Мутацией считается. Виды мутаций, причины, примеры

Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.

Хромосомные мутации (по-другому их называют аберрациями, перестройками) - это непредсказуемые изменения в структуре хромосом. Чаще всего они вызываются проблемами, возникающими в процессе деления клетки. Воздействие инициирующих факторов среды - это еще одна возможная причина хромосомных мутаций. Давайте же разберемся, какими могут быть проявления такого рода изменений в структуре хромосом и какие последствия они несут для клетки и всего организма.

Мутации. Общие положения

В биологии мутация определяется как стойкое изменение структуры генетического материала. Что значит «стойкое»? Оно передается по наследству потомкам организма, имеющего мутантную ДНК. Происходит это следующим образом. Одна клетка получает неправильную ДНК. Она делится, а две дочерние копируют ее строение полностью, то есть они тоже содержат измененный генетический материал. Далее таких клеток становится все больше, и, если организм переходит к размножению, его потомки получают сходный мутантный генотип.

Мутации обычно не проходят бесследно. Некоторые из них меняют организм настолько, что результатом этих изменений становится летальный исход. Часть из них заставляет организм функционировать по-новому, снижая его способности к адаптации и приводя к серьезным патологиям. И очень малое количество мутаций приносит организму пользу, повышая тем самым его способность адаптироваться к условиям окружающей среды.

Выделяют мутации генные, хромосомные и геномные. Такая классификация основывается на различиях, происходящих в разных структурах генетического материала. Хромосомные мутации, таким образом, затрагивают строение хромосом, генные - последовательность нуклеотидов в генах, а геномные вносят изменения в геном всего организма, прибавляя или отнимая целый набор хромосом.

Поговорим о хромосомных мутациях более подробно.

Какими могут быть хромосомные перестройки?

В зависимости от того, как локализованы происходящие изменения, различают следующие типы хромосомных мутаций.

  1. Внутрихромосомные - преобразование генетического материала в пределах одной хромосомы.
  2. Межхромосомные - перестройки, в результате которых две негомологичные хромосомы обмениваются своими участками. Негомологичные хромосомы содержат разные гены и не встречаются в процессе мейоза.

Каждому из этих типов аберраций соответствуют некоторые виды хромосомных мутаций.

Делеции

Делеция - это отделение или выпадение какого-либо участка хромосомы. Несложно догадаться, что этот тип мутации относится к внутрихромосомным.

Если отделяется крайний участок хромосомы, то делеция называется концевой. Если же происходит выпадение генетического материала ближе к центру хромосомы, такая делеция именуется интерстициальной.

Этот тип мутаций может оказывать влияние на жизнеспособность организма. К примеру, выпадение участка хромосомы, кодирующего определенный ген, обеспечивает человеку невосприимчивость к вирусу иммунодефицита. Эта адаптационная мутация возникла примерно 2000 лет назад и некоторым людям, заболевшим СПИДом, удалось выжить только благодаря тому, что им повезло иметь хромосомы с измененной структурой.

Дупликации

Еще один вид внутрихромосомных мутаций - дупликации. Это копирование участка хромосомы, которое происходит вследствие ошибки при так называемом перекресте, или кроссинговере в процессе деления клетки.

Скопированный таким образом участок может сохранять свое положение, поворачиваться на 180°, или даже повторяться несколько раз, и тогда такая мутация называется амплификацией.

У растений количество генетического материала может увеличиваться именно путем многократных дупликаций. В таком случае обычно меняются способности целого вида к адаптации, а это значит, что такие мутации имеют большое эволюционное значение.

Инверсии

Также относятся к внутрихромосомным мутациям. Инверсия - это поворот определенного участка хромосомы на 180°.

Перевернутая в результате инверсии часть хромосомы может находиться по одну сторону от центромеры (парацентрическая инверсия) или по разные ее стороны (перицентрическая). Центромера - это так называемая область первичной перетяжки хромосомы.

Обычно инверсии не оказывают влияния на внешние признаки организма и не приводят к патологиям. Существует, однако, предположение, что у женщин с инверсией определенного участка девятой хромосомы вероятность выкидыша при беременности возрастает на 30 %.

Транслокации

Транслокация - это перемещение участка одной хромосомы на другую. Эти мутации относятся к типу межхромосомных. Выделяют два вида транслокаций.

  1. Реципрокные - это обмен двух хромосом определенными участками.
  2. Робертсоновские - слияние двух хромосом с коротким плечом (акроцентрических). В процессе робертсоновской транслокации короткие участки обеих хромосом утрачиваются.

Реципрокные транслокации приводят у людей к проблемам с деторождением. Иногда такие мутации становятся причиной невынашивания беременности или ведут к появлению на свет детей с врожденными патологиями развития.

