Какая фигура называется призмой. Призма

Призма является геометрической объемной фигурой, характеристики и свойства которой изучают в старших классах школ. Как правило, при ее изучении рассматривают такие величины, как объем и площадь поверхности. В данной же статье раскроем несколько иной вопрос: приведем методику определения длины диагоналей призмы на примере четырехугольной фигуры.

Какая фигура называется призмой?

В геометрии дается следующее определение призме: это объемная фигура, ограниченная двумя многоугольными одинаковыми сторонами, которые параллельны друг другу, и некоторым числом параллелограммов. Рисунок ниже показывает пример призмы, соответствующий данному определению.

Мы видим, что два красных пятиугольника равны друг другу и находятся в двух параллельных плоскостях. Пять розовых параллелограммов соединяют эти пятиугольники в цельный объект - призму. Два пятиугольника называются основаниями фигуры, а ее параллелограммы - это боковые грани.

Призмы бывают прямые и наклонные, которые также называют прямоугольными и косоугольными. Разница между ними заключается в углах между основанием и боковыми гранями. Для прямоугольной призмы все эти углы равны 90 o .

По количеству сторон или вершин многоугольника в основании говорят о призмах треугольных, пятиугольных, четырехугольных и так далее. Причем если этот многоугольник является правильным, а сама призма прямой, то такую фигуру называют правильной.

Приведенная на предыдущем рисунке призма является пятиугольной наклонной. Ниже же изображена пятиугольная прямая призма, которая является правильной.

Все вычисления, включая методику определения диагоналей призмы, удобно выполнять именно для правильных фигур.

Какие элементы характеризуют призму?

Элементами фигуры называют составные части, которые ее образуют. Конкретно для призмы можно выделить три главных типа элементов:

  • вершины;
  • грани или стороны;
  • ребра.

Гранями считаются основания и боковые плоскости, представляющие параллелограммы в общем случае. В призме всегда каждая сторона относится к одному из двух типов: либо это многоугольник, либо параллелограмм.

Ребра призмы - это те отрезки, которые ограничивают каждую сторону фигуры. Как и грани, ребра также бывают двух типов: принадлежащие основанию и боковой поверхности или относящиеся только к боковой поверхности. Первых всегда в два раза больше, чем вторых, независимо от вида призмы.

Вершины - это точки пересечения трех ребер призмы, два из которых лежат в плоскости основания, а третье - принадлежит двум боковым граням. Все вершины призмы находятся в плоскостях оснований фигуры.

Числа описанных элементов связаны в единое равенство, имеющее следующий вид:

Р = В + С - 2.

Здесь Р - количество ребер, В - вершин, С - сторон. Это равенство называется теоремой Эйлера для полиэдра.

На рисунке показана треугольная правильная призма. Каждый может посчитать, что она имеет 6 вершин, 5 сторон и 9 ребер. Эти цифры согласуются с теоремой Эйлера.

Диагонали призмы

После таких свойств, как объем и площадь поверхности, в задачах по геометрии часто встречается информация о длине той или иной диагонали рассматриваемой фигуры, которая либо дана, либо ее нужно найти по другим известным параметрам. Рассмотрим, какие бывают диагонали у призмы.

Все диагонали можно разделить на два типа:

  1. Лежащие в плоскости граней. Они соединяют несоседние вершины либо многоугольника в основании призмы, либо параллелограмма боковой поверхности. Значение длин таких диагоналей определяется, исходя из знания длин соответствующих ребер и углов между ними. Для определения диагоналей параллелограммов всегда используются свойства треугольников.
  2. Лежащие внутри объема призмы. Эти диагонали соединяют неоднотипные вершины двух оснований. Эти диагонали оказываются полностью внутри фигуры. Их длины рассчитать несколько сложнее, чем для предыдущего типа. Методика расчета предполагает учет длин ребер и основания, и параллелограммов. Для прямых и правильных призм расчет является относительно простым, поскольку он осуществляется с использованием теоремы Пифагора и свойств тригонометрических функций.

Диагонали сторон четырехугольной прямой призмы

На рисунке выше изображены четыре одинаковые прямые призмы, и даны параметры их ребер. На призмах Diagonal A, Diagonal B и Diagonal C штриховой красной линией изображены диагонали трех разных граней. Поскольку призма является прямой с высотой 5 см, а ее основание представлено прямоугольником со сторонами 3 см и 2 см, то отыскать отмеченные диагонали не представляет никакого труда. Для этого необходимо воспользоваться теоремой Пифагора.

