярная ткань мезенхимального происхождения, а у тимуса ретикулоэпителиальная ткань энтеродермального происхождения. Ретикулярная ткань выполняет и ряд других функций, то есть формирует микроокружение для кроветворных клеток, оказывая активное воздействие на их дифференцировку. В постнатальном периоде гемопоэз происходит экстраваскулярно, зрелые клетки из кроветворных органов проникают через поры капилляров и устремляются в периферическую кровь. Например: лимфоциты проникают в кровь на уровне посткапиллярных венул.

Красный костный мозг является центральным органом гемопоэза и иммуногенеза. В нем находится основная часть стволовых кроветворных клеток, происходит развитие клеток лимфоидного и миелоидного рядов. В эмбриогенезе красный костный мозг появляется на 2-м месяце в плоских костях и позвонках, на 4-м месяцев трубчатых костях. У взрослых он находится в эпифизах трубчатых костей, губчатом веществе плоских костей, костях черепа. Масса красного мозга составляет 1,3-3,7 кг.

Строение красного мозга в целом подчиняется строению паренхиматозных органов. Его строма представлена:

· костными балками;

· ретикулярной тканью.

В ретикулярной ткани находится множество кровеносных сосудов, в основном синусоидных капилляров, не имеющих базальной мембраны, но имеющих поры в эндотелии. В петлях ретикулярной ткани находятся гемопоэтические клетки на разных стадиях дифференцировки: от стволовой до зрелых (паренхима органа). Количество стволовых клеток в красном костном мозге наибольшее. Развивающиеся клетки крови лежат островками. Эти островки представлены дифферонами различных клеток крови.

Эритробластические островки обычно формируются вокруг макрофага, который называется клеткой-кормилкой. Клетка-кормилка захватывает железо, попадающее в кровь из погибших в селезенке старых эритроцитов, и отдаст его образующимся эритроцитам для синтеза гемоглобина.

Созревающие гранулоциты формируют гранулобластические островки. Клетки тромбоцитарного ряда (мегакариобласты, про- и мегакариоциты) лежат рядом с синусоидными капиллярами. Отростки мегакариоцитов проникают в капилляры и от них постоянно отделяются тромбоциты. Вокруг кровеносных сосудов встречаются небольшие группы лимфоцитов и моноцитов.


Среди клеток красного костного мозга преобладают зрелые и заканчивающие дифференцировку клетки (депонирующая функция костного мозга). Они при необходимости поступают в кровь. В норме в кровь поступают только зрелые клетки.

Наряду с красным существует желтый костный мозг. Он обычно находится в диафизах трубчатых костей. Он состоит из ретикулярной ткани, которая местами заменена на жировую. Кроветворные клетки отсутствуют. Желтый костный мозг представляет собой своеобразный резерв для красного костного мозга. При кровопотерях в него заселяются гемопоэтические элементы, и он превращается в красный костный мозг. Таким образом, желтый и красный костный мозг можно рассматривать как два функциональных состояний одного кроветворного органа.

В кровоснабжении костного мозга принимают участие артерии, питающие кость. Поэтому характерна множественность его кровоснабжения. Артерии проникают в костномозговую полость и делятся на две ветви: дистальную и проксимальную. Эти ветви спирально закручиваются вокруг центральной вены костного мозга. Артерии разделяются на артериолы, отличающиеся небольшим диаметром, для них характерно отсутствие прекапиллярных сфинктеров. Капилляры костного мозга делятся на истинные капилляры, возникающие в результате дихотомического деления артериол, и синусоидные капилляры, продолжающие истинные капилляры. Синусоидные капилляры лежат большей частью вблизи эндоста кости и выполняют функцию селекции зрелых клеток крови и выделения их в кровоток, а также участвуют в заключительных этапах созревания клеток крови, осуществляя воздействие на них через молекулы клеточной адгезии.

Красный костный мозг является органом, у которого повышена чувствительность к повреждающему воздействию. Контроль за процессом дифференцировки и пролиферации осуществляется при помощи гуморальной регуляции, а гуморальная регуляция осуществляется рядом факторов, которые могут воздействовать дистантно и местно. К таким местным факторам относятся эритропоэтин, вырабатывающийся в почках и стимулирующий гемопоэз, колониестимулирующие факторы - продуцируются эндотелиальными клетками кровяных капилляров, стромальными клетками, Т-лимфоцитами, стимулируют эритропоэз, гранулопоэз, моноцитопоэз и лимфоцитопоэз. В красном костном мозге происходит антигеннезависимая дифференцировка В-лимфоцитов, в ходе дифференцировки В-лимфоциты приобретают на своей поверхности разные рецепторы к различным антигенам. Созревшие В-лимфоциты покидают красный костный мозг и заселяют В-зоны периферических органов иммунопоэза.

