Что такое спонтанные мутации. Сходство и различие спонтанных и индуцированных мутаций

Мутации, помимо качественных свойств, характеризует и способ возникновения. Спонтанные (случайные) - мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внешних и внутренних факторов (биологические, химические, физические). Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. Проведенное в Дании исследование показали, что примерно одна из 24000 гамет несет в себе доминантную мутацию. Ученый же Холдейн рассчитал среднюю вероятность появления спонтанных мутаций, которая оказалась равна 5*10 -5 за поколение. Другой ученый Курт Браун предложил прямой метод оценки таких мутаций, а именно: число мутаций разделить на удвоенное количество обследованных индивидов.

Индуцированные мутации

Индуцированный мутагенез - это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз - удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

Мутационный процесс является главным источником изменений, приводящим к различным патологиям. Задачи науки на ближайшие время определяются как уменьшения генетического груза путем предотвращения или снижения вероятности мутаций и устранения возникших в ДНК изменений с помощью генной инженерии. Генная инженерия - новое направление в молекулярной биологии, появившееся в последние время, котоое может в будущем обратить мутации на пользу человеку, в частности, эффективно бороться с вирусами. Уже сейчас существуют вещества называемые антимутагены, которые приводят к ослаблению темпов мутирования. Успехи современной генетики находят применение в диагностики, профилактике и лечении ряда наследственных патологий. Так, в 1997 году в США была получена рекомбинативная ДНК. С помощью генной инженерии уже сконструированы искусственные гены инсулина, интерферона и других веществ.

Мутации являются важным объектом исследования цитогенетиков и биохимиков. Именно мутации, генные или хромосомные, чаще всего являются причиной наследственных заболеваний. В естественных условиях хромосомные перестройки происходят очень редко. Мутации, вызванные химическими реактивами, биологическими мутагенами или физическими факторами, такими как ионизирующее излучение, часто являются причиной врожденных патологий развития и злокачественных новообразований.

Общие сведения о мутациях

Мутацию Гуго де Фриз определил как внезапное изменение наследственного признака. Это явление встречаются в геноме всех живых организмов, от бактерий до человека. При нормальных условиях мутации в нуклеиновых кислотах происходят очень редко, с частотой примерно 1·10 -4 - 1·10 -10 .

В зависимости от количества затронутого изменениями генетического материала, мутации делят на геномные, хромосомные и генные. Геномные связанны с изменением количества хромосом (моносомия, трисомия, тетрасомия); хромосомные связаны с изменением структуры отдельных хромосом (делеции, дубликации, транслокации); генные мутации затрагивают отдельный ген. Если мутация затронула только одну пару нуклеотидов, то она - точечная.

В зависимости от причин, вызвавших их, выделяют спонтанные и индуцированные мутации.

Спонтанные мутации

Возникают в организме под воздействием внутренних факторов. Спонтанные мутации считаются нормальным явлением, они редко приводят к серьезным последствиям для организма. Чаще всего такие перестройки происходят в пределах одного гена, связаны с заменой оснований - пурина на другой пурин (транзиции), или пурина на пиримидин (трансверсии).

Значительно реже спонтанные мутации происходят в хромосомах. Обычно хромосомные спонтанные мутации представлены транслокациями (переходом одного или нескольких генов одной хромосомы на другую) и инверсиями (изменением последовательности генов в хромосоме).

Индуцированные перестройки

Индуцированные мутации возникают в клетках организма под воздействием химикатов, радиации или репликационного материала вирусов. Такие мутации проявляются чаще, чем спонтанные, имеют более серьезные последствия. Они влияют на отдельные гены и группы генов, блокируя синтез отдельных белков. Индуцированные мутации часто глобально влияют на геном, именно под воздействием мутагенов в клетке появляются аномальные хромосомы: изохромосомы, кольцевые хромосомы, дицентрики.

Мутагены, помимо хромосомных перестроек, вызывают повреждения ДНК: двунитевые разрывы, образование ДНК-сшивок.

Примеры химических мутагенов

К химическим мутагенам относятся нитраты, нитриты, аналоги азотистых оснований, азотистая кислота, пестициды, гидроксиламин, некоторые пищевые добавки.

Азотистая кислота вызывает отщепление аминогруппы от азотистых оснований и замену их другой группой. Это приводит к точковым мутациям. Химически индуцированные мутации также вызывает гидроксиламин.

Нитраты и нитриты в больших дозах повышают риск возникновения рака. Некоторые пищевые добавки вызывают реакции арилирования нуклеиновых кислот, что приводит к нарушению процессов транскрипции и трансляции.

Химические мутагены очень разнообразны. Часто именно эти вещества вызывают индуцированные мутации в хромосомах.

К физическим мутагенам относятся ионизирующее излучение, прежде всего коротковолновое, и ультрафиолет. Ультрафиолет запускает процесс в мембранах, провоцирует образование различных дефектов в ДНК.

Рентгеновское и гамма-излучение провоцируют мутации на уровне хромосом. Такие клетки не способны к делению, они погибают в ходе апоптоза. Индуцированные мутации могут затрагивать и отдельные гены. Например, блокирование генов опухолевых супрессоров приводит к появлению опухолей.

Примеры индуцированных перестроек

Примерами индуцированных мутаций могут служить различные генетические заболевания, чаще проявляющиеся в зонах, подверженных воздействию физического или химического мутагенного фактора. Известно, в частности, что в индийском штате Керала, где годовая эффективная доза ионизирующего излучения превосходит норму в 10 раз, повышена частота рождения детей с синдромом Дауна (трисомия по 21-й хромосоме). В китайском округе Янцзян в почве выявлено большое количество радиоактивного монацита. Нестабильные элементы в его составе (церий, торий, уран) распадаются с выделением гамма-квантов. Воздействие коротковолнового излучения на жителей округа привело к большому количеству рождений детей с синдромом кошачьего крика (делеция большого участка 8-й хромосомы), а также повышенной заболеваемости раком. Еще один пример: в январе 1987 года на Украине было зарегистрировано рекордное количество рождений детей с синдромом Дауна, связанное с аварией на ЧАЭС. На первом триместре беременности плод наиболее чувствителен к воздействию физических и химических мутагенов, потому колоссальная доза радиации привела к повышению частоты аномалий хромосомного набора.

Один из самых печально известных химических мутагенов в истории - седативное средство "Талидомид", выпускаемое в ФРГ в 50-х годах прошлого века. Прием этого препарата привел к рождению множества детей с самыми разными генетическими отклонениями.

Метод индуцированных мутаций обычно применяется учеными для поиска оптимальных способов борьбы с аутоиммунными заболеваниями и генетическими отклонениями, связанными с гиперсекрецией белков.

Мутации (от латинского mutatio – перемена) – это изменение генов и хромосом, проявляющееся в изменении свойств и признаков организмов. Описал их в 1901 году голландский учёный Де Фриз. Он же заложил основы и теории мутаций. Процесс образования мутаций во времени и пространстве называется мутагенез . Вещества, вызывающие мутации в клетках — мутагены.

В зависимости от происхождения различают спонтанные и индуцированные мутации.

Генеративные и соматические мутации.

Мутации могут возникать на всех стадиях развития организма и поражать гены и хромосомы как в половых клетках, так и в соматических. Поэтому по типу клеток различают генеративные и соматические мутации . Генеративные мутации происходят в половых клетках и в этом случае передаются следующим поколениям. Соматические мутации происходят в любых других соматических клетках организма; они провоцируют рак, нарушают иммунную систему, уменьшают продолжительность жизни. Соматические мутации не передаются по наследству. Большая часть канцерогенных веществ вызывает мутации в соматических клетках.

Спонтанные и индуцированные мутации.

Спонтанные мутации (самопроизвольное изменение в совокупности генов организма данного вида) – те мутации, которые возникают у организмов в нормальных природных условиях без видимых причин; они возникают как ошибки при воспроизведении генетического материала, поскольку редупликация не происходит с абсолютной точностью. Длительное время считалось, что спонтанные мутации являются беспричинными. Сейчас же пришли к выводу, что они являются результатом естественных процессов, протекающих в клетках. Они возникают в условиях природного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности Земли, радионуклидов в клетках организмов. Спонтанная мутация может возникнуть в любой период индивидуального развития и поразить любую хромосому или ген. Частота встречаемости спонтанных мутаций, например, 1:100000.

Индуцированные мутации возникают в результате действия мутагенов, нарушающих процессы, происходящие в клетке.

Если сравнить частоту спонтанных и индуцированных мутаций клеток организмов при обработке мутагеном и без него, то очевидно, что если частота мутаций повышается в 100 раз в результате воздействия мутагена, то одна мутация будет спонтанная, остальные индуцированные.

Факторы мутагенеза.

В зависимости от локализации в клетке различают генные и хромосомные мутации . Генные, или точечные, мутации заключаются в изменении индивидуальных генов (выпадение, вставка или замена одной пары нуклеотидов. Хромосомные мутации бывают нескольких видов и затрагивают:

    изменение структуры хромосом (крупные перестройки в отдельных фрагментах ДНК):

Делеции (выпадение числа нуклеотидов);

Дупликации (повторение фрагментов ДНК, в результате чего происходит её удлинение);

Инверсии (поворот участка хромосом на 180 0);

Транслокации (перенос участка хромосомы в новое положение в той или уже другой хромосоме).

Мутации, поражающие структуру хромосом, называют хромосомными перестройками , или аберрациями.

    изменение количества хромосом:

Полиплоидия (увеличение кратного набора хромосом);

Гаплоидия (уменьшение всего набора хромосом);

Анеуплоидия (нарушение нормального количества хромосом из-за добавления или удаления одной или более хромосом).

Мутации, затрагивающие изменение числа хромосом в клетках организма, называются геномными . Геном – совокупность генов организма данного вида.

Мутационные процессы происходят не только у человека, но и у животных и растений. Поэтому мы рассматриваем общие закономерности. Хромосомные аберрации встречаются у растений, животных и человека. Ведут к нарушению здоровья. Полиплоидия встречается чаще у растений, у животных и человека – редка (число хромосом может увеличиваться в 3, 4, 5 раз). Гаплоидия встречается также в основном у растений (около 800 видов растений имеют гаплоиды), у животных — очень редка, у человека неизвестна. Анеуплоидия часто встречается у растений, у животных и у человека. Делеции – наиболее частые и опасные формы повреждения хромосом для человека. Некоторые дупликации вредны и даже летальны. Повтор сегмента хромосомы может быть малым, касаясь одиночного гена, или большим, затрагивая большое количество генов. Могут быть и безвредные дупликации. Транслокации происходят в результате разрыва хромосом. Могут иметь размеры от небольших до значительных.

Мутации могут оказаться незамеченными, если они затронули второстепенные участки наследственных структур, но могут приводить к серьёзным расстройствам, вплоть до гибели организма.

Возникшие повреждения в ДНК не обязательно реализуются в мутации. Они могут бесследно исчезнуть, благодаря существующей в клетке эффективной системе восстановления генетических повреждений (репарации). Проявление мутантного гена может быть подавлено действием другого гена. В этом случае мутантный ген может передаваться из поколения в поколение и проявиться только в случае, когда в зародышевой клетке встретятся два идентичных мутантных гена. Некоторые мутации проявляются только в определённых условиях существования. Например, при определённой температуре культивирования мутантных микроорганизмов.

Организма.

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК , транскрипции и генетическая рекомбинация .

Связь мутаций с репликацией ДНК [ | ]

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации . Например, из-за дезаминирования цитозина напротив гуанина в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК, напротив урацила в новую цепь включается аденин , образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК [ | ]

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация , а в другой - делеция .

Связь мутаций с репарацией ДНК [ | ]

Таутомерная модель мутагенеза [ | ]

Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина , что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Классификации мутаций [ | ]

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные ;
  • хромосомные ;
  • генные .

Точечная мутация, или единственная замена оснований, - тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава .

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень») . Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований , так и мишенные мутации сдвига рамки .

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки .

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций . При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций .

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла она из-за вырожденности генетического а (синонимическая замена нуклеотида), 2) изменение смысла она, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного она с преждевременной терминацией (нонсенс-мутация). В генетическом е имеются три бессмысленных она: амбер - UAG, охр - UAA и опал - UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов - например амбер-мутация), 4) обратная замена (стоп-она на смысловой он).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift) . Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического а.

Первичную мутацию иногда называют прямой мутацией , а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией , или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) - стойкие соматические мутации, происходящие в клетках точек роста растений. Приводят к клоновой изменчивости . При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутантами .

Последствия мутаций для клетки и организма [ | ]

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию, и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определённых участках ДНК) мутации в механизмах иммунитета [ ] . С их помощью создаётся разнообразие клонов лимфоцитов , среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной

· Спонтанные (самопроизвольные)

· Индуцированные (известен фактор)

Хромосомная аберрация - мутация, изменяющая структуру хромосом. При хромосомных аберрациях происходят внутри хромосомные перестройки:

Теряется участок хромосомы; или

Удваивается участок хромосомы (ДНК-дупликация); или

Переносится участок хромосомы с одного на другое место; или

Сливаются участки разных (негомологичных) хромосом или целые хромосомы.

Генные мутации – изменение в структуре гена.

· Мутации по типу замены азотистых оснований.

· Мутации со сдвигом рамки считывания.

· Мутации по типу инверсии нуклеотидных последовательностей в гене.

Геномные мутации – изменение числа хромосом. (Полиплоидия - увеличение диплоидного числа хромосом, путем добавления целых хромосомных наборов; автоплоидия – умножение хромосом одного генома, алаплоидия – умножение числа хромосом двух разных геномов, гетероплоидия – число хромосом может измениться и становиться некратным гаплоидному набору (трисомия – хромосома вместо того, чтобы быть парной становиться в тройном числе, моносомия – утрата хромосомы из пары)).

Генетическая инженерия (генная инженерия) - совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии.

Цитоплазматическая наследственность - внеядерная наследственность, которая осуществляется с помощью молекул ДНК, расположенных в пластидах и митохондриях. Генетическое влияние цитоплазмы проявляется, как следствие взаимодействия плазмона с ядерными генами. Признак, определяемый цитоплазмой, передается только по материнской линии.

Наследственность и среда. В генетической информации заложена способность развития определенных свойств и признаков. Эта способность реализуется лишь в определенных условиях среды. Одна и та же наследственная информация в измененных условиях может проявляться по-разному. Наследуется не готовый признак, а определенный тип реакции на воздействие внешней среды. Диапазон изменчивости в пределах которой в зависимости от условий среды один и тот же генотип способен давать различные фенотипы называется нормой реакции .



Аллели - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных (парных) хромосом; определяют варианты проявления одного и того же признака. В диплоидном организме может быть два одинаковых аллеля одного гена, в этом случае организм называется гомозиготным, или два разных, что приводит к гетерозиготному организму.

Взаимодействие аллельных генов

1. Доминирование - это такое взаимодействие аллельных генов, при котором проявление одного из аллелей не зависит от присутствия в генотипе другого аллеля, и гетерозиготы не отличаются фенотипически от гомозигот по этому аллелю.

2. Промежуточное наследование - (отсутствие доминирования) потомство F 1 сохраняет единообразие, но не является похожим полностью ни на одного из родителей, а обладает признаком промежуточного характера.

3. Неполное доминирование - у гибридов F 1 признак занимает не среднее положение, а уклоняется в сторону родителя с доминирующим признаком.

4. Сверхдоминирование - у гибридов F 1 проявляется гетерозис (превосходство над родителями по жизнеспособности, энергии роста, плодовитости, продуктивности).

5. Аллельное дополнение (межаллельная комплементация) - дополняющее друг друга действие двух аллелей одного гена или разных генов одного хромосомного набора. Относится к редким способам взаимодействия аллельных генов.

6. Аллельное исключение - такой вид взаимодействия аллельных генов в генотипе организма, при котором происходит инактивация (инактивация - частичная или полная потеря биологически активным веществом или агентом своей активности) одного из аллелей в составе хромосомы.

Таким образом, даже процесс формирования элементарного признака зависит от взаимодействия, по меньшей мере, двух аллельных генов, и конечный результат определяется конкретным сочетанием их в генотипе.

Взаимодействие неаллельных генов

Комплементарность - одна из форм взаимодействия неаллельных генов. Она заключается в том, что для развития каких-либо признаков необходимо наличие в генотипе 2 доминантных генов из разных неалльных пар. При этом каждый из комплементарных генов не обладает возможностью обеспечить развитие данного признака. (В таких случаях в поколении F2 расщепление идет в соотношении 9:7, что является модификацией менделеевской формулы расщепления 9:3:3:1)

Эпистаз - взаимодействие генов, при котором активность одного гена находится под влиянием вариаций других генов. Ген, подавляющий фенотипические проявления другого, называется эпистатичным; ген, чья активность изменена или подавлена, называется гипостатичным.

Полимерия - (аддитивное взаимодействие генов) - тип взаимодействия генов, при котором степень развития количественного признака определяется влиянием нескольких генов, действующих сходным образом (полимерные гены).

Экспрессивность - степень выраженности признака, зависящую от дозы соответствующих аллелей.

Пенетрантность - показатель фенотипического проявления аллеля в популяции особей, являющихся его носителями. Выражается в процентах.

Полигенность - наличие нескольких неаллельных близкосцепленных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции.

Плейотропия - явление множественного действия гена. Выражается в способности одного гена влиять на несколько фенотипических признаков. Таким образом, новая мутация в гене может оказать влияние на некоторые или все связанные с этим геном признаки. Этот эффект может вызвать проблемы при селективном отборе, когда при отборе по одному из признаков лидирует одна из аллелей гена, а при отборе по другим признакам - другая аллель этого же гена.

Фенокопии - изменения фенотипа (похожие на мутации) под влиянием неблагоприятных факторов среды. В медицине фенокопии - ненаследственные болезни, сходные с наследственными.

Мать во время беременности болела краснухой, то у ребенка расщелина губы и неба. Это пример фенокопии, т.к. этот признак развивается при отсутствии мутантного гена, определяющего данную аномалию. Этот признак не будет наследоваться.

Лица, страдающие диабетом, но регулярно, аккуратно принимающие инсулин- фенокопия здоровых людей.

Генокопии - сходные изменения фенотипа, обусловленные мутациями разных неаллельных генов. С наличием генокопий связана генетическая неоднородность (гетерогенность) наследственных заболеваний. Пример - различные виды гемофилии, клинически проявляющиеся понижением свертываемости крови на воздухе. Эти разные по генетическому происхождению формы, связанные с мутациями неаллельных генов.

Гемофилия А вызвана мутацией гена, контролирующего синтез фактора 8 (антигемофильного глобулина), а причиной гемофилии В является дефицит фактора 9 свертывающей системы крови

10 Близнецовый метод в генетике. Виды монозиготных близнецов. Родословные карты и стратегия их анализа. Наследственная предрасположенность к заболеваниям. Роль наследственности и среды в формировании фенотипических признаков

Монозиготные близнецы – две плаценты и два зародышевых мешка 20-30% от всех. Минимальные нарушения

Плацента общая но у каждого свой зародышевый мешок

Mono mono

Общая плацента общий зародышевый мешок. Наибольший процент нарушений, т.к. высока конкуренция между ними.

Химеризация хромосом (мозаизм) – в образовании зародыша принимает участие 4 клетки: 2 слившихся в раннем эмбриогенезе зиготы. Часть тканей имеет гены одной зиготы, часть – другой.

Полуидентичные близнецы – одна яйцеклетка, два сперматозоида. Суперфетация – 2 яйцеклетки оплодотворены 2 разными спермиями (Вероятность разного отцовства – гетеросуперфетация. В межрасовом браке возможно рождение микс-близнезов.)

Близнецовый метод.

Этот метод используют в генетике человека для выяснения степени наследственной обусловленности исследуемых признаков. Близнецы могут быть однояйцовыми (образуются на ранних стадиях дробления зиготы, когда из двух или реже из большего числа бластомеров развиваются полноценные организмы). Однояйцовые близнецы генетически идентичны. Когда созревают и затем оплодотворяются разными сперматозоидами две или реже большее число яйцеклеток, развиваются разнояйцовые близнецы. Разнояйцовые близнецы сходны между собой не более чем братья и сестры, рожденные в разное время. Частота появления близнецов у людей составляет около 1% (1/3 однояйцовых, 2/3 разнояйцовых); подавляющее большинство близнецов является двойнями.
Так как наследственный материал однояйцовых близнецов одинаков, то различия, которые возникают у них, зависят от влияния среды на экспрессию генов. Сравнение частоты сходства по ряду признаков пар одно- и разнояйцовых близнецов позволяет оценить значение наследственных и средовых факторов в развитии фенотипа человека.

Монозиготные близнецы образуются из одной зиготы, разделившейся на стадии дробления на две (или более) части. Они обладают одинаковыми генотипами. Монозиготные близнецы всегда одного пола.

Особую группу среди однояйцевых близнецов составляют необычные типы: двухголовые (как правило, нежизнеспособные) и ксифопаги («сиамские близнецы»). Наиболее известный случай - родившиеся в Сиаме (ныне Таиланд) сиамские близнецы - Чанг и Энг. Они прожили 63 года, были женаты на сестрах-близнецах. Когда от бронхита умер Чанг, спустя 2 часа умер и Энг. Их связывала тканевая перемычка от грудины до пупка. Позднее было установлено, что соединявшая их перемычка содержала печеночную ткань, связывающую две печени. Разделить близнецов на тот момент не представлялось возможным. В настоящее время разъединяют и более сложные связи между близнецами.

Изучение однояйцевых близнецов помогает понять, что и как в человеке определяется генами, а что - нет.

Дизиготные близнецы развиваются в том случае, если одновременно две яйцеклетки оплодотворены двумя сперматозоидами. Естественно, дизиготные близнецы имеют различные генотипы. Они сходны между собой не более, чем братья и сестры, т.к. имеют около 50 % идентичных генов.

Родословная (синоним генеалогия) - описание родственных отношений изучаемого лица, представленное, как правило, в виде схемы с использованием общепринятых условных обозначений.