Робертсоновские транслокации достаточно часто встречаются у человека. В частности, если транслокация происходит с участием хромосомы 21, у плода развивается синдром Дауна, одна из самых часто регистрируемых врожденных патологий.

Изохромосомы

Изохромосомы - это хромосомы, потерявшие одно плечо, но при этом заменившие его на точную копию другого своего плеча. То есть по сути такой процесс можно считать делецией и инверсией в одном флаконе. В очень редких случаях такие хромосомы имеют две центромеры.

Изохромосомы присутствуют в генотипе женщин, страдающих синдромом Шерешевского - Тернера.

Все описанные выше виды хромосомных мутаций присущи различным живым организмам, в том числе и человеку. Как же они проявляются?

Хромосомные мутации. Примеры

Мутации могут происходить в половых хромосомах и в аутосомах (всех остальных парных хромосомах клетки). Если мутагенез затрагивает половые хромосомы, последствия для организма, как правило, оказываются тяжелыми. Возникают врожденные патологии, которые затрагивают умственное развитие индивида и обычно выражаются в изменениях фенотипа. То есть внешне мутантные организмы отличаются от нормальных.

Геномные и хромосомные мутации чаще возникают у растений. Однако встречаются они и у животных, и у человека. Хромосомные мутации, примеры которых мы рассмотрим ниже, проявляются в возникновении тяжелых наследственных патологий. Это синдром Вольфа-Хиршхорна, синдром «кошачьего крика», болезнь частичной трисомии по короткому плечу хромосомы 9, а также некоторые другие.

Синдром «кошачьего крика»

Это заболевание было открыто в 1963 году. Возникает оно из-за частичной моносомии по короткому плечу хромосомы 5, обусловленной делецией. Один из 45 000 детей рождается с этим синдромом.

Почему это заболевание получило такое название? Дети, страдающие этой болезнью, имеют характерный плач, который напоминает кошачье мяуканье.

При делеции короткого плеча пятой хромосомы могут утрачиваться разные его участки. Клинические проявления заболевания напрямую зависят от того, какие гены были утеряны в ходе этой мутации.

Строение гортани изменяется у всех больных, а значит «кошачий крик» характерен всем без исключения. У большей части страдающих этим синдромом отмечается изменение строения черепа: уменьшение мозгового отдела, лунообразная форма лица. Ушные раковины при синдроме «кошачьего крика» обычно расположены низко. Иногда у больных отмечаются врожденные патологии сердца или других органов. Характерным признаком также становится умственная отсталость.

Обычно больные с этим синдромом умирают в раннем детстве, лишь 10% из них доживает до десятилетнего возраста. Однако зафиксированы и случаи долгожительства при синдроме "кошачьего крика" - до 50 лет.

Синдром Вольфа-Хиршхорна

Этот синдром встречается значительно реже - 1 случай на 100 000 рождений. Обусловлен он делецией одного из сегментов короткого плеча четвертой хромосомы.

Проявления этого заболевания разнообразны: задержка развития физической и психической сферы, микроцефалия, характерная клювовидная форма носа, косоглазие, расщелины неба или верхней губы, маленький рот, пороки внутренних органов.

Как и многие другие хромосомные мутации человека, болезнь Вольфа-Хиршхорна относится к категории полулетальных. Это значит, что жизнеспособность организма при такой болезни существенно снижена. Дети с диагностированным синдромом Вольфа-Хиршхорна обычно не доживают до 1 года, однако зафиксирован один случай, когда больной прожил 26 лет.

Синдром частичной трисомии по короткому плечу хромосомы 9

Возникает это заболевание по причине несбалансированных дупликаций в девятой хромосоме, в результате чего генетического материала в этой хромосоме становится больше. Всего известно более 200 случаев таких мутаций у человека.

Клиническая картина описывается задержкой физического развития, легкой умственной отсталостью, характерным выражением лица. Пороки сердца обнаруживаются у четвертой части всех больных.

При синдроме частичной трисомии короткого плеча хромосомы 9 прогноз все же относительно благоприятный: большая часть больных доживают до пожилого возраста.

Другие синдромы

Иногда даже на очень маленьких участках ДНК происходят хромосомные мутации. Болезни в таких случаях обычно обусловлены дупликациями или делециями, и их называют соответственно микродупликационными или микроделеционными.

Самым распространенным таким синдромом считается болезнь Прадера-Вилли. Возникает она из-за микроделеции участка хромосомы 15. Что интересно, эта хромосома должна быть обязательно получена организмом от отца. В результате микроделеции затронутыми оказываются 12 генов. У больных с этим синдромом отмечаются умственная отсталость, ожирение, а также у них обычно маленькие стопы и кисти рук.