До 75 % В-лимфоцитов образующихся в красном костном мозге здесь же и погибают (апоптоззапрограммированная в генах гибель клеток). Наблюдается так называемая селекция или отбор клеток, она может быть:

· "+" селекция позволяет выживать клеткам с нужными рецепторами;

· "-" селекция обеспечивает гибель клеток, обладающих рецепторами к собственным клеткам.

Погибшие клетки фагоцитируются макрофагами.

2. Тимус выполняет следующие функции:

· в тимусе происходит антигеннезависимая дифференцировка Т-лимфоцитов, то есть он является центральным органом иммуногенеза;

· в тимусе вырабатываются гормоны тимозин, тимопоэтин, тимусный сывороточный фактор.

Наибольшего развития тимус достигает в детском возрасте. Особенно важно функционирование тимуса в раннем детском периоде. После полового созревания тимус претерпевает возрастную инволюцию и замещается жировой тканью, однако полностью не теряет своих функций даже с старческом возрасте.

Строение

Тимус - паренхиматозный дольчатый орган. Снаружи он покрыт соединительнотканной капсулой. Отходящие от капсулы перегородки делят орган на дольки, однако это разделение неполное. Основу каждой дольки составляют отростчатые эпителиальные клетки, которые называются ретикулоэпителиоцитами. Рыхлая волокнистая неоформленная соединительная ткань имеется только периваскулярно. Выделяют две разновидности ретикулоэпителиоцитов:

· клетки-кормилицы или клетки-няньки, расположены в субкапсулярной зоне;

· эпителиальные дендритные клетки лежащие в зоне глубокой коры.

Каждая долька делится на корковое и мозговое вещество.

Корковое вещество состоит из двух зон: субкапсулярной или наружной и зоны глубокой коры. В субкапсулярную зону из красного костного мозга поступают пре-Т-лимфоциты. Они превращаются в лимфобласты и начинают пролиферировать, тесно контактируя с клетками-кормилицами. В это время клетки еще не имеют на своей поверхности Т-клеточного рецептора. Клетки-кормилицы вырабатывают тимозин и другие гормоны, которые стимулируют дифференцировку Т-лимфоцитов, то есть превращение предшественников в зрелые Т-лимфоциты. По мере дифференцировки Т-лимфоциты начинают экспрессировать на своей поверхности рецепторы и постепенно перемещаться в более глубокие зоны коры.

В глубокой коре тимоциты начинают контактировать с эпителиальными дендритными клетками. Эти клетки контролируют образование аутореактивных лимфоцитов. Если образующийся лимфоцит способен реагировать против собственных антигенов организма, то такой лимфоцит получает от эпителиальной дендритной клетки сигнал к апоптозу и уничтожается макрофагами. Толерантные к собственным антигенам лимфоциты проникают в самые глубокие зоны коры, на границе с мозговым веществом через посткапиллярные вены с высоким эндотелием попадают в кровь и затем в Т-зависимые зоны периферических лимфоидных органов, где осуществляется антигензависимый лимфоцитопоэз. Функция коркового вещества - антигеннезависимая дифференцировка и селекция Т-лимфоцитов.

Мозговое вещество содержит соединительнотканную строму, ретикулоэпителиальную основу и лимфоциты. Которых значительно меньше (3-5 % от всех лимфоцитов тимуса). Часть лимфоцитов мигрирует сюда из коркового вещества, чтобы на границе с корой через посткапиллярные венулы покинуть тимус. Другая часть лимфоцитов мозгового вещества, возможно, является лимфоцитами, поступившими из периферических органов иммуногенеза. В мозговом веществе есть эпителиальные тимические тельца Гассаля. Они образованы наслоением друг на друга эпителиоцитами. Размеры телец Гассаля и их численность увеличивается с возрастом и при стрессах. Возможными их функциями являются:

· образование тимических гормонов;

· разрушение аутореактивных Т-лимфоцитов.

Гематотимический барьер

В корковом веществе тимуса происходит антигеннезависимая дифференцировка Т-лимфоцитов, и действие антигенов на этом этапе может нарушить нормальный лимфопоэз. Поэтому развивающиеся Т-лимфоциты коркового вещества отделены от крови и находящихся в ней антигенов гематотимическим барьером.

В его состав входят следующие структуры:

· эндотелий капилляра непрерывного типа;

· непрерывная базальная мембрана эндотелия;

· перикапиллярное пространство, в соединительной ткани которого присутствуют макрофаги, расщепляющие антигены;

· базальная мембрана периваскулярных ретикулоэпителиоцитов;

· ретикулоэпителиоциты, которые имеют отростчатую форму и при помощи своих отростков охватывают гемокапилляры.

