Формула сложения совместных событий. Сложение и умножение вероятностей

Теорема сложения вероятностей

Рассмотрим несовместные случайные события.

Известно, что несовместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ несовместные, то событию $A+B$ благоприятствуют $m_{A} +m_{B} $ элементарных событий. Имеем $P\left(A+B\right)=\frac{m_{A} +m_{B} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} =P\left(A\right)+P\left(B\right)$.

Теорема 1

Вероятность суммы двух несовместных событий равняется сумме их вероятностей.

Примечание 1

Следствие 1. Вероятность суммы любого количества несовместных событий равняется сумме вероятностей этих событий.

Следствие 2. Сумма вероятностей полной группы несовместных событий (сумма вероятностей всех элементарных событий) равна единице.

Следствие 3. Сумма вероятностей противоположных событий равна единице, поскольку они образуют полную группу несовместных событий.

Пример 1

Вероятность того, что на протяжении некоторого времени в городе ни разу не будет идти дождь, $p=0,7$. Найти вероятность $q$ того, что на протяжении этого же времени дождь в городе будет идти хотя бы один раз.

События "на протяжении некоторого времени в городе ни разу не шел дождь" и "на протяжении некоторого времени дождь в городе шел хотя бы один раз" противоположные. Поэтому $p+q=1$, откуда $q=1-p=1-0,7=0,3$.

Рассмотрим совместные случайные события.

Известно, что совместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ совместны, то из всего количества $m_{A} +m_{B} $ элементарных событий определенное количество $m_{AB} $ благоприятствует одновременно и событию $A$, и событию $B$, то есть совместному их наступлению (произведению событий $A\cdot B$). Это количество $m_{AB} $ вошло одновременно и в $m_{A} $, и в $m_{B} $ Итак событию $A+B$ благоприятствуют $m_{A} +m_{B} -m_{AB} $ элементарных событий. Имеем: $P\left(A+B\right)=\frac{m_{A} +m_{B} -m_{AB} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} -\frac{m_{AB} }{n} =P\left(A\right)+P\left(B\right)-P\left(A\cdot B\right)$.

Теорема 2

Вероятность суммы двух совместных событий равняется сумме вероятностей этих событий за минусом вероятности их произведения.

Замечание. Если события $A$ и $B$ несовместны, то их произведение $A\cdot B$ является невозможным событием, вероятность которого $P\left(A\cdot B\right)=0$. Следовательно, формула сложения вероятностей несовместных событий является частным случаем формулы сложения вероятностей совместных событий.

Пример 2

Найти вероятность того, что при одновременном бросании двух игральных кубиков цифра 5 выпадет хотя бы один раз.

При одновременном бросании двух игральных кубиков число всех равновозможных элементарных событий равно $n=36$, поскольку на каждую цифру первого кубика может выпасти шесть цифр второго кубика. Из них событие $A$ -- выпадение цифры 5 на первом кубике -- осуществляется 6 раз, событие $B$ -- выпадение цифры 5 на втором кубике -- тоже осуществляется 6 раз. Из всех двенадцати раз цифра 5 один раз выпадает на обоих кубиках. Таким образом, $P\left(A+B\right)=\frac{6}{36} +\frac{6}{36} -\frac{1}{36} =\frac{11}{36} $.

Теорема умножения вероятностей

Рассмотрим независимые события.

События $A$ и $B$, которые происходят в двух последовательных испытаниях, называются независимыми, если вероятность появления события $B$ не зависит от того, состоялось или не состоялось событие $A$.

Например, пусть в урне находятся 2 белых и 2 черных шар а. Испытанием является извлечение шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар положили назад и провели второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Вероятность $P\left(B\right)=\frac{1}{2} $. Вероятность $P\left(B\right)$ не зависит от того, состоялось или нет событие $A$, следовательно события $A$ и $B$ независимы.

Известно, что независимые случайные события $A$ и $B$ двух последовательных испытаний имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность произведения $A\cdot B$ этих событий, то есть вероятность совместного их появления.

Предположим, что в первом испытании число всех равновозможных элементарных событий $n_{1} $. Из них событию $A$ благоприятствуют $m_{1} $ элементарных событий. Предположим также, что во втором испытании число всех равновозможных элементарных событий $n_{2} $. Из них событию $B$ благоприятствуют $m_{2} $ элементарных событий. Теперь рассмотрим новое элементарное событие, которое состоит в последовательном наступлении событий из первого и второго испытаний. Общее количество таких равновозможных элементарных событий равно $n_{1} \cdot n_{2} $. Поскольку события $A$ и $B$ независимы, то из этого числа совместному наступлению события $A$ и события $B$ (произведения событий $A\cdot B$) благоприятствует $m_{1} \cdot m_{2} $ событий. Имеем: $P\left(A\cdot B\right)=\frac{m_{1} \cdot m_{2} }{n_{1} \cdot n_{2} } =\frac{m_{1} }{n_{1} } \cdot \frac{m_{2} }{n_{2} } =P\left(A\right)\cdot P\left(B\right)$.

Теорема 3

Вероятность произведения двух независимых событий равняется произведению вероятностей этих событий.

Рассмотрим зависимые события.