Еще одним примером таких хромосомных болезней может служить синдром Сотоса. Происходит микроделеция на участке длинного плеча хромосомы 5. Клиническая картина этого наследственного заболевания характеризуется быстрым ростом, увеличением в размерах кистей рук и стоп, наличием выпуклого лба, некоторой задержкой психического развития. Частота встречаемости этого синдрома не установлена.

Хромосомные мутации, точнее, микроделеции на участках 13 и 15 хромосом, вызывают соответственно опухоль Вильмса и ретинбластому. Опухоль Вильмса - это рак почек, который возникает преимущественно у детей. Ретинобластома - это злокачественная опухоль сетчатки, которая также встречается у детей. Эти заболевания лечатся, если диагностика их проведена на ранних стадиях. В некоторых случаях врачи прибегают к оеративному вмешательству.

Современная медицина избавляет от многих болезней, но вылечить или хотя бы предотвратить хромосомные мутации пока нельзя. Их можно только выявить в начале внутриутробного развития плода. Однако генная инженерия не стоит на месте. Быть может, в скором времени способ предотвращения болезней, вызываемых хромосомными мутациями, будет найден.

Под мутацией понимают изменение количества и структуры ДНК в клетке или у организма. Другими словами, мутация - это изменение генотипа . Особенностью изменения генотипа является то, что это изменение в результате митоза или мейоза может быть передано следующим поколениям клеток.

Чаще всего под мутациями понимают небольшое изменение в последовательности нуклеотидов ДНК (изменения в одном гене). Это так называемые . Однако кроме них существуют и , когда изменения затрагивают крупные участки ДНК, или меняется количество хромосом.

В результате мутации у организма внезапно может появиться новый признак.

Мысль, что именно мутация является причиной появления новых передающихся через поколения признаков, была впервые высказана Гуго де Фризом в 1901 году. Позже мутации у дрозофилы были изучены Т. Морганом и сотрудниками его школы.

Мутация - вред или польза?

Мутации, происходящие в «незначащих» («молчащих») участках ДНК, не изменяют признаки организма и могут спокойно передаваться из поколения в поколение (на них не будет действовать естественный отбор). Такие мутации можно считать нейтральными. Также нейтральными являются мутации, когда участок гена заменяется на синонимичный. При этом, хотя последовательность нуклеотидов в определенном участке и будет отличаться, но синтезироваться будет такой же белок (с той же последовательностью аминокислот).

Однако мутирование может затронуть значащий ген, изменить аминокислотную последовательность синтезируемого белка, а, следовательно, вызвать изменение признаков организма. В последствии, если концентрация мутации в популяции достигнет определенного уровня, то это приведет к изменению характерного признака всей популяции.

В живой природе мутации возникают как ошибки в ДНК, поэтому все они априори вредны. Большинство мутаций понижают жизнеспособность организма, вызывают различные заболевания. Мутации, возникающие в соматических клетках, не передаются следующему поколению, но в результате митоза образуются дочерние клетки, составляющие ту или иную ткань. Нередко соматические мутации приводят к образованию различных опухолей и других заболеваний.

Мутации, возникающие в половых клетках, могут быть переданы следующему поколению. В стабильных условиях внешней среды почти все изменения генотипа оказываются вредными. Но если условия среды изменились, то может оказаться, что ранее вредная мутации станет полезной.

Например, мутация, вызывающая образование коротких крыльев у какого-нибудь насекомого, скорее всего будет вредна в популяции, живущей в местах, где нет сильного ветра. Данная мутация будет сродни уродству, заболеванию. Обладающие ею насекомые с трудом будут находить партнеров для спаривания. Но если на местности начнут дуть более сильные ветры (например, в результате пожара участок леса был уничтожен), то насекомых с длинными крыльями будет сносить ветром, им будет тяжелее перемещаться. В таких условиях преимущество могут получить короткокрылые особи. Они чаще длиннокрылых будут находить партнеров и пищу. Через некоторое время в популяции окажется больше короткокрылых мутантов. Таким образом, мутация закрепится и превратится в норму.

Мутации лежат в основе естественного отбора и в этом их основная польза. Для организма же подавляющее число мутаций - это вред.

Почему возникают мутации?

В природе мутации возникают случайно и спонтанно. То есть любой ген в любой момент времени может мутировать. Однако частота мутаций у разных организмов и клеток различна. Например, она связана с продолжительностью жизненного цикла: чем он короче, тем мутации возникают чаще. Так у бактерий мутации возникают намного чаще, чем у организмов-эукариот.

Кроме спонтанных мутаций (случающихся в естественных условиях) бывают индуцированные (человеком в лабораторных условиях или неблагоприятными условиями среды) мутации .

В основном мутации возникаю в результате ошибок при репликации (удвоении), репарации (восстановлении) ДНК, при неравном кроссинговере, неправильном расхождении хромосом в мейозе и др.