Васкуляризация тимуса

Поступающие в тимус артерии ветвятся на междольковые, внутридольковые, а затем дуговые сосуды. Дуговые артерии распадаются до капилляров, образующих глубокую сеть в коре. Меньшая часть корковых капилляров на границе с мозговым веществом переходит в посткапиллярные вены с высоким эндотелием. Через них осуществляется рециркуляция лимфоцитов. Большая часть капилляров не заходит в посткапиллярные венулы с высоким эндотелием, в продолжается в субкапсулярные венулы. Венулы переходят в выносящие вены.

3. Функции лимфатических узлов :

· кроветворная функция заключается в антигензависимой дифференцировке лимфоцитов;

· барьерно-защитная функция - неспецифическая защита от антигенов заключается в фагоцитозе их из лимфы многочисленными макрофагами и "береговыми" клетками; специфическая защитная функция заключается в осуществлении специфических иммунных реакций;

· дренажная функция, лимфоузлы собирают лимфу из приносящих сосудов, идущих от тканей. При нарушении этой функции наблюдается периферический отек;

· функция депонирования лимфы, в норме определенное количество лимфы задерживается в лимфоузле и выключается из лимфотока;

· обменная функцияучастие в обмене веществ - белков, жиров, углеводов и других веществ.

Строение

Общее число лимфоузлов в организме человека примерно 1000, что составляет около 1 % массы тела. Их размеры в среднем равны 0,5-1 см. Лимфоузлы имеют почковидную форму, лежат регионарно по отношению к органам, группами. С выпуклой поверхности лимфоузла в него входят приносящие лимфососуды, а с противоположной стороны, которая называется воротами, выходят выносящие лимфососуды. Кроме того, в ворота лимфоузла входят артерия и нервы, а выходят вены.

Лимфоузлы являются паренхиматозными зональными органами. В них можно выделить следующие структурно-функциональные компоненты:

· капсула, содержащая рыхлую волокнистую неоформленную соединительную ткань с большим количеством коллагеновых волокон. В капсуле встречаются гладкие миоциты, способствующие активному продвижению лимфы;

· трабекулы, отходящие от капсулы, анастомозируя друг с другом, они образуют каркас лимфоузла;

· ретикулярная ткань, заполняющая все пространство между капсулой и трабекулами;

· в лимфоузле различают две зоны: периферическуюкорковое вещество, и центральную - мозговое вещество;

· между корковым и мозговым веществом - паракортикальная зона или глубокая кора;

· синусы - совокупность лимфососудов, по которым движется лимфа. Последовательность прохождения лимфы через лимфоузел и расположение синусов такова: приносящие лимфососуды - краевой или субкапсулярный синус - промежуточные корковые синусы - промежуточные мозговые синусы - воротный синус - выносящий лимфососуд в области ворот.

Корковое вещество лимфатического узла представлено скоплением лимфоидной ткани, в составе которой имеются лимфоидные фолликулы, или узелки, и интерфолликулярное плато. Лимфоидные узелкиокруглые величиной до 1 мм. Различают первичные без реактивного центра, и вторичные лимфоидные фолликулы, имеющие реактивный центр (центр размножения, светлый центр).

Первичные фолликулы состоят в основном из малых "наивных" В-лимфоцитов, связанных с ретикулярными и фолликулярными дендритными клетками. При попадании антигена протекает бласттрансформация "наивных" В-лимфоцитов, и формируются вторичные узелки. Они состоят из центра размножения и короны, или мантии, на периферии. Корона образована малыми В-лимфоцитами памяти, а также малыми "наивными" лимфоцитами костномозгового происхождения. Реактивный центр на высоте иммунной реакции подразделяется на темную и светлую зоны. Темная зона обращена к паракортикальной зоне. Здесь клетки митотически делятся, перемещаются в светлую, более периферическую зону, где находятся уже более зрелые, мигрирующие клетки. Предшественники плазмоцитов выходят из фолликула через боковые зоны короны в интерфолликулярное плато, а затем перемещаются через паракортикальную зону в мозговое вещество (в мякотные тяжи), где созревают в плазмоциты.

Паракортикальная зона или зона глубокой коры находится на границе коркового и мозгового вещества. Она является тимусзависимой зоной (Т-зоной) лимфоузла. Содержит преимущественно Т-лимфоциты, однако здесь обнаруживаются мигрирующие в мякотные тяжи мозгового вещества плазмоциты на разных стадиях развития. Всю паракортикальную зону можно разделить на отдельные единицы. Каждая единица состоит из центральной и периферической частей. В центре происходит бласттрансформация и размножение Т-лимфоцитов. На периферии находятся посткапиллярные вены с высоким эпителием. Через них происходит миграция лимфоцитов из крови в лимфоузел и, возможно, обратно.

Мозговое вещество состоит из двух структурно-функциональных компонентов: мозговых и мякотных тяжей и мозговых промежуточных синусов. Мозговые тяжи являются В-зависимой зоной. Здесь происходит созревание мигрировавших из коры предшественников плазмоцитов в плазмоциты. Накапливающиеся при иммунном ответе в мозговых тяжах плазмоциты секретируют в лимфу антитела. Снаружи к мозговым тяжам прилежат мозговые синусы.