Длина диагонали основания призмы (Diagonal A) равна:

D A = √(3 2 +2 2) = √13 ≈ 3,606 см.

Для боковой грани призмы диагональ равна (см. Diagonal B):

D B = √(3 2 +5 2) = √34 ≈ 5,831 см.

Наконец, длина еще одной боковой диагонали равна (см. Diagonal C):

D С = √(2 2 +5 2) = √29 ≈ 5,385 см.

Длина внутренней диагонали

Теперь рассчитаем длину диагонали четырехугольной призмы, которая изображена на предыдущем рисунке (Diagonal D). Сделать это не так сложно, если заметить, что она является гипотенузой треугольника, в котором катетами будут высота призмы (5 см) и диагональ D A , изображенная на рисунке вверху слева (Diagonal A). Тогда получаем:

D D = √(D A 2 +5 2) = √(2 2 +3 2 +5 2) = √38 ≈ 6,164 см.

Правильная призма четырехугольная

Диагональ правильной призмы, основанием которой является квадрат, рассчитывается аналогичным образом, как и в приведенном выше примере. Соответствующая формула имеет вид:

D = √(2*a 2 +c 2).

Где a и c - длины стороны основания и бокового ребра, соответственно.

Заметим, что при вычислениях мы использовали только теорему Пифагора. Для определения длин диагоналей правильных призм с большим числом вершин (пятиугольные, шестиугольные и так далее) уже необходимо применять тригонометрические функции.

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Определение 1. Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие в этих плоскостях, параллельны, называется призмой. Термин “призма” греческого происхождения и буквально означает “отпиленное” (тело). Многоугольники, лежащие в параллельных плоскостях, называют основаниями призмы, а остальные грани - боковыми гранями. Поверхность призмы, таким образом, состоит из двух равных многоугольников (оснований) и параллелограммов (боковых граней). Различают призмы треугольные, четырехугольные, пятиугольные и т.д. в зависимости от числа вершин основания.

3 слайд

Описание слайда:

Все призмы делятся на прямые и наклонные. (рис. 2) Если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют прямой; если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют наклонной. У прямой призмы боковые грани - прямоугольники. Перпендикуляр к плоскостям оснований, концы которого принадлежат этим плоскостям, называют высотой призмы.

4 слайд

Описание слайда:

Свойства призмы. 1. Основания призмы являются равными многоугольниками. 2. Боковые грани призмы являются параллелограммами. 3. Боковые ребра призмы равны.

5 слайд

Описание слайда:

Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность многогранника состоит из конечного числа многоугольников (граней). Площадь поверхности многогранника есть сумма площадей всех его граней. Площадь поверхности призм (Sпр) равна сумме площадей ее боковых граней (площади боковой поверхности Sбок) и площадей двух оснований (2Sосн) - равных многоугольников: Sпов=Sбок+2Sосн. Теорема. Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра.

6 слайд

Описание слайда:

Доказательство. Боковые грани прямой призмы - прямоугольники, основания которых-стороны основания призмы, а высоты равны высоте h призмы. Sбок поверхности призмы равна сумме S указанных треугольников, т.е. равна сумме произведений сторон основания на высоту h. Вынося множитель h за скобки, получим в скобках сумму сторон основания призмы, т.е. периметр P. Итак, Sбок =Ph. Теорема доказана. Следствие. Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты. Действительно, у прямой призмы основание можно рассматривать как перпендикулярное сечение, а боковое ребро есть высота.

7 слайд

Описание слайда:

Сечение призмы 1. Сечение призмы плоскостью, параллельной основанию. В сечении образуется многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется параллелограмм. Такое сечение называется диагональным сечением призмы. В некоторых случаях может получаться ромб, прямоугольник или квадрат.

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Определение 2. Прямая призма, основанием которой служит правильный многоугольник, называется правильной призмой. Свойства правильной призмы 1. Основания правильной призмы являются правильными многоугольниками. 2. Боковые грани правильной призмы являются равными прямоугольниками. 3. Боковые ребра правильной призмы равны.

10 слайд

Описание слайда:

Сечение правильной призмы. 1. Сечение правильной призмы плоскостью, параллельной основанию. В сечении образуется правильный многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение правильной призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется прямоугольник. В некоторых случаях может образоваться квадрат.

11 слайд

Описание слайда:

Симметрия правильной призмы 1. Центр симметрии при четном числе сторон основания - точка пересечения диагоналей правильной призмы (рис. 6)

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Элементы треугольной призмы

Треугольники ABC и A 1 B 1 C 1 являются основаниями призмы .

Четырехугольники A 1 B 1 BA, B 1 BCC 1 и A 1 C 1 CA являются боковыми гранями призмы .

Стороны граней являются ребрами призмы (A 1 B 1 , A 1 C 1 , C 1 B 1 , AA 1 , CC 1 , BB 1 , AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

— это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

Объем призмы = площадь основания х высота

V=S осн. h

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

S бок =P осн. h

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

так как S бок =P осн. h, то получим:

S полн.пов. =P осн. h+2S осн

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы :

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см 2 , то высота должна быть выражена в сантиметрах, а объем — в см 3 . Если площадь основания в мм 2 , то высота должна быть выражена в мм, а объем в мм 3 и т. д.

Пример призмы

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1 . Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S - площадь основания, а h - боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2 · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Решение:

Объём призмы равен произведению площади основания на высоту: V = S осн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S 2 = S 1 k 2 = S 1 2 2 = 4S 1 .

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Таким образом, искомый объём равен 20.

Диагональные сечения Сечение призмы плоскостью, проходящей через диагональ основания и два прилежащих к ней боковых ребра, называется диагональным сечением призмы. Сечение пирамиды плоскостью, проходящей через диагональ основания и вершину, называется диагональным сечением пирамиды. Пусть плоскость пересекает пирамиду и параллельна ее основанию. Часть пирамиды, заключенная между этой плоскостью и основанием, называется усеченной пирамидой. Сечение пирамиды также называется основанием усеченной пирамиды.

Построение сечений При построении сечений многогранников, базовыми являются построения точки пересечения прямой и плоскости, а также линии пересечения двух плоскостей. Если даны две точки A и B прямой и известны их проекции A’ и B’ на плоскость, то точкой С пересечения данных прямой и плоскости будет точка пересечения прямых AB и A’B’ Если даны три точки A, B, C плоскости и известны их проекции A’, B’, C’ на другую плоскость, то для нахождения линии пересечения этих плоскостей находят точки P и Q пересечения прямых AB и AC со второй плоскостью. Прямая PQ будет искомой линией пересечения плоскостей.

Упражнение 1 Постройте сечение куба плоскостью, проходящей через точки E, F, лежащие на ребрах куба и вершину B. Решение. Для построения сечения куба, проходящего через точки E, F и вершину B, Соединим отрезками точки E и B, F и B. Через точки E и F проведем прямые, параллельные BF и BE, соответственно. Полученный параллелограмм BFGE будет искомым сечением.

Упражнение 2 Постройте сечение куба плоскостью, проходящей через точки E, F, G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E, F, G, проведем прямую EF и обозначим P её точку пересечения с AD. Обозначим Q точку пересечения прямых PG и AB. Соединим точки E и Q, F и G. Полученная трапеция EFGQ будет искомым сечением.

Упражнение 3 Постройте сечение куба плоскостью, проходящей через точки E, F, G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E, F, G, проведем прямую EF и обозначим P её точку пересечения с AD. Обозначим Q, R точки пересечения прямой PG с AB и DC. Обозначим S точку пересечения FR c СС 1. Соединим точки E и Q, G и S. Полученный пятиугольник EFSGQ будет искомым сечением.

Упражнение 4 Постройте сечение куба плоскостью, проходящей через точки E, F, G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E, F, G, найдем точку P пересечения прямой EF и плоскости грани ABCD. Обозначим Q, R точки пересечения прямой PG с AB и CD. Проведем прямую RF и обозначим S, T её точки пересечения с CC 1 и DD 1. Проведем прямую TE и обозначим U её точку пересечения с A 1 D 1. Соединим точки E и Q, G и S, U и F. Полученный шестиугольник EUFSGQ будет искомым сечением.

Упражнение 5 Постройте сечение куба плоскостью, проходящей через точки E, F, G, принадлежащие граням BB 1 C 1 C, CC 1 D 1 D, AA 1 B 1 B, соответственно. Решение. Из данных точек опустим перпендикуляры EE’, FF’, GG’ на плоскость грани ABCD, и найдем точки I и H пересечения прямых FE и FG с этой плоскостью. IH будет линией пересечения искомой плоскости и плоскости грани ABCD. Обозначим Q, R точки пересечения прямой IH с AB и BC. Проведем прямые PG и QE и обозначим R, S их точки пересечения с AA 1 и CC 1. Проведем прямые SU, UV и RV, параллельные PR, PQ и QS. Полученный шестиугольник RPQSUV будет искомым сечением.

Упражнение 6 Постройте сечение куба плоскостью, проходящей через точки E, F, лежащие на ребрах куба, параллельно диагонали BD. Решение. Проведем прямые FG и EH, параллельные BD. Проведем прямую FP, параллельную EG, и соединим точки P и G. Соединим точки E и G, F и H. Полученный пятиугольник EGPFH будет искомым сечением.

Постройте сечение призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки E, F, G. Упражнение 8 Решение. Соединим точки E и F. Проведем прямую FG и ее точку пересечения с CC 1 обозначим H. Проведем прямую EH и ее точку пересечения с A 1 C 1 обозначим I. Соединим точки I и G. Полученный четырехугольник EFGI будет искомым сечением.

Постройте сечение призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки E, F, G. Упражнение 9 Решение. Проведем прямую EG и обозначим H и I ее точки пересечения с CC 1 и AC. Проведем прямую IF и ее точку пересечения с AB обозначим K. Проведем прямую FH и ее точку пересечения с B 1 C 1 обозначим L. Соединим точки E и K, G и L. Полученный пятиугольник EKFLG будет искомым сечением.

Постройте сечение призмы ABCA 1 B 1 C 1 плоскостью, параллельной AC 1, проходящей через точки D 1. Упражнение 10 Решение. Через точку D проведем прямую параллельную AC 1 и обозначим E ее точку пересечения с прямой BC 1. Эта точка будет принадлежать плоскости грани ADD 1 A 1. Проведем прямую DE и обозначим F ее точку пересечения с ребром BC. Соединим отрезком точки F и D. Через точку D проведем прямую параллельную прямой FD и обозначим G точку ее пересечения с ребром A 1 C 1, H – точку ее пересечения с прямой A 1 B 1. Проведем прямую DH и обозначим P ее точку пересечения с ребром AA 1. Соединим отрезком точки P и G. Полученный четырехугольник EFIK будет искомым сечением.

Построить сечение призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки E на ребре BC, F на грани ABB 1 A 1 и G на грани ACC 1 A 1. Упражнение 11 Решение. Проведем прямую GF и найдем точку H ее пересечения с плоскостью ABC. Проведем прямую EH, и обозначим P и I ее точки пересечения с AC и AB. Проведем прямые PG и IF, и обозначим S, R и Q их точки пересечения с A 1 C 1, A 1 B 1 и BB 1. Соединим точки E и Q, S и R. Полученный пятиугольник EQRSP будет искомым сечением.

Построить сечение правильной шестиугольной призмы плоскостью, проходящей через точки A, B, D 1. Упражнение 12 Решение. Заметим, что сечение будет проходить через точку E 1. Проведем прямую AB и найдем ее точки пересечения K и L с прямыми CD и FE. Проведем прямые KD 1, LE 1 и найдем их точки пересечения P, Q с прямыми CC 1 и FF 1. Шестиугольник ABPD 1 E 1 Q будет искомым сечением.

Построить сечение правильной шестиугольной призмы плоскостью, проходящей через точки A, B’, F’. Упражнение 13 Решение. Проведем отрезки AB’ и AF’. Через точку B’ проведем прямую, параллельную AF’, и ее точку пересечения с EE 1 обозначим E’. Через точку F’ проведем прямую, параллельную AB’, и ее точку пересечения с CC 1 обозначим C’. Через точки E’ и C’ проведем прямые, параллельные AB’ и AF’, и их точки пересечения с D 1 E 1 и C 1 D 1 обозначим D’, D”. Соединим точки B’, C’; D’, D”; F’, E’. Полученный семиугольник AB’C’D”D’E’F’ будет искомым сечением.

Построить сечение правильной шестиугольной призмы плоскостью, проходящей через точки F’, B’, D’. Упражнение 14 Решение. Проведем прямые F’B’ и F’D’, и найдем их точки пересечения P и Q с плоскостью ABC. Проведем прямую PQ. Обозначим R точку пересечения PQ и FC. Точку пересечения F’R и CC 1 обозначим C’. Соединим точки B’, C’ и C’, D’. Через точку F’ проведем прямые, параллельные C’D’ и B’C’, и их точки пересечения с AA 1 и EE 1 обозначим A’ и E’. Соединим точки A’, B’ и E’, D’. Полученный шестиугольник A’B’C’D’E’F’ будет искомым сечением.