Так в клетках постоянно происходит восстановление (репарация) поврежденных участков ДНК. Однако если в следствие различных причин механизмы репарации нарушаются, то ошибки в ДНК будут оставаться и накапливаться.

Результатом ошибки при репликации становится замена одного нуклеотида в цепочке ДНК на другой.

Что вызывает мутации?

Повышенный уровень мутаций вызывает рентгеновское излучение, ультрафиолетовые и гамма-лучи. Также к мутагенам относятся α- и β-частицы, нейтроны, космическое излучение (все это частицы, обладающие высокой энергией).

Мутаген - это то, что способно вызывать мутацию.

Кроме различных излучений, мутагенным действием обладают многие химические вещества: формальдегид, колхицин, компоненты табака, пестициды, консерванты, некоторые лекарственные препараты и др.

Последовательность ядерной ДНК у любых двух человек идентична почти на 99,9%. Только очень небольшая доля последовательности ДНК различается у разных людей, обеспечивая генетическую изменчивость. Некоторые различия в последовательности ДНК не имеют влияния на фенотип, тогда как другие - непосредственные причины болезней. Между двумя крайностями - изменения, ответственные за генетически предопределенную фенотипическую изменчивость в анатомии и физиологии, переносимость пищи, реакции на лечение или побочные эффекты медикаментов, восприимчивость к инфекциям, склонность к опухолям и, возможно, даже изменчивость в различных чертах личности, спортивных способностях и художественном таланте.

Одно из важных понятий генетики человека и медицинской генетики - то, что генетические болезни - только наиболее очевидное и часто крайнее проявление генетических различий, один конец непрерывного спектра изменений от редких вариантов, вызывающих болезнь, через более частые варианты, увеличивающие восприимчивость к болезни, до наиболее частых изменений, не имеющих явного отношения к болезни.

Виды мутаций у человека

Любое изменение в последовательности нуклеотидов или расположения ДНК. Мутации можно классифицировать на три категории: влияющие на количество хромосом в клетке (геномные мутации), изменяющие структуру отдельных хромосом (хромосомные мутации) и изменяющие индивидуальные гены (генные мутации). Геномные мутации - изменения числа неповрежденных хромосом (анеуплоидии), возникающие вследствие ошибок в расхождении хромосом в мейозе или митозе.

Хромосомные мутации - изменения, затрагивающие только часть хромосомы, например частичные дупликации, делеции, инверсии и транслокации, которые могут происходить спонтанно или возникать вследствие аномального расхождения транслоцированных хромосом в ходе мейоза. Генные мутации - изменения в последовательности ДНК ядерного или митохондриального генома, от мутации в единственном нуклеотиде до изменений, захватывающих много миллионов пар оснований. Множество типов мутаций представлены разнообразными аллелями в отдельных локусах при более чем тысяче разных генетических заболеваний, а также среди миллионов вариантов ДНК, обнаруживаемых во всем геноме в нормальной популяции.

Описание разных мутаций не только увеличивает осведомленность о генетическом разнообразии человека и хрупкости человеческого генетического наследия, но также содействует получению информации, необходимой для обнаружения и скрининга генетических болезней в конкретных семьях риска, а также - для некоторых болезней - в популяции в целом.

Геномная мутация , приводящая к утрате или дублированию целой хромосомы, изменяет дозу и, таким образом, уровень экспрессии сотен или тысяч генов. Аналогично затрагивающая большую часть одной или нескольких хромосом хромосомная мутация также может влиять на экспрессию сотен генов. Даже небольшая генная мутация может иметь большие последствия, в зависимости от того, какой ген затронут и к чему приводит изменение в экспрессии этого гена. Мутация гена в виде изменения единственного нуклеотида в кодирующей последовательности может вести к полной утере экспрессии гена или образованию белка с измененными свойствами.

Некоторые изменения ДНК , тем не менее, не имеют фенотипических эффектов. Хромосомная транслокация или инверсия может не влиять на критическую часть генома и абсолютно не иметь фенотипических эффектов. Мутация в пределах гена может не иметь эффекта вследствие того, что либо не изменяет аминокислотную последовательность полипептида, либо, даже если это происходит, изменение в закодированной аминокислотной последовательности не изменяет функциональные свойства белка. Следовательно, не все мутации имеют клинические последствия.

Все три типа мутаций происходят со значимой частотой во множестве разных клеток. Если мутация происходит в ДНК половых клеток, она может передаваться последующим поколениям. В отличие от этого, соматические мутации происходят случайным образом только в части клеток определенных тканей, приводя к соматическому мозаицизму, наблюдаемому, например, при многих опухолях. Соматические мутации не могут передаваться последующим поколениям.