Строение синусов лимфоузла

Все синусы лимфоузла представляют собой щелевидные пространства, которые выстланы эндотелием, способным к фагоцитозу. Кроме эндотелиоцитов в образовании стенки лимфатических синусов участвуют рететелиальные клетки. Они имеют отростчатую форму. При этом отростки пересекают все пространства синуса и на противоположной его стороне формируют расширения в виде площадок, которые на ряду с литоральными клетками формируют прерывистую выстилку синусов. Базальная мембрана в выстилке синусов отсутствует. Отростки рететелиальных клеток формируют трехмерную сеть, замедляющую ток лимфы, что способствует ее более полному очищению макрофагами. Сеть формируют также идущие в разных направлениях ретикулярные волокна. В синусах много свободных макрофагов и лимфоцитов, которые могут фиксироваться в сети.

Кровоснабжение лимфатического узла

Кровеносные сосуды входят в ворота узла. От артерий отходят капилляры в капсулу и трабекулы, а также к узелкам. В них есть поверхностная и глубокая капиллярные сети. Капиллярные сети продолжаются в венулы с высоким эндотелием, а затем в вены, которые выходят через ворота узла. В норме кровь никогда не поступает в синусы. При воспалении, травмах и других патологических состояниях подобное явление возможно.

4. Функции селезенки:

кроветворная - образование лимфоцитов;

барьерно-защитная - фагоцитоз, осуществление иммунных реакций. Селезенка удаляет из крови все бактерии за счет деятельности многочисленных макрофагов;

депонирование крови и тромбоцитов;

· обменная функция - регулирует обмен углеводов, железа, стимулирует синтез белков, факторов свертывания крови и другие процессы;

· гемолитическая при участии лизолецитина селезенка разрушает старые эритроциты, а также в селезенке разрушаются стареющие и поврежденные тромбоциты;

· эндокринная функция - синтез эритропоэтина, стимулирующего эритропоэз.

Строение

Селезенка - паренхиматозный зональный орган, снаружи она покрыта соединительнотканной капсулой, к которой прилежит мезотелий. Капсула содержит гладкие миоциты. От капсулы отходят трабекулы из рыхлой волокнистой соединительной ткани. Капсула и трабекулы образуют опорно-сократительный аппарат селезенки и составляют 7 % ее объема. Все пространство между капсулой и трабекулами заполнено ретикулярной тканью. Ретикулярная ткань, трабекулы и капсула образуют строму селезенки. Совокупность лимфоидных клеток представляет ее паренхиму. В селезенке выделяют две различающиеся по строению зоныкрасную и белую пульпу.

Белая пульпа - это совокупность лимфоидных фолликулов (узелков), лежащих вокруг центральных артерий. Белая пульпа составляет 1/5 часть селезенки. Лимфоидные узелки селезенки отличаются по строению от фолликулов лимфоузла, так как содержат и Т-зоны и В-зоны. Каждый фолликул имеет 4 зоны:

· реактивный центр (центр размножения);

· мантийная зона - корона из малых В-лимфоцитов памяти;

· маргинальная зона;

· периартериальная зона или периартериальная лимфоидная муфтазона вокруг центральных артерий.

1-я и 2-я зоны соответствуют лимфоидным узелкам лимфоузла и являются В-зоной селезенки. В центре размножения фолликулов располагаются фолликулярные дендритные клетки, В-лимфоциты на разных стадиях развития и делящиеся В-лимфоциты, претерпевшие бласттрансформацию. Здесь происходит бласттрансформация и размножение В-лимфоцитов. В мантийной зоне происходит кооперация Т- и В-лимфоцитов и накопление В-лимфоцитов памяти.

Т-лимфоциты, составляющие 60 % всех лимфоцитов белой пульпы, лежат вокруг центральной артерии в 4-й зоне, поэтому эта зона является Т-зоной селезенки. Снаружи от периартериальной и мантийной зон узелков находится маргинальная зона . Ее окружает маргинальный синус. В этой зоне происходят кооперативные взаимодействия Т- и В-лимфоцитов, через нее в белую пульпу поступают Т- и В-лимфоциты, а также антигены, которые здесь захватываются макрофагами. Через эту зону в красную пульпу мигрируют созревшие плазмоциты. Клеточный состав маргинальной зоны представлен лимфоцитами, макрофагами, ретикулярными клетками.

Красная пульпа селезенки состоит из пульпарных сосудов, пульпарных тяжей и нефильтрующих зон. Пульпарные тяжи в своей основе содержат ретикулярную ткань. Между ретикулярными клетками находятся эритроциты, зернистые и незернистые лейкоциты, плазмоциты на разных стадиях созревания. Функциями пульпарных тяжей являются:

· распад и уничтожение старых эритроцитов;

· созревание плазмоцитов;

· осуществление обменных процессов.