В двух последовательных испытаниях происходят события $A$ и $B$. Событие $B$ называется зависимым от события $A$, если вероятность появления события $B$ зависит от того, состоялось или не состоялось событие $A$. Тогда вероятность события $B$, которая была вычислена при условии, что событие $A$ состоялось, называется условной вероятностью события $B$ при условии $A$ и обозначается $P\left(B/A\right)$.

Например, пусть в урне находятся 2 белых и 2 черных шара. Испытанием является извлечением шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар назад не кладут и выполняют второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Если в первом испытании был вынут белый шар, то вероятность $P\left(B/A\right)=\frac{1}{3} $. Если же в первом испытании был вынут черный шар, то вероятность $P\left(B/\overline{A}\right)=\frac{2}{3} $. Таким образом вероятность события $B$ зависит от того, состоялось или нет событие $A$, следовательно, событие $B$ зависит от события $A$.

Предположим, что события $A$ и $B$ происходят в двух последовательных испытаниях. Известно, что событие $A$ имеет вероятность появления $P\left(A\right)$. Известно также, что событие $B$ является зависимым от события $A$ и его условная вероятность при условии $A$ равна $P\left(B/A\right)$.

Теорема 4

Вероятность произведения события $A$ и зависимого от него события $B$, то есть вероятность совместного их появления, может быть найдена по формуле $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)$.

Справедливой является также симметричная формула $P\left(A\cdot B\right)=P\left(B\right)\cdot P\left(A/B\right)$, где событие $A$ предполагается зависимым от события $B$.

Для условий последнего примера найдем вероятность того, что белый шар будет извлечен в обоих испытаниях. Такое событие является произведением событий $A$ и $B$. Его вероятность равна $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)=\frac{1}{2} \cdot \frac{1}{3} =\frac{1}{6} $.

Основные понятия
События называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае они называются совместными.
Полной группой называют совокупность событий, объединение которых есть событие достоверное.
Противоположными называют два единственно возможных события, образующих полную группу.
События называются зависимыми, если вероятность появления одного из них зависит от наступления или ненаступления других событий.
События называются независимыми, если вероятность одного из них не зависит от наступления или ненаступления других.
Теорема сложения вероятностей несовместных событий
Р(A+B)=Р(A)+Р(B),
где А, В - несовместные события.

Теорема сложения вероятностей совместных событий
Р(A+B)=Р(A)+Р(B)-P(AB), где А и В - совместные события.

Теорема умножения вероятностей независимых событий
,
где А и В независимые события.
Теорема умножения вероятностей зависимых событий
Р(АВ)=Р(А)Р A (B),
где Р A (B) - вероятность наступления события В при условии, что произошло событие А; А и В- зависимые события.

Задача 1.
Стрелок производит два выстрела по мишени. Вероятность попадания при каждом выстреле 0,8. Составить полную группу событий и найти их вероятности. Решение.
Испытание - Производится два выстрела по мишени.
Событие А - оба раза промахнулся.
Событие В - попал один раз.
Событие С - оба раза попал.
.

Контроль: P(A) + P(B) + P(C) = 1.
Задача 2.
Согласно прогнозу метеорологов Р(дождь)=0,4; Р(ветер)=0,7; Р(дождь и ветер)=0,2. Какова вероятность того, что будет дождь или ветер? Решение. По теореме сложения вероятностей и в силу совместности предложенных событий имеем:
Р(дождь или ветер или то и другое)=Р(дождь) +Р(ветер) –Р(дождь и ветер)=0,4+0,7-0,2=0,9.
Задача 3.
На станции отправления имеется 8 заказов на отправку товара: пять – внутри страны, а три – на экспорт. Какова вероятность того, что два выбранных наугад заказа окажутся предназначенными для потребления внутри страны? Решение. Событие А – первый взятый наугад заказ – внутри страны. Событие В – второй тоже предназначен для внутреннего потребления. Нам необходимо найти вероятность Тогда по теореме об умножении вероятностей зависимых событий имеем

Задача 4.
Из партии изделий товаровед наудачу отбирает изделия высшего сорта. Вероятность того, что выбранная вещь окажется высшего сорта равна, 0,8; первого сорта – 0,7; второго сорта – 0,5. Найти вероятность того, что из трех наудачу отобранных изделий будут:
а) только два высшего сорта;
б) все разные. Решение. Пусть событие - изделие высшего сорта; событие - изделие первого сорта; событие - изделие второго сорта.
По условию задачи ; ; События - независимы.
а) Событие А – только два изделия высшего сорта будет выглядеть так тогда

б) Событие В – все три изделия различны - выразим так:, тогда .
Задача 5.
Вероятности попадания в цель при стрельбе из трех орудий таковы: p1= 0,8; p2 =0,7; p3 =0,9. Найти вероятность хотя бы одного попадания (событие А ) при одном залпе из всех орудий. Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.
Вероятности событий, противоположных событиям (т.е. вероятности промахов), соответственно равны:

Искомая вероятность
Задача 6.
В типографии имеется 4 печатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А ). Решение. События «машина работает» и «машина не работает» (в данный момент) – противоположные, поэтому сумма их вероятностей равна единице:
Отсюда вероятность того, что машина в данный момент не работает, равна
Искомая вероятность . Задача 7. В читальном зале имеется 6 учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

Решение. Рассмотрим следующие события:
А1- первый взятый учебник в переплете;
A2- второй взятый учебник в переплете.
Событие, состоящее в том, что оба взятых учебника в переплете . События А1 и А2 являются зависимыми, так как вероятность наступления события А2 зависит от наступления события А1. Для решения указанной задачи воспользуемся теоремой умножения вероятностей зависимых событий: .
Вероятность наступления события А1 p(A1) в соответствии с классическим определением вероятности:
P(A1)=m/n=3/6=0,5.
Вероятность наступления события А2 определяется условной вероятностью наступления события А2 при условии наступления события А1 , т.е. (A2)==0,4.
Тогда искомая вероятность наступления события:
P(A)=0,5*0,4=0,2.

Теоремы сложения и умножения вероятностей

Теорема сложения

Вероятность наступления одного из нескольких несовместных событий равна сумме вероятностей этих событий.

В случае двух несовместных событий А и В имеем:

Р(А+В) = Р(А) + Р(В) (7)

Событие, противоположное событию А обозначают . Объединение событий А и даёт событие достоверное, а поскольку события А и несовместны, то

Р(А) +Р() = 1 (8)

Вероятность события А, вычисленная в предположении, что событие В наступило, называется условной вероятностью события А и обозначается символом Р В (А).

Если события А и В независимые, то Р(В) = Р А (В).

События А, В, С, … называются независимыми в совокупности , если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой комбинации их и в любом числе.

Теорема умножения

Вероятность того, что произойдут события и А, и В, и С, … равна произведению их вероятностей, вычисленных в предположении, что все предшествующие каждому из них события имели место, т. е.

Р(АВ) = Р(А)Р А (В) (9)

Запись Р А (В) обозначает вероятность события В в предположении, что событие А уже имело место.

Если события А, В, С, … независимы в совокупности, то вероятность того, что произойдут все они, равна произведению их вероятностей:

Р(АВС) = Р(А)Р(В)Р(С) (10)

Пример 3.1. В мешке лежат шары: 10 белых, 15 чёрных, 20 голубых и 25 красных. Вынули один шар. Найти вероятность того, что вынутый шар окажется белым? чёрным? И ещё: белый или чёрный?

Решение.

Число всех возможных испытаний n = 10 + 15 + 20 + 25 = 70;

Вероятность Р(б) = 10/70 = 1/7, Р(ч) = 15/70 = 3/14.

Применяем теорему сложения вероятностей:

Р(б + ч) = Р(б) + Р(ч) = 1/7 + 3/14 = 5/14.

Примечание: заглавные буквы в скобках соответственно обозначают цвет каждого шара согласно условию задачи.

Пример 3.2 В первом ящике два белых и десять чёрных шаров. Во втором ящике восемь белых и четыре чёрных шара. Из каждого ящика вынули по шару. Определить вероятность того, что оба шара окажутся белыми.

Решение.

Событие А – появление белого шара из первого ящика. Событие В – появление белого шара из второго ящика. События А и В – независимые.

Вероятности Р(А) = 2/12 = 1/6, Р(В) = 8/12 = 2/3.

Применяем теорему умножения вероятностей:

Р(АВ) = Р(А)Р(В) = 2/18 = 1/9.

Вопросы для повторения

1 Что называется факториалом?

2 Перечислите основные задачи комбинаторики.

3 Что называется перестановками?

4 Что называется перемещениями?

5 Что называется сочетаниями?

6 Какие события называются достоверными?

7 Какие события называются несовместными?

8 Что называется вероятностью события?

9 Что называется условной вероятностью?

10 Сформулируйте теоремы сложения и умножения вероятностей.

11 пр .Размещением из п элементов по к (к ≤ п ) называется любое множество, состоящее из к элементов, взятых в определенном порядке из данных п элементов.

Таким образом, два размещения из п элементов по к считаются различными, если они различаются самими элементами или порядком их расположения Число размещений из п элементов по к обозначают А п к и вычисляют по формуле

А п к =

Если размещения из п элементов по п отличаются друг от друга только порядком элементов, то они представляют собой перестановки из п элементов

Пример1 . Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета

Решение: Любое расписание на один день, составленное из 4 различных предметов, отличается от другого либо набором предметов, либо порядком их следования. Значит, в этом примере речь идет о размещениях из 9 элементов по 4. Имеем

А 9 4 = = 6 ∙ 7 ∙ 8 ∙ 9 = 3024

Расписание можно составить 3024 способами

Пример2. Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0,1,2,3,4,5,6 ?

Решение Если среди семи цифр нет нуля, то число трехзначных чисел (без повторения цифр), которые можно составить из этих цифр, равно числу размещений

22

из 7 элементов по 3. Однако среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтом из размещений из 7 элементов по3 надо исключить те, у которых первым элементом является 0. Их число равно числу размещений их 6 элементов по 2. =

Значит искомое число трехзначных чисел равно

А 7 3 - А 6 2 = - = 5 ∙ 6 ∙ 7 - 5 ∙ 6 = 180.

3. Закрепление полученных знаний в процессе решения задач

754 . Сколькими способами может разместиться семья из трех человек в четырехместном купе, если других пассажиров в купе нет?

Решение. Число способов равно А 4 3 = = 1∙ 2 ∙ 3 ∙ 4 = 24

755. Из 30 участников собрания надо выбрать председателя и секретаря. Сколькими способами это можно сделать?

Решение. Т.к.любой из участников может быть как секретарем, так и председателем, то число способов их избрания равно

А 30 2 = = = 29 ∙ 30 = 870

762 Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: а) 1,3,5,7,9. б) 0,2,4,6,8?

Решение а) А 5 4 = = 1∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120

б)) А 5 4 - А 4 3 = 5! – 4! = 120 – 24= 96

Домашнее задание № 756, №757, № 758, №759.

6урок Тема: « Сочетания»

Цель: Дать понятие о сочетаниях, познакомить с формулой для вычисления сочетаний, научить применять эту формулу для подсчета числа сочетаний.

1 Проверка домашнего задания.

756 . На станции 7 запасных путей. Сколькими способами можно расставить на них 4 поезда?

23

Решение: А 7 4 = = 4 ∙ 5 ∙ 6 ∙ 7 = 20 ∙ 42 = 840 способов

757 Сколькими способами тренер может определить, кто из 12 спортсменок, готовых к участию в эстафете 4х100м, побежит на первом, втором, третьем и четвертом этапах?

Решение: А 12 4 = = 9 ∙ 10 ∙ 11 ∙12 = 90 ∙132 = 11 880

758. В круговой диаграмме круг разбит на 5 секторов. Секторы решили закрасить разными красками, взятыми из набора, содержащего 10 красок. Сколькими способами это можно сделать?

Решение: А 10 5 = = 6 ∙ 7 ∙ 8 ∙ 9∙ 10 = 30 240

759. Сколькими способами 6 студентов, сдающих экзамен, могут занять места в аудитории, в которой 20 одноместных столов?

Решение: А 20 6 = = 15∙ 16 ∙17∙ 18∙19 ∙20 = 27 907 200

Организовать проверку домашнего задания можно разными способами: устно проверить решение домашних упражнений, решения некоторых из них записать на доске, а пока идет запись решений провести опрос уч-ся по вопросам:



1. Что означает запись п!

2.Что называется перестановкой из п элементов?

3.По какой формуле считают число перестановок?

4. Что называют размещением из п элементов по к?

5. п элементов по к?

2 Объяснение нового материала

Пусть имеются 5 гвоздик разного цвета. Обозначим их буквами а, в, с, д, е. Требуется составить букет из трех гвоздик. Выясним, какие букеты могут быть составлены.

Если в букет входит гвоздика а , то можно составить такие букеты:

авс, авд, аве, асд, асе, аде.

Если в букет не входит гвоздика а, но входит гвоздика в , то можно получить такие букеты:

всд, все, вде.

Наконец, если в букет не входит ни гвоздика а, ни гвоздика в, то возможен только один вариант составления букета:

сде.

24

Мы указали все возможные способы составления букетов, в которых по – разному сочетаются три гвоздики из 5. Говорят, что мы составили все возможные сочетания из 5 элементов по 3, мы нашли, что С 5 3 = 10.

Выведем формулу числа сочетаний из п элементов по к, где к ≤ п.

Выясним сначала, как С 5 3 выражается через А 5 3 и Р 3 . Мы нашли, что их 5 элементов можно составить следующие сочетания по 3 элемента:

авс, авд, аве, асд, асе, аде, всд, все, вде, сде.

В каждом сочетании выполним все перестановки. Число перестановок из 3 элементов равно Р 3 . В результате получим все возможные комбинации из 5 элементов по 3, которые различаится либо самими элементами, либо порядком элементов, т.е. все размещения из 5 элементов по 3. Всего мы получим А 5 3 размещений.

Значит , С 5 3 ∙ Р 3 = А 5 3 , отсюда С 5 3 = А 5 3: Р 3

Рассуждая в общем случае получим С п к = А п к: Р к,

Пользуясь тем, что А п к = , где к ≤ п., получим С п к = .

Это формула для вычисления числа сочетаний из п элементов по к при любом

к ≤ п.

Пример1 . Из набора, состоящего из 15 красок, надо выбрать3 краски для окрашивания шкатулки. Сколькими способами можно сделать этот выбор?

Решение: Каждый выбор трех красок отличается от другого хотя бы одной краской. Значит, здесь речь идет о сочетаниях из 15 элементов по 3

С 15 3 = = (13∙ 14∙15) : ( 1∙ 2 ∙ 3) = 455

Приме2 В классе учатся 12 мальчиков и 10 девочек. Для уборки территории около школы требуется выделить трех мальчиков и двух девочек. Сколькими способами можно сделать этот выбор?

Решение: Выбрать 3 мальчиков из 12 можно С 12 3 , а двух девочек из 10 можно выбрать С 10 2 . Т. к. при каждом выборе мальчиков можно С 10 2 способами выбрать девочек, то сделать выбор учащихся, о котором говориться в задаче можно

С 12 3 ∙ С 10 2 = ∙ = 220 ∙ 45 = 9900

3) Закрепление нового материала, в процессе решения задач

25

Задача

У Саши в домашней библиотеке есть 8 исторических романов. Петя хочет взять у него 2 любых романа. Сколькими способами можно сделать этот выбор?

Решение: С 8 2 = = (7 ∙ 8) : ( 1∙ 2) = 56: 2 = 28

779 а

В шахматном кружке занимаются 16 человек. Сколькими способами тренер может выбрать из них для предстоящего турнира команду из 4 человек?

Решение: С 16 4 = = (13∙ 14∙15 ∙16) : ( 1∙ 2 ∙ 3 ∙ 4) = 13 ∙ 7 ∙5∙ 4 = 91 ∙20 = 1820

774 Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта спротзала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

С 12 4 ∙ С 5 2 = ∙ = 495 ∙ 10 = 4950

Домашняя работа №768, №769, № 770, № 775

7урок Тема: « Решение задач на применение формул для подсчета числа перемещений, размещений, сочетаний»

Цель: Закрепление знаний учащихся. Формирование навыков решения простейших комбинаторных задач

1 Проверка домашнего задания

768 В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Решение: С 7 2 = = (6∙ 7) : 2 = 21

769 В магазине « Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Решение: С 8 3 = = (6 ∙ 7 ∙ 8) : ( 1∙ 2 ∙ 3) = 56

26

770 Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Решение: С 10 6 = = (7 ∙ 8 ∙ 9∙ 10) : ( 1∙ 2 ∙ 3 ∙ 4) = 210

775 В библиотеке читателю предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала?

Решение: С 10 3 ∙ С 4 2 = ∙ = 120 ∙ 6 = 720

Вопросы классу

1.Что называется перестановкой из п элементов?

2.По какой формуле считают число перестановок?

3. Что называют размещением из п элементов по к?

4. По какой формуле считают число размещений из п элементов по к?

5. Что называют сочетанием из п элементов по к?

6. По какой формуле считают число сочетаний из п элементов по к?

Задачи для совместного решения

При решении каждой задачи вначале идет обсуждение: какая из трех изученных формул поможет получить ответ и почему

1. Сколько четырехзначных чисел можно составить из цифр 4,6,8,9, при условии, что все цифры разные?

2. Из 15 человек в группе студентов надо выбрать старосту и его заместителя. Сколькими способами это можно сделать?

3. Из 10 лучших учащихся школы два человека надо послать на слет лидеров.

Сколькими способами это можно сделать?

Замечание: В задаче №3 не имеет значения кого выбрать: любых 2 человек из 10, поэтому здесь работает формула для подсчета числа сочетаний.

В задаче №2 выбирают упорядоченную пару,т.к. в выбранной паре,если фамилии поменять местами это будет уже другой выбор, поэтому здесь работает формула для подсчета числа размещений

Ответы к задачам для совместного решения:

№1 24 числа. №2 210 способов. №3 45 способов

Задачи для совместного обсуждения и самостоятельных вычислений

№1Встретились 6 друзей и каждый пожал руку каждому своему другу. Сколько было рукопожатий?

27

№2 Сколькими способами можно составить расписание для учащихся 1класса на один день, если у них 7 предметов, и в этот день должно быть 4 урока?

(Число размещений из 7 по 4)

№3 В семье 6 человек, а за столом в кухне 6 стульев. Было решено каждый вечер перед ужином рассаживаться на эти 6 стульев по- новому. Сколько дней члены семьи смогут делать это без повторений.

№4 К хозяину дома пришли гости А,В,С,Д. За круглым столом – пять разных стульев. Сколько существует способов рассаживания?

(В гости пришли 4 человека + хозяин = 5 человек рассаживаются на 5 стульях, надо посчитать число перестановок)

5. В книжке раскраске нарисованы непересекающиеся треугольник, квадрат и круг. Каждую фигуру надо раскрасить в один из цветов радуги, разные фигуры в разные цвета. Сколько существует способов раскрашивания?

(Посчитайте число размещений из 7 по 3)

№6 В классе 10 мальчиков и 4 девочки. Надо выбрать 3 человека дежурными так, чтобы среди них было 2 мальчика и 1 девочка. Сколькими способами это можно сделать?

(Число сочетаний из 10 по 2 умножить на число сочетаний из 4 по 1)

Ответы для задач с самостоятельным вычислением

1 15 рукопожатий

2 840 способов

3 720дней

5 120 способов

6 180 способов

Домашнее задание №835, №841

8 урок Тема: « Самостоятельная работа»

Цель: Проверка знаний учащихся

1.Проверка домашнего задании

^ 835 Сколько четных четырехзначных чисел, в которых цифры не повторяются, можно записать с помощью цифр а) 1,2,3,7 . б) 1,2,3,4.

28

а) Наши числа должны оканчиваться четной цифрой, такая цйфра в условии одна это цифра 2 , поставим ее на последнее место, а оставшиеся 3 цифры будем переставлять, число таких перестановок равно 3! = 6 .Значит можно составить 6 четных чисел

б) рассуждаем как в примере а) поставив на последнее место цифру 2 получим 6 четных чисел, поставив на последнее место цифру 4 получим еще 6 четных чисел,

значит всего 12 четных чисел

841 Сколькими способами из класса, где учатся 24 учащихся можно выбрать: а) двух дежурных; б) старосту и его помощника?

а) т.к. дежурными могут быть любые 2 человека из 24 , то количество пар равно

С 24 2 = = 23 ∙ 24:2 = 276

б) здесь выдирают упорядоченную пару элементов из 24 элементов, количество таких пар равно А 24 2 = = 23 ∙ 24 = 552

1 вариант решает задания № 1,2,3,4,5.

2 вариант решает задания №6,7,8,9,10.

Решение простейших комбинаторных задач

(по материалам к.р. в апреле 2010 года)

1 . Сколькими способами можно расставить на полке пять книг разных авторов?

2. Сколькими способами можно составить полдник из напитка и пирожка, если в меню указаны: чай, кофе, какао и пирожки с яблоком или с вишней?

3. В среду по расписанию в 9 «А» классе должно быть 5 уроков: химия, физика, алгебра, биология и ОБЖ. Сколькими способами можно составить расписание на этот день?

4. Имеются 2 белых лошади и 4 гнедых. Сколькими способами можно

составить пару из лошадей разной масти?

5. Каким числом способов можно разложить 5 различных монет в 5 разных карманов?

29

6. В шкафу на полке лежат 3 шапки различных фасонов и 4 шарфа разных цветов. Сколькими способами можно составить набор из одной шапки и одного шарфа?

7. В финал конкурса красоты вышли 4 участницы. Сколькими способами

можно установить очередность выступления участниц финала красоты?

^ 8 .Имеются 4 утки и 3 гуся. Сколькими способами можно из них выбрать две разных птицы?

9. Сколькими способами можно разложить 5 разных писем по 5 разным

конвертам, если в каждый конверт кладется только одно письмо?

10. В коробке хранятся 5 красных и 4 зелёных шара. Сколькими способами можно составить пару из шаров разного цвета?

Ответы для заданий самостоятельной работы

Непосредственный подсчет случаев, благоприятствующих данному событию, может оказаться затруднительным. Поэтому для определения вероятности события бывает выгодно представить данное событие в виде комбинации некоторых других, более простых событий. При этом, однако, надо знать правила, которым подчиняются вероятности при комбинации событий. Именно к этим правилам и относятся упомянутые в названии параграфа теоремы.

Первая из них относится к подсчету вероятности того, что осуществится хотя бы одно из нескольких событий.

Теорема сложения.

Пусть А и В - два несовместных события. Тогда вероятность того, что осуществится хотя бы одно из этих двух событий, равна сумме их вероятностей:

Доказательство. Пусть - полная группа попарно несовместных событий. Если то среди этих элементарных событий имеется ровно событий, благоприятствующих А, и ровно событий, благоприятствующих В. Так как события А и В несовместны, то никакое из событий не может благоприятствовать обоим этим событиям. Событию (А или В), состоящему в том, что наступает хотя бы одно из этих двух событий, благоприятствует, очевидно, как каждое из событий благоприятствующих А, так и каждое из событий

Благоприятствующих В. Поэтому общее число событий, благоприятствующих событию (А или В), равно сумме откуда следует:

что и требовалось доказать

Нетрудно видеть, что теорема сложения, сформулированная выше для случая двух событий, легко переносится на случай любого конечного числа их. Именно если попарно несовместные события, то

Для случая трех событий, например, можно написать

Важным следствием теоремы сложения является утверждение: если события попарно несовместны и единственно возможны, то

Действительно, событие или или или по предположению достоверно и его вероятность, как было указано в § 1, равна единице. В частности, если означают два взаимно противоположных события, то

Проиллюстрируем теорему сложения примерами.

Пример 1. При стрельбе по мишени вероятность сделать отличный выстрел равна 0,3, а вероятность сделать выстрел на оценку «хорошо» равна 0,4. Какова вероятность получить за сделанный выстрел оценку не ниже «хорошо»?

Решение. Если событие А означает получение оценки «отлично», а событие В - получение оценки «хорошо», то

Пример 2. В урне, содержащей шаров белого, красного и черного цвета, находятся белых шаров и I красных. Какова вероятность вынуть шар не черного цвета?

Решение. Если событие А состоит в появлении белого, а событие В - красного шара, то появление шара не черного цвета

означает появление либо белого, либо красного шара. Так как по определению вероятности

то по теореме сложения вероятность появления шара не черного цвета равна;

Эту задачу можно решить и так. Пусть событие С состоит в появлении черного шара. Число черных шаров равно так что Р (С) Появление шара не черного цвета является противоположным событием С, поэтому на основании указанного выше следствия из теоремы сложения имеем:

как и раньше.

Пример 3. В денежно-вещевой лотерее на серию в 1000 билетов приходится 120 денежных и 80 вещевых выигрышей. Какова вероятность какого-либо выигрыша на один лотерейный билет?

Решение. Если обозначить через А событие, состоящее в выпадении денежного выигрыша и через В - вещевого, то из определения вероятности следует

Интересующее нас событие представляет (А или В), поэтому из теоремы сложения вытекает

Таким образом, вероятность какого-либо выигрыша равна 0,2.

Прежде чем перейти к следующей теореме, необходимо ознакомиться с новым важным понятием - понятием условной вероятности. Для этой цели мы начнем с рассмотрения следующего примера.

Пусть на складе имеется 400 электрических лампочек, изготовленных на двух различных заводах, причем на первом изготовлено 75% всех лампочек, а на втором - 25%. Допустим, что среди лампочек, изготовленных первым заводом, 83% удовлетворяют условиям определенного стандарта, а для продукции второго завода этот процент равен 63. Определим вероятность того, что случайно взятая со склада лампочка окажется удовлетворяющей условиям стандарта.

Заметим, что общее число имеющихся стандартных лампочек состоит из лампочек, изготовленных первым

заводом, и 63 лампочек, изготовленных вторым заводом, то есть равно 312. Так как выбор любой лампочки следует считать равновозможным, то мы имеем 312 благоприятствующих случаев из 400, так что

где событие В состоит в том, что выбранная нами лампочка стандартна.

При этом подсчете не делалось никаких предположений о том, к продукции какого завода принадлежит выбранная нами лампочка. Если же какие-либо предположения такого рода сделать, то очевидно, что интересующая нас вероятность может измениться. Так, например, если известно, что выбранная лампочка изготовлена на первом заводе (событие А), то вероятность того, что она стандартна, будет уже не 0,78, а 0,83.

Такого рода вероятность, то есть вероятность события В при условии, что имеет место событие А, называют условной вероятностью события В при условии наступления события А и обозначают

Если мы в предыдущем примере обозначим через А событие, состоящее в том, что выбранная лампочка изготовлена на первом заводе, то мы можем написать

Теперь мы можем сформулировать важную теорему, относящуюся к подсчету вероятности совмещения событий.

Теорема умножения.

Вероятность совмещения событий А и В равна произведению вероятности одного из событий на условную вероятность другого в предположении, что первое имело место:

При этом под совмещением событий А и В понимается наступление каждого из них, то есть наступление как события А, так и события В.

Доказательство. Рассмотрим полную группу из равновозможных попарно несовместных событий каждое из которых может быть благоприятствующим или неблагоприятствующим как для события А, так и для события В.

Разобьем все эти события на четыре различные группы следующим образом. К первой группе отнесем те из событий которые благоприятствуют и событию А, и событию В; ко второй и третьей группам отнесем такие события которые благоприятствуют одному из двух интересующих нас событий и не благоприятствуют другому, например ко второй группе - те, которые благоприятствуют А, но не благоприятствуют В, а к третьей - те, которые благоприятствуют В, но не благоприятствуют А; наконец, к

четвертой группе отнесем те из событий которые не благоприятствуют ни А, ни В.

Так как нумерация событий не играет роли, то можно предположить, что это разбиение на четыре группы выглядит так:

I группа:

II группа:

III группа:

IV группа:

Таким образом, среди равновозможных и попарно несовместных событий имеется событий, благоприятствующих и событию А, и событию В, I событий, благоприятствующих событию А, но не благоприятствующих событию событий, благоприятствующих В, но не благоприятствующих А, и, наконец, событий, не благоприятствующих ни А, ни В.

Заметим, между прочим, что какая-либо из рассмотренных нами четырех групп (и даже не одна) может не содержать ни одного события. В этом случае соответствующее число, означающее количество событий в такой группе, будет равно нулю.

Произведенная нами разбивка на группы позволяет сразу написать

ибо совмещению событий А и В благоприятствуют события первой группы и только они. Общее число событий, благоприятствующих А, равно общему числу событий в первой и второй группах, а благоприятствующих В - общему числу событий в первой и третьей группах.

Подсчитаем теперь вероятность то есть вероятность события В при условии, что событие А имело место. Теперь события, входящие в третью и четвертую группы, отпадают, так как их появление противоречило бы наступлению события А, и число возможных случаев оказывается равным уже не . Из них событию В благоприятствуют лишь события первой группы, так что мы получаем:

Для доказательства теоремы достаточно теперь написать очевидное тождество:

и заменить в нем все три дроби вычисленными выше вероятностями. Мы придем к утверждавшемуся в теореме равенству:

Ясно, что написанное нами выше тождество имеет смысл лишь при что справедливо всегда, если только А не есть невозможное событие.

Так как события А и В равноправны, то, поменяв их местами, получим другую форму теоремы умножения:

Впрочем, это равенство можно получить тем же путем, что и предыдущее, если заметить, что воспользоваться тождеством

Сравнивая правые части двух выражений для вероятности Р(А и В), получим полезное равенство:

Рассмотрим теперь примеры, иллюстрирующие теорему умножения.

Пример 4. В продукции некоторого предприятия признаются годными (событие А) 96% изделий. К первому сорту (событие В) оказываются принадлежащими 75 изделий из каждой сотни годных. Определить вероятность того, что произвольно взятое изделие будет годным и принадлежит к первому сорту.

Решение. Искомая вероятность есть вероятность совмещения событий А и В. По условию имеем: . Поэтому теорема умножения дает

Пример 5. Вероятность попадания в цель при отдельном выстреле (событие А) равна 0,2. Какова вероятность поразить цель, если 2% взрывателей дают отказы (т. е. в 2% случаев выстрела не

Решение. Пусть событие В состоит в том, что выстрел произойдет, а В означает противоположное событие. Тогда по условию и согласно следствию из теоремы сложения . Далее, по условию .

Поражение цели означает совмещение событий А и В (выстрел произойдет и даст попадание), поэтому по теореме умножения

Важный частный случай теоремы умножения можно получить, если воспользоваться понятием независимости событий.

Два события называются независимыми, если вероятность одного из них не изменяется в результате того, наступило или не наступило другое.

Примерами независимых событий являются выпадение различного числа очков при повторном бросании игральной кости или той или иной стороны монет при повторном бросании монеты, так как очевидно, что вероятность выпадения герба при втором бросании равна независимо от того, выпал или не выпал герб в первом.

Аналогично, вероятность вынуть во второй раз белый шар из урны с белыми и черными шарами, если вынутый первым шар предварительно возвращен, не зависит от того, белый или черный шар был вынут в первый раз. Поэтому результаты первого и второго вынимания независимы между собой. Наоборот, если шар, вынутый первым, не возвращается в урну, то результат второго вынимания зависит от первого, ибо состав шаров, находящихся в урне после первого вынимания, меняется в зависимости от его исхода. Здесь мы имеем пример зависимых событий.

Пользуясь обозначениями, принятыми для условных вероятностей, можно записать условие независимости событий А и В в виде

Воспользовавшись этими равенствами, мы можем привести теорему умножения для независимых событий к следующей форме.

Если события А и В независимы, то вероятность их совмещения равна произведению вероятностей этих событий:

Действительно, достаточно в первоначальном выражении теоремы умножения положить , что вытекает из независимости событий, и мы получим требуемое равенство.

Рассмотрим теперь несколько событий: Будем называть их независимыми в совокупности, если вероятность появления любого из них не зависит от того, произошли ли какие-либо другие рассматриваемые события или нет

В случае событий, независимых в совокупности, теорема умножения может быть распространена на любое конечное число их, благодаря чему ее можно сформулировать так:

Вероятность совмещения событий независимых в совокупности, равна произведению вероятностей этих событий:

Пример 6. Рабочий обслуживает три автоматических станка, к каждому из которых нужно подойти для устранения неисправности, если станок остановится. Вероятность того, что первый станок не остановится в течение часа, равна 0,9. Та же вероятность для второго станка равна 0,8 и для третьего - 0,7. Определить вероятность того, что в течение часа рабочему не потребуется подойти ни к одному из обслуживаемых им станков.

Пример 7. Вероятность сбить самолет винтовочным выстрелом Какова вероятность уничтожения неприятельского самолета при одновременной стрельбе из 250 винтовок?

Решение. Вероятность того, что при одиночном выстреле самолет не будет сбит, по теореме сложения равна Тогда можно подсчитать с помощью теоремы умножения вероятность того, что самолет не будет сбит при 250 выстрелах, как вероятность совмещения событий. Она равна После этого мы можем снова воспользоваться теоремой сложения и найти вероятность того, что самолет будетсбит, как вероятность противоположного события

Отсюда видно, что, хотя вероятность сбить самолет одиночным винтовочным выстрелом ничтожно мала, тем не менее при стрельбе из 250 винтовок вероятность сбить самолет оказывается уже весьма ощутимой. Она существенно возрастает, если число винтовок увеличить. Так, при стрельбе из 500 винтовок вероятность сбить самолет, как легко подсчитать, равна при стрельбе из 1000 винтовок - даже .

Доказанная выше теорема умножения позволяет несколько расширить теорему сложения, распространив ее на случай совместимых событий. Ясно, что если события А и В совместимы, то вероятность наступления хотя бы одного из них не равна сумме их вероятностей. Например, если событие А означает выпадение четного

числа очков при бросании игральной кости, а событие В - выпадение числа очков, кратного трем, то событию (А или В) благоприятствует выпадение 2, 3, 4 и 6 очков, то есть

С другой стороны, то есть . Таким образом, в этом случае

Отсюда видно, что в случае совместимых событий теорема сложения вероятностей должна быть изменена. Как мы сейчас увидим, ее можно сформулировать таким образом, чтобы она была справедлива и для совместимых, и для несовместных событий, так что ранее рассмотренная теорема сложения окажется частным случаем новой.

Событий, которые А не благоприятствуют.

Все элементарные события, которые благоприятствуют событию (А или В), должны благоприятствовать либо только А, либо только В, либо и А и В. Таким образом, общее число таких событий равно

а вероятность

что и требовалось доказать.

Применяя формулу (9) к рассмотренному выше примеру выпадения числа очков при бросании игральной кости, получим:

что совпадает с результатом непосредственного подсчета.

Очевидно, что формула (1) является частным случаем (9). Действительно, если события А и В несовместны, то и вероятность совмещения

Примере. В электрическую цепь включены последовательно два предохранителя. Вероятность выхода из строя первого предохранителя равна 0,6, а второго 0,2. Определим вероятность прекращения питания в результате выхода из строя хотя бы одного из этих предохранителей.

Решение. Так как события А и В, состоящие в выходе из строя первого и второго из предохранителей, совместимы, то искомая вероятность определится по формуле (9):

Упражнения

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.