Синусы красной пульпы - это часть кровеносной системы селезенки. Они составляют большую часть красной пульпы. Имеют диаметр 12-40 мкм. Относятся к венозной системе, но по строению близки к синусоидным капиллярам: выстланы эндотелием, который лежит на прерывистой базальной мембране. Кровь из синусов может поступать сразу в ретикулярную основу селезенки. Функции синусовтранспорт крови, обмен кровью между сосудистой системой и стромой, депонирование крови.

В красной пульпе есть так называемые нефильтрующие зоны - в которых не происходит кровоток. Эти зоны являются скоплением лимфоцитов и могут служить резервом для образования новых лимфоидных узелков в процессе иммунного ответа. В красной пульпе находится множество макрофагов, которые очищают кровь от различных антигенов.

Соотношение белой и красной пульпы может быть различным, в связи с этим выделяют два типа селезенок :

· иммунный тип характеризуется выраженным развитием белой пульпы;

· метаболический тип, при котором значительно преобладает красная пульпа.

Кроветворная система - система органов организма, отвечающих за постоянство состава крови. Поскольку в организме непрерывно разрушаются форменные элементы, основной функцией кроветворных органов является постоянное пополнение клеточных элементов крови - кроветворение или Гемопоэз.

Кроветворная система состоит из четырех основных частей - костного мозга, лимфатических узлов, селезенки и периферической крови.

Костный мозг находится в костях, главным образом, в плоских - грудине, ребрах, подвздошной кости. Здесь происходит сложнейший процесс образования всех элементов крови. Все клетки крови происходят от одной - стволовой клетки, которая в костном мозгу размножается и развитие идет по четырем направлениям - образование эритроцитов (эритропоэз), лейкоцитов (миелопоэз), лимфоцитов (лимфопоэз) и тромбоцитов (тромбоцитопоэз).

Лимфатические узлы участвуют в процессах кроветворения, вырабатывая лимфоциты, плазматические клетки.

Селезёнка состоит из так наз. красной и белой пульпы. Красная пульпа заполнена форменными элементами крови, в основном эритроцитами; белая пульпа образована лимфоидной тканью, в которой вырабатываются лимфоциты. Помимо кроветворной функции, селезёнка осуществляет захват из тока крови повреждённых эритроцитов, микроорганизмов и других чуждых организму элементов, попавших в кровь; в ней вырабатываются антитела.

В периферическую кровь поступают зрелые клетки, способные выполнять строго определенные функции.

Эритроциты (их еще называют клетками красной крови) составляют подавляющее большинство клеток периферической крови. Практически всю клетку занимает гемоглобин - вещество, благодаря которому эритроцит выполняют свою основную задачу - принести в каждую клетку организма кислород, а оттуда забрать углекислый газ. Проходя через легкие, эритроциты отдают углекислый газ и получают кислород. Для нормального развития эритроцитов в костном мозге необходимо железо и витамин В12.

Лимфоциты представляют собой разнообразную группу клеток. По происхождению и функциям лимфоциты делятся на 2 группы: Т-лимфоциты и В-лимфоциты. Среди Т-лимфоцитов различают клетки-памяти, которые узнают чужеродные белки и дают сигнал к началу защитного (иммунного) ответа; Т-хелперы (помощники), стимулирующие развертывание иммунологических процессов, в частности В-клеток; Т-супрессоры, тормозящие созревание эффекторных клеток; Т-киллеры - клетки эффекторы клеточного иммунитета. В-лимфоциты дифференцируются в плазматические клетки, которые вырабатывают антитела, осуществляющие гуморальный иммунитет.

Тромбоциты - кровяные бляшки, основная функция которых участие в процессах свертывания крови. Есть данные, что тромбоциты играют определенную роль также в обмене веществ клеток кровеносных сосудов, эта их функция в настоящее время интенсивно изучается.

К органам кроветворения взрослых млекопитающих относят красный костный мозг, селезенку и лимфатические узлы.

Костный мозг. Все ячейки губчатого вещества костей и объемистые полости диафиза трубчатых костей заполнены костным мозгом. Являясь частью кости, костный мозг вместе с нею развивается из мезенхимы. Последняя, дифференцируясь в сторону образования костного мозга, превращается в ретикулярную ткань его, которая без резких границ переходит во внутреннюю надкостницу. Ретикулярная ткань костного мозга способна давать разнообразные клетки крови, а также жировые клетки. На ранней стадии развития во всем костном мозге преобладает функция кроветворения, процессы же жирообразования протекают сравнительно медленно. Пока наряду с костным мозгом в качестве кроветворного органа функционирует печень, в костном мозге развиваются главным образом лимфоциты. После того как кроветворная деятельность печени прекратится, в костном мозге начинают развиваться преимущественно эритроциты и зернистые формы лейкоцитов.

С возрастом происходит изменение в соотношении кроветворной и жиро-накопляющей деятельности костного мозга. Костный мозг диафизов трубчатых костей начинает перерождаться в жировую ткань, в результате чего мозг из красного превращается в желтый, почему и называют его желтым костным мозгом. В этом мозге кроветворение совершается уже в очень небольших размерах. Однако при больших кровопотерях интенсивность кроветворения может сильно возрастать. В области эпифизов трубчатых костей и в губчатом веществе плоских костей костный мозг сохраняет на всю жизнь функцию кроветворения. Костный мозг этих участков красного цвета и называется красным костным мозгом.

Основу красного костного мозга составляет узкопетлистая ретикулярная ткань, в которой расположено большое количество кровеносных сосудов и различных клеток крови в разных фазах развития. 1. Гемоцитобласты- основная малодифференцированная форма красного костного мозга, которая через ряд промежуточных форм дает начало эритроцитам, зернистым лейкоцитам и мегакариоцитам. Морфологически гемоцитобласт представляет собой небольшую клетку с базофильной цитоплазмой и плотным округлым ядром. 2. В костном мозге находится также ряд клеточных форм, являющихся различными стадиями превращения гемоцитобласта в зрелый эритроцит. Зрелые эритроциты постепенно поступают в кровеносное русло и выносятся из кости. При больших кровопотерях и некоторых патологических процессах в кровеносное русло могут направляться незрелые эритроциты с ядрами. 3. Три других ряда клеток являются последовательными этапами превращения гемоцитобласта в три вида зернистых лейкоцитов: нейтрофилы, эозино-филы и базофилы. Молодые формы различных зернистых лейкоцитов очень разнообразны. 4. Одной из очень характерных для красного костного мозга форм является мегакариоцит. Это гигантская клетка округлой формы с

Рис. 274. Селезенка (вид с париетальной поверхности и на поперечном разрезе):

А - крупного рогатого скота; Б - свиньи; В - лошади.

Фрагментированным ядром и клеточным центром со множеством центрио-лей. Мегакариоциты развиваются тоже из гемоцитобласта и дают начало кровяным пластинкам. 5. В красном костном мозге всегда встречаются гигантские многоядерные клетки - по-ликариоциты. Их отождествляют с остеокластами, так как они участвуют в перестройке костной ткани. Цитоплазма их красится либо базофильно, либо оксифильно. 6. Наконец, в костном мозге всегда встречаются жировые и другие клетки. Соотношение между всеми этими клетками непостоянно и изменяется в зависимости от физиологического состояния организма.

Деятельность йостного мозга находится под контролем нервной системы. В костном мозге обнаружены нервные окончания.

Селезенка - lien (рис. 274) - имеет различную функцию. В утробный период в ней образуются эритроциты, а после рождения - лимфоциты и моноциты. В определенные моменты она является запасным депо крови, где сосредоточивается до 16% всего ее состава. Селезенка - место, где путем фагоцитоза и гемолиза организм освобождается от поврежденных или закончивших свой жизненный цикл эритроцитов. Ретикулярная ткань ее способна давать также фагоцитарные элементы.

В зависимости от того, какая функция в селезенке является преобладающей, различают селезенки депонирующего (жвачные, хищные, лошадь, свинья) и защитного (человек, кролик) типа.

Форма селезенки у разных животных различная. Лежит она в левом подреберье, у лошади, свиньи и собаки - на большой кривизне желуДка, у жвачных - на рубце (рис. 222-Б-5). Селезенка серого цвета с различным оттейком у разных животных. Консистенция ее мягкая. Величина значительно изменяется в зависимости от периода ее функциональной деятельности, возраста и породы животного.

Гистологическое строение селезенки (рис. 275). Селезенка - компактный орган. Строма ее образована капсулой (/), снаружи покрыта серозной оболочкой с отходящими от капсулы трабекулами (2). Эти образования значительной толщины и состоят из уплотненной соединительной ткани с примесью гладких мышечных клеток. При сокращении последних объем селезенки уменьшается в 3-4 раза. В трабекулах находятся кровеносные сосуды.

Паренхима селезенки состоит из красной и белой пульпы. Основу той и другой составляет ретикулярная ткань. Белая пульпа представляет собой комплекс округлых фолликулов селезенки (селезеночных, мальпиги-евых телец) (3).

Фолликул селезенки - это скопление лимфоидных элементов в ад-вентициальной оболочке артерий селезеночной паренхимы, Дифференциров-ка лимфоцитов из ретикулярной ткани селезенки происходит по всему объему лимфатического фолликула, но более активно - в центральном участке, называемом светлым центром. Последний в связи с большим количеством молодых форм клеток обычно светлее остальных участков. Основную массу клеток фолликула селезенки составляют малые лимфоциты. Периферическая зона занята, как правило, макрофагами. Мак-рофагальные кольца и светлые центры селезеночного фолликула сильно варьируют в зависимости от состояния организма. В каждом фолликуле селезенки эксцентрично проходит центральная артерия (4). Красная пульпа (5) состоит из ретикулярной ткани, в петлях ее находится огромное количество эритроцитов и макрофагов. В небольшом количестве

Рис. 275. Строение селезенки:

/ - капсула; 2 - трабекула; 3 - лимфатический фолликул; 4 - центральная артерия; 5 - красная пульпа; о - трабекулярный сосуд.

Здесь встречаются почти все

Формы лейкоцитов. В красной пульпе много также кровеносных сосудов. Кровообращение селезенки непосредственно связано с ее депонирующей функцией и определяет особенности сосудистой системы органа. В селезенку вступает селезеночная артерия. Ветви ее - трабекулярные артерии - проходят в массе трабекул. Покидая трабекулы, они входят в красную пульпу под названием пульпарнык артерий. Последние дают ветви,направляющиеся в селезеночные тельца и называемые центральными артериями. В селезеночном тельце каждая такая артерия дает боковые ветви, распадающиеся на сеть капилляров, питающих селезеночное тельце. Главная же магистраль центральной артерии, выйдя из селезеночного тельца, распадается сразу на ряд артерий, образующих кисточку. Стенки артерий-кисточек несут утолщения гильзы, являющиеся сфинктерами. Кровь из артерий-кисточек и из капилляров селезеночного тельца направляется в венозные синусы, расположенные в красной пульпе. Из некоторых боковых ветвей центральной артерии кровь, по-видимому, может изливаться прямо в пульпу, откуда она медленно просачивается в синусы. Из синусов кровь оттекает в трабекулярные вены, в начале которых также находятся сфинктеры. При сокращении этих сфинктеров кровь задерживается в синусах, и они сильно расширяются. В стенке синусов много пор, благодаря им плазма крови и частично эритроциты могут попадать в красную пульпу. Отфильтрованная таким образом плазма, видимо, оттекает из органа по лимфатическим сосудам, а эритроциты, особенно в момент депонирования крови, концентрируются в синусах венозной системы. При расслаблении гладкомышечной ткани селезенки синусы открываются, и из них выливаются накопившиеся эритроциты.

Гистологическое строение лимфатического узла. Лимфатический узел имеет вид округлого или овального тельца с небольшим углублением - воротами. Через ворота в узел вступают артерии, вены и нервы и выходят выносящие лимфатические сосуды. Приносящие же лимфу сосуды входят в узел через разные участки его выпуклой поверхности (рис. 276). Вещество

Лимфатического узла разделяется на две зоны - корковую, лежащую более поверхностно, и мозговую, составляющую центральную часть узла. Снаружи лимфатический узел покрыт соединительнотканной капсулой (2). От нее внутрь узла, в его корковую зону, вдаются отростки - трабекулы (5), разбивающие узел на дольки неправильной формы.

Рис. 276. Схема строения лимфатического узла:

/ - приносящие лимфатические сосуды; 2 - капсула; 3 - трабекулы; 4 - лимфатический фолликул; 5 - мякотные шнуры; 6 - сеть трабекул; 7 - сеть мякот-ных шнуров; 8 - выносящие лимфатические сосуды; 9 - лимфатические синусы.

В мозговом веществе трабекулы переплетаются, образуя сложную сеть трабекул. Основу каждой дольки лимфатического узла составляет ретикулярная ткань. В корковом веществе узла в массе этой ткани находятся более плотные участки ретикулярной ткани округлой формы, называемые фолликулами лимфатического узла. В них петли ретикулярной ткани уже и забиты лимфоцитами. По строению и функции они аналогичны фолликулам селезенки. От фолликулов лимфатического узла в мозговое вещество тянутся мякотные шнуры (5). Они также состоят из уплотненной ретикулярной ткани и находящихся в ней лимфоцитов и плазматических клеток. Анастомозируя друг с другом, мякотные шнуры образуют сеть мякотных шнуров (7). Пространства между фолликулами лимфатического узла и мякотными шнурами с одной стороны соединительнотканной капсулой и трабекулами - с другой называют синусами (9). Они тоже состоят из ретикулярной ткани, но более широкопетлистой. В лимфатическом узле свиньи мякотные шнуры обращены к капсуле, а фолликулы лимфатического узла часто занимают центральное положение. Поступающая через приносящие сосуды лимфа медленно просачивается через синусы и поступает в выносящие лимфатические сосуды. Протекая через лимфатический узел, лимфа обогащается лимфоцитами, а при инфекции - защитными веществами и фагоцитарными элементами. Ретикулярные клетки узла извлекают из лимфы всевозможные инородные частички, задерживают микробов.

Лимфоцитопоэтической функцией обладают также тимус (вилочковая или зобная железа), миндалины, лимфатические узелки (солитарные фолликулы и пейеровы бляшки), объединяемые в группу лимфоэпителиальных органов, так как в них лимфоидная ткань имеет тесные морфологические и онтофилогенетические (биологические) связи с эпителием (покровным или железистым). Все лимфоэпителиальные органы, кроме тимуса, построены аналогично селезеночным фолликулам.

Клеточные элементы всех органов кроветворения, а также гистиоциты соединительной ткани, микроглия нервной ткани, звездчатые клетки пе-

Чени, эндотелиальные клетки синусоидных капилляров коры надпочечников и гипофиза, адвентициальные клетки кровеносных капилляров всех органов объединены в так называемую ретикулоэндотелиальную систему (РЭС), или макрофаготическую систему. Все эти клетки обладают способностью к фагоцитозу и утилизации пылевых частиц и других вредных продуктов, отживших клеток, микробов. Захваченный материал переваривается в клетках РЭС благодаря наличию в них протеолитических и липолитичес-ких ферментов. Кроме того, они играют важную роль в формировании иммунитета, в них уничтожаются микроорганизмы, нейтрализуются токсины, вырабатываются антитела, то есть эта система является мощным защитным аппаратом организма, разбросанным по разным органам и органным системам,

- (ЖЕЛЕЗЫ, СОСУДЫ), система щелей, каналов, сосудов и специальных образований (лимфатич. желез) по ходу их, отводящих из тканей т. н. лимфу (см.). Понятие Л. с. включает в себя также нек рые образования из аденоидной ткани (см.). Сюда принадлежат… …

Действующее вещество ›› Тестостерон* (Testosterone*) Латинское название Nebido АТХ: ›› G03BA03 Тестостерон Фармакологическая группа: Андрогены, антиандрогены Нозологическая классификация (МКБ 10) ›› E23.0 Гипопитуитаризм ›› E29 Дисфункция яичек… …

ЛЕЙКЕМИЯ - ЛЕЙКЕМИЯ, (leukaemia; Virchow, 1845), системное заболевание кроветворного аппарата, имеющее в основе гиперпластическое разрастание лимфаденоидной или мие лоидной ткани или рет. энд. ткани и сопровождающееся увеличением в крови количества белых… … Большая медицинская энциклопедия

Период жизни с 6 7 до 17 18 лет. Условно выделяют младший Ш. в. (до 11 лет) и старший Ш. в. (с 12 лет), который обычно называют подростковым возрастом, или периодом полового созревания. В связи с индивидуальными колебаниями сроков полового… … Медицинская энциклопедия

Период развития ребенка от 4 нед. до 3 лет. Условно подразделяется на младший ясельный, или грудной, возраст от 4 нед. до 1 года (см. Грудной ребенок (Грудной ребёнок)) и старший ясельный, или преддошкольный, от 1 года до 3 лет. Я. в.… … Медицинская энциклопедия

Действующее вещество ›› Циклоспорин* (Ciclosporin*) Латинское название Ciclosporin HEXAL АТХ: ›› L04AD01 Циклоспорин Фармакологическая группа: Иммунодепрессанты Нозологическая классификация (МКБ 10) ›› H20 Иридоциклит ›› L20 Атопический дерматит… … Словарь медицинских препаратов

Период развития ребенка от 3 до 6 7 лет. В эти годы происходят дальнейшее физическое развитие и совершенствование интеллектуальных возможностей ребенка. Рост и масса тела. Рост детей в Д. в. увеличивается неравномерно вначале до 4 6 см в год, а… … Медицинская энциклопедия

Действующее вещество ›› Левомепромазин* (Levomepromazine*) Латинское название Tisercin АТХ: ›› N05AA02 Левомепромазин Фармакологическая группа: Нейролептики Нозологическая классификация (МКБ 10) ›› F20 Шизофрения ›› F29 Неорганический психоз… … Словарь медицинских препаратов

Изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма излучения (См. Гамма излучение)) или потоков заряженных частиц (альфа частиц… … Большая советская энциклопедия

Действующее вещество ›› Флуцитозин* (Flucytosine*) Латинское название Ancotil АТХ: ›› J02AX01 Флуцитозин Фармакологическая группа: Противогрибковые средства Нозологическая классификация (МКБ 10) ›› B37.7 Кандидозная септицемия ›› B43.9 Хромомикоз … Словарь медицинских препаратов

Книги

  • Всё о крови. Кроветворная система , Александр Куренков , Кровь… Так что же это такое? Всё зависит от точки зрения. Для графа Дракулы и прочих вампиров – пища. Для поэта – то, что по капле отдают за жизнь любимой. Для криминалиста – улика. Ну а с… Категория: