Резистентность организма. Способы повышения общей резистентности организма Повышение общей резистентности организма

Резистентность организма – (от лат. resistere – сопротивляться ) – это свойство организма противостоять действию патогенных факторов или невосприимчивость к воздействиям повреждающих факторов внешней и внутренней среды . Другими словами, резистентность – это устойчивость организма к действию патогенных факторов.

В ходе эволюции организм приобрел определенные приспособительные механизмы, обеспечивающие его существование в условиях постоянного взаимодействия с окружающей средой. Отсутствие или недостаточность этих механизмов могло бы вызвать не только нарушение жизнедеятельности, но и гибели индивида.

Резистентность организма проявляется в различных формах.

Первичная (естественная, наследственная) резистентность – это устойчивость организма к действию факторов, определяемая особенностью строения и функции органов и тканей, передающихся по наследству . Например, кожа и слизистые оболочки представляют собой структуры, которая препятствуют проникновению микроорганизмов и многих токсических веществ в организм. Они осуществляют барьерную функцию. Подкожно-жировая клетчатка, обладая плохой теплопроводимостью, способствует сохранение эндогенного тепла. Ткани опорно-двигательного аппарата (кости, связки) обеспечивают значительное сопротивление к деформации при механических повреждениях.

Первичная резистентность может быть абсолютной и относительной :

· абсолютная первичная резистентность – классическим примером является наследственная устойчивость к ряду инфекционных агентов («наследственный иммунитет»). Его наличие объясняется молекулярными особенностями организма, которые не могут служить средой обитания для того или иного микроорганизма, или отсутствуют клеточные рецепторы, необходимые для фиксации микроорганизма, т.е. существуют рецепторная некомплементарность между молекулами агрессии и их молекулярными мишенями. Кроме того, в клетках может не быть веществ, необходимых для существования микроорганизмов, либо имеются в них продукты, мешающие развитию вирусов, бактерий. Благодаря абсолютной резистентности человеческий организм не поражается многими инфекционными заболеваниями животных (абсолютная невосприимчивость человека к чуме рогатого скота), и наоборот – животные не восприимчивы к большой группе инфекционной патологии людей (гонорея – болезнь только человек).

· относительная первичная резистентность – при определенных условиях механизмы абсолютной резистентности могут изменяться и тогда организм способен взаимодействовать с раннее «игнорируемым» им агентом. К примеру, домашние птицы (куры) в обычных условиях не болеют сибирской язвой, на фоне гипотермии (охлаждения) удается вызвать данное заболевание. Верблюды, невосприимчивы к чуме, заболевают ее после сильного утомления.

Вторичная (приобретенная, измененная) резистентность – это устойчивость организма, сформировавшаяся после предварительного воздействия на него определенных факторов. Примером может служить развитие иммунитета после перенесенных инфекционных заболеваний. Приобретенная резистентность к неинфекционным агентам формируется с помощью тренировок к гипоксии, физическим нагрузкам, низким температурам (закаливание) и т.д.

Специфическая резистентность это устойчивость организма квоздействию какого-то одного агента . Например, возникновение иммунитета после выздоровления от таких инфекционных заболеваний как оспа, чума, корь. К этому же виду резистентности относятся и повышенная устойчивость организма после вакцинации.

Неспецифическая резистентность это устойчивость организма квоздействию сразу нескольких агентов . Конечно же, невозможно достичь резистентности ко всему разнообразию факторов внешней и внутренней среды – они различны по своей природе. Однако, если патогенетический фактор встречается при очень многих заболеваниях (вызванных различными этологическими факторами) и его действие при этом играет в их патогенезе одну из ведущих ролей, то резистентность к нему проявляется к большему количеству воздействий. Например, искусственная адаптация к гипоксии значительно облегчает течение большой группы патологии, так как она нередко определяет их течение и исход. Причем, в отдельных случаях, достигнутым таким приемом резистентность, может препятствовать развитию того или иного заболевания, патологического процесса.

Активная резистентность это устойчивость организма, обеспечивающаяся включением защитно-приспособительными механизмами вответ на воздействие агентов . Это может быть активация фагоцитоза, выработка антител, эмиграция лейкоцитов и др. Устойчивость к гипоксии достигается путем увеличения вентиляции легких, ускорения кровотока, повышения количества в крови эритроцитов и др.

Пассивная резистентность это устойчивость организма связаная с анатомо-физиологическими его особенностями, т.е. она не предусматривает активацию реакций защитного плана при воздействие агентов . Данная резистеньность обеспечивается барьерными системами организма (кожа, слизистая, гистогематические и гематолимфатические барьеры), наличием бактерицидных факторов (соляной кислотой в желудке, лизоцима в слюне), наследственным иммунитетом и др.

А.Ш. Зайчик, Л.П. Чурилов (1999) вместо термина «пассивная резистентность » предлагают для обозначения выше описанного состояний организма использовать термин «переносимость ».

Существует и несколько другая трактовка «переносимости ». Во время действия двух и более чрезвычайных (экстремальных) факторов, организм нередко отвечает лишь на один из них, и не реагирует на действие других. Например, животные, подвергшиеся действию радиального ускорения, переносят смертельную дозу стрихнина, у них отмечается больший процент выживаемости в условиях гипоксии и перегревания. При шоке резко снижается ответ организма на механическое воздействие. Такая форма реагирования, по мнению И.А. Аршавского, не может быть названа резистентностью , поскольку в этих условиях организм не в состоянии активно противостоять действию других агентов среды, сохраняя гемостаз, он лишь переносит воздействия в состояние глубокогоугнетения жизнедеятельности . Такое состояния И.А. Аршавский и предложил называть «переносимостью» .

Общая резистентность это устойчивость организма как целого, к действию того или иного агента . Например, общая резистентность к кислородному голоданию обеспечивает функционирование его органов и систем за счет различных защитно-приспособительных механизмов, активируемых на различных уровнях организации живых систем. Это и системные реакции – увеличение активности дыхательной и сердечно-сосудистой систем, это и субклеточные изменения – увеличения объема и количества митохондрий и т.д. Все это обеспечивает защиту организма в целом.

Местная резистентность это устойчивость отдельных органов и тканей организма к воздействию различных агентов . Устойчивость слизистых оболочек желудка и 12-ти перстной кишки к язвообразованию определяется состоянием слизисто-бикарбонатного барьера данных органов, состоянием микроциркуляции, регенераторной активностью их эпителия и т.д. Доступность токсинов в ЦНС во многом определяется состоянием гематоэнцефалического барьера, он для многих токсических веществ и микроорганизмов непроходим.

Многообразие форм резистетности демонстрирует значительные возможности организма в защите от воздействия факторов внешней и внутренней среды. У индивидов, как правило, можно отметить наличие нескольких видов реактивности . К примеру, больному ввели антитела к определенному виду микроорганизма (стафилококку) – формы резистенотности при этом следующие: вторичная, общая, специфическая, пассивная.

5 .4.Взаимосвязь между реактивностью и резистентностью.

В общебиологическом смысле, реактивность есть выражение индивидуальной меры приспособительных возможностей живых систем, всегоспектра реакций , свойственных организму как целому . Она не сводится к количественному понятию и характеризуется определенным набором адаптивных реакций , возможным для данного организма («что имею, то и отдаю»), т.е. имеет качественный характер.

Резистентность уже , приложима к взаимодействию с конкретным патогенным агентом и носит количественный характер, т.е. характеризуется определенным набором защитных реакций от этого водействия и обеспечивающих сохранение гомеостаза, а при заболевании, способствующих возвращению к нему .

Возможность организма противостоять повреждающим воздействиям среды обитания, в конечном счете, определяется его реакцией как единого целого, и поэтому, все механизмы , обеспечивающие резистентность являются одним из основных следствий и выражений реактивности . Нередко реактивность и резистентность изменяются однонаправлено, например – иммунитет при гиперэргической реактивности во время туберкулезного процесса (высокая резистентность на фоне гиперэргии). Однако, полностью их отождествлять не следует, при том же туберкулезе выраженная устойчивость (иммунитет) может наблюдаться и при гипэргическом развитие патологии. Резистентность может снижаться на фоне гиперэргической формы реактивности, что отмечается, например, во время аллергии; и наоборот – чем ниже реактивность, тем выше резистентность. Последнее положение наиболее наглядно демонстрируется у зимне-спящих животных. У них, во время зимней спячки, многие механизмы (проявления) реактивности значительно снижены. Но при этом (снижение реактивности) резистентность к самым разнообразным агентам (гипотермии, гипоксии, отравлениям, инфекциям) значительно повышена.

Дело в том, что выделяющиеся во время спячки опиоидные пептиды (дерморфин) тормозят активность гипоталямо-гипофизарной и других систем мозга. Отсюда, угнетение активности высших вегетативных отделов ЦНС (симпатики) способствует снижению интенсивности обмена веществ, значительно сокращается потребление кислорода тканями, что и позволяет этим животным переносить, например, более значительную гипотермию, чем бодрствующие особи.

Находящиеся в активном состоянии индивиды, активно реагируют на гипотермию - наблюдается значительное напряжение высших вегетативных и нейроэндокринных центров с активацией работ периферической эндокринных желез (надпочечников, щитовидной железы). Отмечается диаметральное противоположный эффект – интенсивность метаболизма возрастает, потребность в кислороде тканями увеличивается, что приводит очень быстро к истощению энергетических и пластических ресурсов организма. Кроме того, одновременная стимуляция функции щитовидной железы и коры надпочечников вызывает определенный антагонизм в конечном механизме действия их гормонов. На уровне клеточных процессов эффект глюкокортикоидов и тиреодных гормонов противоположный (тиреодные гормоны разобщают окислительное фосфорилирование, а глюкокортикоиды его усиливают). Функция коры надпочечников тормозится тиреоидные гормонами. Такая активная, но энергоемкая (энергозатратная) и противоречивая реактивность не обеспечивает должной резистентности к холоду. Ректальная температура у зимне спящих животных может достигать + 5 0 С без каких либо серьезных последствий для организма, смерть же у бодрствующих животных нередко наступает при ректальной температуре + 28 0 С.

Используя искусственную гибернацию (холодовой наркоз) хирурги значительно повышают резистентность организма при длительных и обширных оперативных вмешательствах. Барбитуратовая кома (характеризующаяся угнетением ответов ретикулярной формации, промежуточного мозга и стволовых структур) считается энергетически щадящей для мозга и увеличивает выживаемость в экстремальных состояниях. На этом основании, в анестезиологии и реаниматологии ее применяют для лечения других, более опасных видов комы. Не следует забывать известное высказывание И.П. Павлова о целебной роли сна, как охранительного торможения.

Таким образом: первое - высшая степень устойчивости организма может достигаться при различной интенсивности реагирования на воздействие агентов. И второе – гиперэргическая форма реактивности не всегда приводит к значительной резистентности, т.е. высокая интенсивность ответа организма не во всех случаях выгодна и даже опасна .

Естественно, сразу же возникает вопрос, почему так происходит? Ведь реактивность в конечном итоге направлена на защиту организма от воздействия на него патогенных агентов, а при возникновении болезни – на ликвидацию патологического процесса, заболевания. Мы неоднократно подчеркивали, что защитные, адаптивные реакции организма несут в себе скрытую, а иногда и явную угрозу дальнейшего повреждения, которое может способствовать утяжелению патологию (см. с. 22, 68, 69). Закономерное реагирование организма иногда приводит даже к его гибели: одним из механизмов защиты при наркомании является повышение активности парасимпатической нервной системы, что формирует физическую зависимость к наркотику или, чрезмерная гипертрофия миокарда заканчивается кардиосклерозом. Трудно четко отдифференцировать их положительное и отрицательное назначение. Например, когда заканчивается защитная роль централизации кровообращения при острой гипоксии и где начало ее негативного воздействия на органы и ткани организма, каковы критерии положительного и отрицательного назначения отека, развивающегося при воспалении? Ответить на эти вопросы мы попытаемся в следующем разделе, посвященному рассмотрению основного вопроса патофизиологии – о соотношении полома и защиты в болезни.

Резистентность организма – (от лат. resistere – сопротивляться ) – это свойство организма противостоять действию патогенных факторов или невосприимчивость к воздействиям повреждающих факторов внешней и внутренней среды . Другими словами, резистентность – это устойчивость организма к действию патогенных факторов.

В ходе эволюции организм приобрел определенные приспособительные механизмы, обеспечивающие его существование в условиях постоянного взаимодействия с окружающей средой. Отсутствие или недостаточность этих механизмов могло бы вызвать не только нарушение жизнедеятельности, но и гибели индивида.

Резистентность организма проявляется в различных формах.

Первичная (естественная, наследственная ) резистентност ь – это устойчивость организма к действию факторов, определяемая особенностью строения и функции органов и тканей, передающихся по наследству . Например, кожа и слизистые оболочки представляют собой структуры, которая препятствуют проникновению микроорганизмов и многих токсических веществ в организм. Они осуществляют барьерную функцию. Подкожно-жировая клетчатка, обладая плохой теплопроводимостью, способствует сохранение эндогенного тепла. Ткани опорно-двигательного аппарата (кости, связки) обеспечивают значительное сопротивление к деформации при механических повреждениях.

Первичная резистентность может быть абсолютной и относительной :

    абсолютная первичная резистентность – классическим примером является наследственная устойчивость к ряду инфекционных агентов («наследственный иммунитет»). Его наличие объясняется молекулярными особенностями организма, которые не могут служить средой обитания для того или иного микроорганизма, или отсутствуют клеточные рецепторы, необходимые для фиксации микроорганизма, т.е. существуют рецепторная некомплементарность между молекулами агрессии и их молекулярными мишенями. Кроме того, в клетках может не быть веществ, необходимых для существования микроорганизмов, либо имеются в них продукты, мешающие развитию вирусов, бактерий. Благодаря абсолютной резистентности человеческий организм не поражается многими инфекционными заболеваниями животных (абсолютная невосприимчивость человека к чуме рогатого скота), и наоборот – животные не восприимчивы к большой группе инфекционной патологии людей (гонорея – болезнь только человек).

    относительная первичная резистентность – при определенных условиях механизмы абсолютной резистентности могут изменяться и тогда организм способен взаимодействовать с раннее «игнорируемым» им агентом. К примеру, домашние птицы (куры) в обычных условиях не болеют сибирской язвой, на фоне гипотермии (охлаждения) удается вызвать данное заболевание. Верблюды, невосприимчивы к чуме, заболевают ее после сильного утомления.

Вторичная (приобретенная, измененная) резистентность – это устойчивость организма, сформировавшаяся после предварительного воздействия на него определенных факторов. Примером может служить развитие иммунитета после перенесенных инфекционных заболеваний. Приобретенная резистентность к неинфекционным агентам формируется с помощью тренировок к гипоксии, физическим нагрузкам, низким температурам (закаливание) и т.д.

Специфическая резистентность это устойчивость организма к воздействию какого-то одного агента . Например, возникновение иммунитета после выздоровления от таких инфекционных заболеваний как оспа, чума, корь. К этому же виду резистентности относятся и повышенная устойчивость организма после вакцинации.

Неспецифическая резистентность это устойчивость организма к воздействию сразу нескольких агентов . Конечно же, невозможно достичь резистентности ко всему разнообразию факторов внешней и внутренней среды – они различны по своей природе. Однако, если патогенетический фактор встречается при очень многих заболеваниях (вызванных различными этологическими факторами) и его действие при этом играет в их патогенезе одну из ведущих ролей, то резистентность к нему проявляется к большему количеству воздействий. Например, искусственная адаптация к гипоксии значительно облегчает течение большой группы патологии, так как она нередко определяет их течение и исход. Причем, в отдельных случаях, достигнутым таким приемом резистентность, может препятствовать развитию того или иного заболевания, патологического процесса.

Активная резистентность это устойчивость организма, обеспечивающаяся включением защитно-приспособительными механизмами в ответ на воздействие агентов . Это может быть активация фагоцитоза, выработка антител, эмиграция лейкоцитов и др. Устойчивость к гипоксии достигается путем увеличения вентиляции легких, ускорения кровотока, повышения количества в крови эритроцитов и др.

Пассивная резистентность это устойчивость организма связаная с анатомо-физиологическими его особенностями, т.е. она не предусматривает активацию реакций защитного плана при воздействие агентов . Данная резистеньность обеспечивается барьерными системами организма (кожа, слизистая, гистогематические и гематолимфатические барьеры), наличием бактерицидных факторов (соляной кислотой в желудке, лизоцима в слюне), наследственным иммунитетом и др.

А.Ш. Зайчик, Л.П. Чурилов (1999) вместо термина «пассивная резистентность » предлагают для обозначения выше описанного состояний организма использовать термин «переносимость ».

Существует и несколько другая трактовка «переносимости ». Во время действия двух и более чрезвычайных (экстремальных) факторов, организм нередко отвечает лишь на один из них, и не реагирует на действие других. Например, животные, подвергшиеся действию радиального ускорения, переносят смертельную дозу стрихнина, у них отмечается больший процент выживаемости в условиях гипоксии и перегревания. При шоке резко снижается ответ организма на механическое воздействие. Такая форма реагирования, по мнению И.А. Аршавского, не может быть названа резистентностью , поскольку в этих условиях организм не в состоянии активно противостоять действию других агентов среды, сохраняя гемостаз, он лишь переносит воздействия в состояние глубокого угнетения жизнедеятельности . Такое состояния И.А. Аршавский и предложил называть «переносимостью» .

Общая резистентность это устойчивость организма как целого, к действию того или иного агента . Например, общая резистентность к кислородному голоданию обеспечивает функционирование его органов и систем за счет различных защитно-приспособительных механизмов, активируемых на различных уровнях организации живых систем. Это и системные реакции – увеличение активности дыхательной и сердечно-сосудистой систем, это и субклеточные изменения – увеличения объема и количества митохондрий и т.д. Все это обеспечивает защиту организма в целом.

Местная резистентность это устойчивость отдельных органов и тканей организма к воздействию различных агентов . Устойчивость слизистых оболочек желудка и 12-ти перстной кишки к язвообразованию определяется состоянием слизисто-бикарбонатного барьера данных органов, состоянием микроциркуляции, регенераторной активностью их эпителия и т.д. Доступность токсинов в ЦНС во многом определяется состоянием гематоэнцефалического барьера, он для многих токсических веществ и микроорганизмов непроходим.

Многообразие форм резистетности демонстрирует значительные возможности организма в защите от воздействия факторов внешней и внутренней среды. У индивидов, как правило, можно отметить наличие нескольких видов реактивности . К примеру, больному ввели антитела к определенному виду микроорганизма (стафилококку) – формы резистенотности при этом следующие: вторичная, общая, специфическая, пассивная.

Фазовый характер адаптации
Процесс адаптации носит фазовый характер. Первая фаза - начальная, характеризуется тем, что при первичном воздействии внешнего, необычного по силе или длительности фактора возникают генерализованные физиологические реакции, в несколько раз превышающие потребности организма. Эти реакции протекают некоординированно, с большим напряжением органов и систем. Поэтому их функциональный резерв скоро истощается, а приспособительный эффект низкий, что свидетельствует о «несовершенстве» данной формы адаптации. Полагают, что адаптационные реакции на начальном этапе протекают на основе готовых физиологических механизмов. При этом программы поддержания гомеостаза могут быть врожденными или приобретенными (в процессе предшествующего индивидуального опыта) и могут существовать на уровне клеток, тканей, фиксированных связей в подкорковых образованиях и, наконец, в коре больших полушарий благодаря ее способности образовывать временные связи.
Примером проявления первой фазы адаптации может служить рост легочной вентиляции и минутного объема крови при гипоксическом воздействии и т. п. Интенсификация деятельности висцеральных систем в этот период происходит под влиянием нейрогенных и гуморальных факторов. Любой агент вызывает активизацию в нервной системе гипоталамических центров. В гипоталамусе информация переключается на эфферентные пути, стимулирующие симпатоадреналовую и гипофизарно-надпочечниковую системы. В результате происходит усиленное выделение гормонов: адреналина, норадреналина и глюкокортикоидов. Вместе с тем возникающие на начальном этапе адаптации нарушения в дифференцировке процессов возбуждения и торможения в гипоталамусе приводят к дезинтеграции регуляторных механизмов. Это сопровождается сбоями в функционировании дыхательной, сердечно-сосудистой и других вегетативных систем.
На клеточном уровне в первой фазе адаптации происходит усиление процессов катаболизма. Благодаря этому поток энергетических субстратов, кислорода и строительного материала поступает в рабочие органы.
Вторая фаза - переходная к устойчивой адаптации. Она проявляется в условиях сильного или длительного влияния возмущающего фактора, либо комплексного воздействия. При этом возникает ситуация, когда имеющиеся физиологические механизмы не могут обеспечить должного приспособления к среде. Необходимо создание новой системы, создающей на основе элементов старых программ новые связи. Так, при действии недостатка кислорода создается функциональная система на основе кислородтранспортных систем.
Основным местом образования новых адаптационных программ у человека является кора больших полушарий при участии таламических и гипоталамических структур. Таламус предоставляет при этом базовую информацию. Кора больших полушарий благодаря способности к интеграции информации, образованию временных связей в форме условных рефлексов и наличию сложного социально обусловленного поведенческого компонента формирует эту программу. Гипоталамус отвечает за реализацию вегетативного компонента программы, заданной корой. Он осуществляет ее запуск и коррекцию. Следует отметить, что вновь образованная функциональная система непрочна. Она может быть «стерта» торможением, вызванным образованием других доминант, либо угашена при неподкреплении.
Адаптивные изменения во второй фазе затрагивают все уровни организма.
. На клеточно-молекулярном уровне в основном происходят ферментативные сдвиги, которые обеспечивают возможность функционирования клетки при более широком диапазоне колебаний биологических констант.
. Динамика биохимических реакций может служить причиной изменения морфологических структур клетки, определяющих характер ее работы, например клеточных мембран.
. На уровне ткани проявляются дополнительные структурно-морфологические и физиологические механизмы. Структурно-морфологические изменения обеспечивают протекание необходимых физиологических реакций. Так, в условиях высокогорья в эритроцитах человека отмечено увеличение содержания фетального гемоглобина.
. На уровне органа или физиологической системы новые механизмы могут действовать по принципу замещения. Если какая-либо функция не обеспечивает поддержание гомеостаза, она замещается более адекватной. Так, увеличение легочной вентиляции при нагрузках может происходить как за счет частоты, так и за счет глубины дыхания. Второй вариант при адаптации является для организма более выгодным. Среди физиологических механизмов можно привести изменение показателей активности центральной нервной системы.
. На организменном уровне либо действует принцип замещения, либо осуществляется подключение дополнительных функций, что расширяет функциональные возможности организма. Последнее происходит благодаря нейрогуморальным влияниям на трофику органов и тканей.
Третья фаза - фаза устойчивой или долговременной адаптации. Основным условием наступления этого этапа адаптации является многократное либо длительное действие на организм факторов, мобилизующих вновь созданную функциональную систему. Организм переходит на новый уровень функционирования. Он начинает работать в более экономном режиме за счет уменьшения затрат энергии на неадекватные реакции. На данном этапе преобладают биохимические процессы на тканевом уровне. Накапливающиеся в клетках под влиянием новых факторов среды продукты распада становятся стимуляторами реакций анаболизма. В результате перестройки клеточного обмена процессы анаболизма начинают преобладать над катаболическими. Происходит активный синтез АТФ из продуктов ее распада.
Метаболиты ускоряют процесс транскрипции РНК на структурных генах ДНК. Увеличение количества информационной РНК вызывает активацию трансляции, приводящую к интенсификации синтеза белковых молекул. Таким образом, усиленное функционирование органов и систем оказывает влияние на генетический аппарат ядер клетки. Это приводит к формированию структурных изменений, которые увеличивают мощность систем, ответственных за адаптацию. Именно этот «структурный след» является основой долговременной адаптации.

Признаки достижения адаптации
По своей физиологической и биохимической сути адаптация - это качественно новое состояние, характеризующееся повышенной устойчивостью организма к экстремальным воздействиям. Главная черта адаптированной системы - экономичность функционирования, т. е. рациональное использование энергии. На уровне целостного организма проявлением адаптационной перестройки является совершенствование функционирования нервных и гуморальных регуляторных механизмов. В нервной системе повышается сила и лабильность процессов возбуждения и торможения, улучшается координация нервных процессов, совершенствуются межорганные взаимодействия. Устанавливается более четкая взаимосвязь в деятельности эндокринных желез. Усиленно действуют «гормоны адаптации» - глюкокортикоиды и катехоламины.
Важным показателем адаптационной перестройки организма является повышение его защитных свойств и способность осуществлять быструю и эффективную мобилизацию иммунных систем. Следует отметить, что при одних и тех же адаптационных факторах и одних и тех же результатах адаптации организм использует индивидуальные стратегии адаптации.

Оценка эффективности адаптационных процессов
С целью определения эффективности адаптационных процессов разработаны определенные критерии и методы диагностики функциональных состояний организма. Р.М. Баевским (1981) предложено учитывать пять основных критериев: 1. Уровень функционирования физиологических систем. 2. Степень напряжения регуляторных механизмов. 3. Функциональный резерв. 4. Степень компенсации. 5. Уравновешенность элементов функциональной системы.
Методы диагностики функциональных состояний направлены на оценку каждого из перечисленных критериев. 1. Уровень функционирования отдельных физиологических систем определяется традиционными физиологическими методами. 2. Степень напряжения регуляторных механизмов исследуется: косвенно методами математического анализа ритма сердца, путем изучения минерало-секреторной функции слюнных желез и суточной периодики физиологических функций. 3. Для оценки функционального резерва наряду с известными функционально-нагрузочными пробами изучают «цену адаптации», которая тем ниже, чем выше функциональный резерв. 4. Степень компенсации можно определить по соотношению специфических и неспецифических компонентов стрессорной реакции. 5. Для оценки уравновешенности элементов функциональной системы важное значение имеют такие математические методы, как корреляционный и регрессионный анализ, моделирование методами пространства состояний, системный подход. В настоящее время разрабатываются измерительно-вычислительные комплексы, позволяющие осуществлять динамический контроль за функциональным состоянием организма и прогнозирование его адаптационных возможностей.

Нарушение механизмов адаптации
Нарушение процесса адаптации носит поэтапный характер:
. Начальный этап - это состояние функционального напряжения механизмов адаптации. Наиболее характерным его признаком является высокий уровень функционирования, который обеспечивается за счет интенсивного или длительного напряжения регуляторных систем. Из-за этого существует постоянная опасность развития явлений недостаточности.
. Более поздний этап пограничной зоны - состояние неудовлетворительной адаптации. Для него характерно уменьшение уровня функционирования биосистемы, рассогласование отдельных ее элементов, развитие утомления и переутомления. Состояние неудовлетворительной адаптации является активным приспособительным процессом. Организм пытается приспособиться к чрезмерным для него условиям существования путем изменения функциональной активности отдельных систем и соответствующим напряжением регуляторных механизмов (увеличение «платы» за адаптацию). Однако вследствие развития недостаточности нарушения распространяются на энергетические и метаболические процессы, и оптимальный режим функционирования не может быть обеспечен.
. Состояние срыва адаптации (полома адаптационных механизмов) может проявляться в двух формах: предболезни и болезни.
. Предболезнь характеризуется проявлением начальных признаков заболеваний. Это состояние содержит информацию о локализации вероятных патологических изменений. Данная стадия обратима, поскольку наблюдаемые отклонения носят функциональный характер и не сопровождаются существенной анатомо-морфологической перестройкой.
. Ведущим признаком болезни является ограничение приспособительных возможностей организма.
Недостаточность общих адаптационных механизмов при болезни дополняется развитием патологических синдромов. Последние связаны с анатомо-морфологическими изменениями, что свидетельствует о возникновении очагов локального изнашивания структур. Несмотря на конкретную анатомо-морфологическую локализацию, болезнь остается реакцией целостного организма. Она сопровождается включением компенсаторных реакций, представляющих физиологическую меру защиты организма против болезни.

Методы увеличения эффективности адаптации
Они могут быть неспецифическими и специфическими. Неспецифические методы увеличения эффективности адаптации: активный отдых, закаливание, оптимальные (средние) физические нагрузки, адаптогены и терапевтические дозировки разнообразных курортных факторов, которые способны повысить неспецифическую резистентность, нормализовать деятельность основных систем организма и тем самым увеличить продолжительность жизни.
Рассмотрим механизм действия неспецифических методов на примере адаптогенов. Адаптогены - это средства, осуществляющие фармакологическую регуляцию адаптивных процессов организма, в результате чего активизируются функции органов и систем, стимулируются защитные силы организма, повышается сопротивляемость к неблагоприятным внешним факторам.
Увеличение эффективности адаптации может достигаться различными путями: с помощью стимуляторов-допингов либо тонизирующих средств.
. Стимуляторы, возбуждающе влияя на определенные структуры центральной нервной системы, активизируют метаболические процессы в органах и тканях. При этом усиливаются процессы катаболизма. Действие данных веществ проявляется быстро, но оно непродолжительно, поскольку сопровождается истощением.
. Применение тонизирующих средств приводит к преобладанию анаболических процессов, сущность которых заключается в синтезе структурных веществ и богатых энергией соединений. Эти вещества предупреждают нарушения энергетических и пластических процессов в тканях, в результате происходит мобилизация защитных сил организма и повышается его резистентность к экстремальным факторам. Механизм действия адаптогенов: они, во-первых, могут действовать на внеклеточные регуляторные системы - ЦНС и эндокринную систему, а также непосредственно взаимодействовать с клеточными рецепторами разного типа, модулировать их чувствительность к действию нейромедиаторов и гормонов). Наряду с этим адаптогены способны непосредственно воздействовать на биомембраны влияя на их структуру, взаимодействие основных мембранных компонентов - белков и липидов, повышая стабильность мембран, изменяя их избирательную проницаемость и активность связанных с ними ферментов. Адаптогены могут, проникая в клетку, непосредственно активизировать различные внутриклеточные системы. По своему происхождению адаптогены могут быть разделены на две группы: природные и синтетические.
Источниками природных адаптогенов являются наземные и водные растения, животные и микроорганизмы. К наиболее важным адаптогенам растительного происхождения относятся женьшень, элеутерококк, лимонник китайский, аралия маньчжурская, заманиха и др. Особой разновидностью адаптогенов являются биостимуляторы. Это экстракт из листьев алоэ, сок из стеблей каланхоэ, пелоидин, отгоны лиманной и иловой лечебных грязей, торфот (отгон торфа), гумизоль (раствор фракций гуминовых кислот) и т. п. К препаратам животного происхождения относятся: пантокрин, получаемый из пантов марала; рантарин- из пантов северного оленя, апилак - из пчелиного маточного молочка. Многие эффективные синтетические адаптогены получены из природных продуктов (нефти, угля и т. п.). Высокой адаптогенной активностью обладают витамины. Специфические методы увеличения эффективности адаптации. Эти методы основаны на повышении резистентности организма к какому-либо определенному фактору среды: холоду, высокой температуре, гипоксии и т. п.
Рассмотрим некоторые специфические методы на примере адаптации к гипоксии.
. Использование адаптации в условиях высокогорья для повышения адаптационных резервов организма. Пребывание в горах увеличивает «высотный потолок», т. е. устойчивость (резистентность) к острой гипоксии. Отмечены различные типы индивидуальной адаптации к гипоксии, в том числе и диаметрально противоположные, направленные в конечном счете как на экономизацию, так и на гиперфункцию сердечно-сосудистой и дыхательной систем.
. Применение различных режимов барокамерной гипоксической тренировки является одним из наиболее доступных методов повышения высотной устойчивости. При этом доказано, что адаптационные эффекты после тренировки в горах и в барокамере при одинаковой величине гипоксического стимула и равной экспозиции весьма близки. В. Б. Малкиным и др. (1977, 1979, 1981, 1983) предложен метод ускоренной адаптации к гипоксии, позволяющий за минимальный срок повысить высотную резистентность. Этот метод получил название экспресс-тренировки. Он включает многократные ступенчатые барокамерные подъемы с «площадками» на различных высотах и спуск до «земли». Такие циклы повторяют несколько раз.
. Принципиально новым режимом гипоксической тренировки следует признать барокамерную адаптацию в условиях сна. Факт формирования тренировочного эффекта во время сна имеет важное теоретическое значение. Он заставляет по-новому взглянуть на проблему адаптации, механизмы формирования которой традиционно и не всегда правомерно связываются лишь с активным бодрствующим состоянием организма.
. Использование фармакологических средств предупреждения горной болезни с учетом того, что в ее патогенезе ведущая роль принадлежит нарушениям кислотно-щелочного равновесия в крови и тканях и связанным с ними изменением мембранной проницаемости. Прием лекарственных препаратов, нормализующих кислотно-щелочное равновесие, должен устранять и расстройства сна в гипоксических условиях, тем самым способствуя формированию адаптационного эффекта. Таким препаратом является диакарб из класса ингибиторов карбоангидразы.
. Принцип интервальной гипоксической тренировки при дыхании газовой смесью, содержащей от 10 до 15 % кислорода, используется для увеличения адаптационного потенциала человека и для повышения физических возможностей, а также для лечения различных заболеваний, таких как лучевая болезнь, ишемическая болезнь сердца, стенокардия и т. д.

Изобретение относится к медицине и может быть использовано в случаях, когда необходимо повысить резистентность организма к инфекции при онкологических и аутоиммунных заболеваниях, для ускорения восстановления нормального функционирования органов и тканей, пораженных в результате побочного действия лекарств, для повышения сопротивляемости к токсическим веществам. Сущность изобретения состоит в том, что назначают аскорбиген в дозе 10 мг/кг, в течение 5-30 дней. Способ обеспечивает повышение неспецифической резистентности к инфекционным и токсическим агентам, позволяет уменьшить риск развития тяжелого заболевания и ускорить выздоровление больных. 3 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к медицине и может быть использовано во всех случаях, когда необходимо повысить резистентность организма: для предупреждения инфекций и терапии больных, страдающих инфекционными и воспалительными заболеваниями; для химиопрофилактики канцерогенеза и терапии онкологических больных, для улучшения результатов терапии больных, страдающих аутоиммунными заболеваниями; для ускорения восстановления нормального функционирования органов и тканей (кроветворение, иммунореактивность, желудочно-кишечный тракт, волосяной покров), пораженных в результате побочного действия лекарств; для повышения сопротивляемости к токсическим веществам.

Известно, что в настоящее время сопротивляемость многих людей к инфекциям, онкологическим заболеваниям и токсическим веществам снижена. Специфические методы повышения сопротивляемости организма, такие как вакцинация, часто не эффективны. Поэтому актуальной задачей является поиск препаратов, неспецифически повышающих резистентность организма или потенцирующих действие специфических стимуляторов. Результаты терапии многих пациентов, страдающих инфекционными и онкологическими заболеваниями, с помощью имеющихся средств часто являются неудовлетворительными, в частности, в связи с устойчивостью к лекарствам и защитным силам организма патогенных микроорганизмов и опухолевых клеток, имеющей различную природу и интенсивность (врожденная, приобретенная, частичная, полная, к одному, нескольким или всем существующим препаратам). В связи с этим актуальной является задача разработки препаратов, потенцирующих действие имеющихся лекарств, помогающих последним проявлять свою активность.

Наконец, при использовании практически всех противоинфекционных и особенно противоопухолевых препаратов могут развиваться побочные эффекты различной степени тяжести. Так, побочные эффекты противоопухолевых цитостатиков составляют самую большую часть всех ятрогенных заболеваний. Например, эффективный цитостатик ЦИКЛОФОСФАМИД, широко применяющийся самостоятельно и в комбинациях с другими лекарствами и облучением для лечения пациентов, страдающих онкологическими, аутоиммунными и воспалительными заболеваниями, часто вызывает нейтропению, иммунодепрессию, поражение слизистой оболочки желудочно-кишечного тракта и облысение . В результате этого понижается противоинфекционная сопротивляемость и резко увеличивается риск развития инфекционных осложнений, часто в результате проникновения патогенных микроорганизмов из просвета кишки в кровь . В настоящее время не существует эффективных препаратов для профилактики и лечения вызванного радиохимиотерапией поражения слизистой оболочки желудочно-кишечного тракта (мукозит) . Разработка таких препаратов необходима для улучшения результатов и безопасности лечения цитостатиками.

Известен способ повышения неспецифической резистентности организма путем введения ОЛЕКСИНА. Этот препарат представляет собой очищенный водный экстракт из листьев персика. Его активность связывают с веществами фенольной структуры, в частности флавоноидами (Добрица В.П. и др. 2001). Недостатком способа является часто развивающаяся индивидуальная непереносимость. Нет сведений о его воздействии на токсическую алопецию и иммунные клетки кишечника. Фармакокинетика ОЛЕКСИНА не может быть полностью охарактеризована, а действие на иммунологический статус может приводить к неожиданным эффектам.

Сущность изобретения состоит в том, что назначают аскорбиген в дозе 10 мг/кг, в течение 5-30 дней.

Аскорбиген является одним из наиболее важных соединений, образующихся при обработке растений семейства крестоцветных. К семейству крестоцветных (Cruciferous) относятся все виды кочанной капусты, брюссельская и цветная капуста, брокколи, репа, брюква, редиска и другие овощи. Растения этого семейства интенсивно используются в питании человека. Эпидемиологические и экспериментальные данные, в частности, указывают на то, что недостаток этих овощей в пище способствует развитию заболеваний, в частности некоторых видов рака, а присутствие в достаточном количестве, наоборот, обеспечивает антиканцерогенные свойства .

Аскорбиген, 2-С-(индол-3-ил)метил--L-ксило-гекс-3-улофуранозоно-1,4-лактон получают синтетически из L-аскорбиновой кислоты и индолил-3-карбинола. Это индивидуальное оптически активное соединение (Муханов В.И. и др., 1984). Синтетический продукт по данным ЯМР, ВЭЖХ и ТСХ полностью идентичен природному.

Существенными признаками предложения являются режим и параметры способа. В специальных исследованиях показано, что увеличение дозы приводит к токсическому эффекту, а уменьшение дозы приводит к снижению заявленного эффекта. Укорочение сроков введения препарата снижает эффективность воздействия, а удлинение сроков введения не приводит к усилению эффективности.

Ниже приводятся результаты исследований, подтверждающие преимущества заявленного способа.

1. Влияние аскорбигена на клетки Панета, участвующие в формировании врожденного иммунитета, и защитную функцию слизистой оболочки тонкой кишки.

Материалы и методы:

Исследование проведено на 30 мышах С 57 В1 и на 20 мышах-гибридах F 1 (СВАxС 57 В1) самцах массой тела 20-22 грамма.

Животные получали аскорбиген в разовых дозах от 10 до 1000 мг/кг в желудок в течение 14 дней. По окончании курса введений животных забивали. Участки тонкой кишки фиксировали в 10%-ном растворе нейтрального формалина, по стандартной методике заливали в парафин, короткие серии срезов окрашивали гематоксилин-эозином.

Результаты:

На первые сутки после 14-кратного введения препарата в слизистой оболочке тонкой кишки было найдено резкое увеличение числа клеток Панета. В части желез они располагались не только в области дна железы, но и выполняли полностью крипту вплоть до шейки железы. Если в норме соотношение клеток Панета и камбиальных элементов цилиндрического эпителия составляет 1:1, то при применении аскорбигена оно увеличивается до 2:1.

Количество эозинофильных гранул в клетках Панета и их размеры также резко увеличивались. Просвет крипты железы был расширен и заполнен гранулами, выделившимися из клеток Панета путем эндоцитоза.

2. Влияние аскорбигена на процессы репарации повреждений слизистой оболочки тонкой кишки, вызванных введением ЦИКЛОФОСФАМИДА.

Материалы и методы:

Исследование проведено на 32 мышах-гибридах F 1 (CBAxC 57 B1) самцах массой тела 20-22 грамма. Животные были разбиты на 4 группы, каждая из которых содержала по 8 мышей:

2. Группа мышей, получавших аскорбиген per os в дозе 100 мг/кг в течение 14 дней.

3. Группа положительного контроля, в которой животные получали ЦФ однократно внутрибрюшинно в дозе 200 мг/кг.

4. Группа мышей, которым ЦФ вводили однократно внутрибрюшинно в дозе 200 мг/кг (МПД), а через 24 часа начинали пероральное введение аскорбигена в разовой дозе 100 мг/кг в течение 14 дней.

На первый день после 14-дневного курса введений аскорбигена (16 день эксперимента) животные в опытных и контрольных группах были забиты, участки тонкой кишки фиксировали в 10%-ном нейтральном формалине, заливали в парафин, срезы окрашивали гематоксилин-эозином.

Результаты:

В зонах регенерации, которые встречаются наряду с очагами деструкции, число клеток Пакета не отличалось от нормы. Они содержали небольшое количество мелких эозинофильных гранул.

14-дневное введение аскорбигена в разовой дозе 100 мг/кг per os после однократного внутрибрюшинного введения ЦФ в дозе 200 мг/кг приводило на 16 сутки эксперимента к практически полному восстановлению структуры ворсинок и собственной пластинки слизистой оболочки. Их повреждение выражалось лишь в наличии небольших очагов отека. На отдельных ворсинках в области верхушки сохранялись зоны некроза цилиндрического эпителия.

В области крипт сохранились единичные кисты. Клетки Пакета по морфологическому строению и количеству не отличались от интактного контроля. В части желез встречались клетки Панета в состоянии вакуольной дистрофии.

3. Влияние аскорбигена на процессы репарации повреждений структуры лимфоидных органов, вызванных введением ЦИКЛОФОСФАМИДА.

Материалы и методы:

Исследование проведено на 24 мышах-гибридах F 1 (СВАxС 57 В1) самцах массой тела 20-22 грамма. Животные были разбиты на 3 группы, каждая из которых содержала по 8 мышей:

1. Группа интактного контроля.

2. Группа положительного контроля, в которой животные получали ЦФ однократно внутрибрюшинно в дозе 200 мг/кг.

3. Группа мышей, которым ЦФ вводили однократно внутрибрюшинно в дозе 200 мг/кг (МПД), а через 24 часа начинали пероральное введение аскорбигена в разовой дозе 100 мг/кг в течение 14 дней.

Результаты:

Селезенка.

Лимфоузел.

4. Влияние АСКОРБИГЕНА на лейкоцитопению у мышей, вызванную применением ЦИКЛОФОСФАМИДА.

Материалы и методы.

Исследования проведены на мышах-гибридах F 1 (CBAxC 57 Black) самцах массой тела 18-22 грамма, полученных из центрального питомника РАМН “Крюково”.

Циклофосфамид (аптечный ЦИКЛОФОСФАМИД) растворяли в физ. растворе и вводили однократно внутрибрюшинно в дозе 300 мг/кг в сутки 0.

Субстанцию АСКОРБИГЕНА растворяли в воде и в 1%-ной концентрации вводили в желудок при помощи шприца с металлической канюлей в дозе 100 мг/кг ежедневно в течение 14 дней, начиная с нулевых суток.

Результаты.

Показано, что ЦИКЛОФОСФАМИД к 3 суткам приводит к снижению общего количества лейкоцитов до 500-1500 клеток в мм 3 . Наблюдается второе снижение лейкоцитов до 7-10,5 тыс. клеток в мм 3 . Восстановление до нормы происходит к 15-16 суткам. (Фиг. 1)

Заключение.

Применение АСКОРБИГЕНА в дозе 100 мг/кг ежедневно в течение 14 дней перорально после однократного внутрибрюшинного применения ЦИК-ЛОФОСФАМИДА в дозе 300 мг/кг ускоряет восстановление показателей периферической крови до нормы, а также способствует снижению кишечной токсичности последнего.

5. Противобактериальная активность аскорбигена (АСГ).

Материалы и методы:

В работе использовали мышат-сосунков колонии SHK в возрасте 3-4 дней. Беременные самки SHK получены из вивария ВНИХФИ (собственная разводка). За самками велось ежедневное наблюдение, сроки родов фиксировали.

Для получения сепсиса 3-4-дневным мышатам орально (через эластичный зонд) вводили бактериальную культуру в дозе 510 6 КОЕ/мышь. Через 24 часа мышат осматривали, учитывали % гибели животных; далее мышат в стерильных условиях вскрывали и делали высевы на питательные среды путем отпечатков органов - селезенки, печени, почек. Кроме того, всегда брали для посева из сердца кровь. Для Staphylococcus aureus использовали желточно-солевой агар (МЖСА); для высева Гр - культур - среду Левина. Для изучения профилактического действия АСГ новорожденных мышат в помете условно делили на 2 группы; в первой группе мышатам, начиная с 3-4-дневного возраста, орально (через эластичный зонд) вводили АСГ (из расчета 100 мг/кг) в течение 7-8 дней. Вторая группа являлась контрольной (без введения АСГ). Мышам в двух группах одновременно орально вводили Staphylococcus aureus (клинический изолят) в дозе 510 6 КОЕ/мышь. Через 24 часа наблюдений учитывали гибель животных; мышат, включая павших, в стерильных условиях вскрывали, путем отпечатков сеяли органы и кровь из сердца на МЖСА.

Результаты:

В результате орального заражения Staphylococcus aureus в дозе 510 6 КОЕ 3-4 дневных мышат отмечалась гибель животных в 20-37,5% случаев.

При высеве на селективную питательную среду (МЖСА) фиксировали положительный или отрицательный высев (см. таблицу, чертеж).

Из данных таблицы видно, что предварительное/профилактическое введение АСГ в течение 7 дней сопровождалось снижением % высева из печени, почек и селезенки более чем в 2 раза, а из крови в 3 раза по сравнению с контролем (животными, не получавшими АСГ).

В предварительных опытах с использованием для заражения мышат Гр-культур бактерий (Е. coli, Proteus vulgaris, Klebsiella pneumoniae) также отмечалось резкое снижение высеваемости, особенно выраженное при посеве крови.

6. Влияние аскорбигена на алопецию, вызванную введением циклофосфамида (ЦФ)

Применение цитостатиков, в частности ЦФ, часто сопровождается развитием симптоматической алопеции (Алопеция симптоматическая - полное или частичное выпадение волос, развивающееся как симптом или осложнение при каких-либо заболеваниях, интоксикациях или повреждениях кожи) (син.: симптоматическая атрихия, симптоматический атрихоз, симптоматическое облысение, симптоматическая пелада, симптоматическая плешивость). На модели нами показано, что введение 200 мг/кг ЦФ внутрибрюшинно мышатам-сосункам на 8-9 день от рождения сопровождается через следующие 4-5 дня полной потерей волосяного покрова. Предварительное введение аскорбигена в дозе 100 мг/кг в течение 5 дней до инъекции ЦФ снижает выраженность (интенсивность) алопеции, а последующее введение аскорбигена способствует более интенсивному восстановлению волосяного покрова (фиг. 1). Мышата полностью восстанавливали волосяной покров на 3-4 дня раньше животных контрольной группы (без введения аскорбигена).

Это было подтверждено морфологическими исследованиями. При микроскопическом изучении в группе положительного контроля (мыши, получившие ЦФ однократно внутрибрюшинно в дозе 100 мг/кг) в коже был найден ряд патологических изменений. Они выражались в истончении слоя эпидермиса, умеренном отеке и фрагментации коллагеновых волокон дермы. В части волосяных фолликулов волос отсутствовал. При этом отдельные клетки матричного (камбиального) слоя и мышца, поднимающая волос, находились в состоянии атрофии.

У мышей, получавших аскорбиген до и после введения ЦФ, эпидермис был без признаков повреждения, отек дермы отсутствовал, структура коллагеновых волокон дермы и придатков кожи без особенностей. Клетки матричного слоя волосяного фолликула и мышца, поднимающая волос, не отличались от нормы

Сущность изобретения поясняется следующими примерами.

Исследование проведено на 30 мышах C 57 B1 и на 20 мышах-гибридах F 1 (СВАxС 57 В1) самцах массой тела 20-22 грамма.

Животные получали аскорбиген в разовых дозах от 10 до 1000 мг/кг в желудок в течение 14 дней. По окончании курса введений животных забивали. Участки тонкой кишки фиксировали в 10%-ной растворе нейтрального формалина, по стандартной методике заливали в парафин, короткие серии срезов окрашивали гематоксилин-эозином.

На первые сутки после 14-кратного введения препарата в слизистой оболочке тонкой кишки было найдено резкое увеличение числа клеток Панета. В части желез они располагались не только в области дна железы, но и выполняли полностью крипту вплоть до шейки железы. Если в норме соотношение клеток Панета и камбиальных элементов цилиндрического эпителия составляет 1:1, то при применении аскорбигена оно увеличивается до 2:1. Количество эозинофильных гранул в клетках Панета и их размеры также резко увеличивались. Просвет крипты железы был расширен и заполнен гранулами, выделившимися из клеток Панета путем эндоцитоза.

В области ворсинок кишечного эпителия увеличивалось число бокаловидных клеток.

В собственной пластинке слизистой оболочки тонкой кишки было выявлено разрастание капиллярной сети по типу развития молодой грануляционной ткани.

Отмечено также увеличение числа интраэпителиальных лимфоцитов до 3-5 на железу, тогда как у интактных животных оно составляет 1 на несколько желез.

Таким образом, увеличение числа и усиление активности клеток Панета, увеличение количества интраэпителиальных лимфоцитов, утолщение собственной пластинки слизистой оболочки и увеличение слизеобразующих бокаловидных клеток позволяет предположить, что препарат аскорбиген, примененный перорально в виде 14-дневного курса в разовых дозах от 10 до 1000 мг/кг, обладает способностью усиливать защитную функцию слизистой оболочки тонкой кишки.

Группа мышей-гибридов F 1 (СВАxС 57 В1) самцов массой тела 20-22 грамма получала ЦФ однократно внутрибрюшинно в дозе 200 мг/кг (МПД), а через 24 часа начинали пероральное введение аскорбигена в разовой дозе 100 мг/кг в течение 14 дней.

На первый день после 14-дневного курса введений животные были забиты, участки тонкой кишки фиксировали в 10%-ном нейтральном формалине, заливали в парафин, срезы окрашивали гематоксилин-эозином.

У животных, получавших ЦФ однократно внутрибрюшинно в дозе 200 мг/кг, на 16 сутки после введения в тонкой кишке сохранялись признаки повреждения слизистой оболочки. Они выражались в виде крупных очагов деструкции эпителия желез, расположенных главным образом в области крипт. В ряде желез просвет крипт резко расширен, в просвете - клеточный детрит и большое количество крупных эозинофильных гранул. В зонах повреждения клетки Панета находились в состоянии балонной дистрофии. Их число резко увеличено. Они расположены не только в области дна желез, но распространялись вплоть до шейки, увеличены в размерах и заполнены множеством гранул. Часть клеток Панета - в состоянии деструкции.

Ворсинки слизистой оболочки в области повреждения истончены, отдельные - в состоянии деструкции.

В собственной пластинке слизистой оболочки отмечена гибель клеток, истончение волокнистых структур, образование кистоподобных полостей разных размеров.

В зонах регенерации, которые встречаются наряду с очагами деструкции, число клеток Панета не отличалось от нормы. Они содержали небольшое количество мелких эозинофильных гранул.

В области ворсинок регенерация происходила быстрее, чем в области крипт. Регенерировавшие ворсинки короткие, немногочисленные.

14-дневное введение аскорбигена в разовой дозе 100 мг/кг per os после однократного внутрибрюшинного введения ЦФ в дозе 200 мг/кг приводило на 16 сутки эксперимента к практически полному восстановлению структуры ворсинок и собственной пластинки слизистой оболочки.

Таким образом, пероральное применение аскорбигена в виде 14-дневного курса в разовой дозе 100 мг/кг приводит к ускорению процессов репарации повреждений слизистой оболочки тонкой кишки, вызываемых однократным введением ЦФ в дозе 200 мг/кг.

Группе мышей-гибридов F 1 (CBAxC 57 B1) самцов массой тела 20-22 грамма ЦФ вводили однократно внутрибрюшинно в дозе 200 мг/кг (МПД), а через 24 часа начинали пероральное введение аскорбигена в разовой дозе 100 мг/кг в течение 14 дней.

На первый день после 14-дневного курса введений аскорбигена (16 день эксперимента) животные в опытных и контрольных группах были забиты, тимус, селезенку и лимфоузлы фиксировали в 10%-ном нейтральном формалине, заливали в парафин, срезы окрашивали гематоксилин-эозином.

ЦИКЛОФОСФАМИД. При однократном внутрибрюшинном введении ЦФ в МПД на 7 сутки в тимусе отмечено некоторое сужение корковой зоны, умеренная атрофия лимфоидной ткани как в корковой, так и в мозговой зонах, появление кистоподобно растянутых синусов в мозговой зоне и на границе с корковой. Умеренная атрофия лимфоидной ткани корковой и мозговой зон тимуса сохраняется в течение двух недель после введения препарата.

ЦФ + Аскорбиген. 14-дневное введение аскорбигена после однократного применения ЦФ уменьшало повреждающее действие последнего на лимфоидную ткань тимуса. Повреждающее действие на 15 сутки после применения ЦФ выражалось лишь в небольшой атрофии лимфоидной ткани в мозговой зоне.

Селезенка.

ЦИКЛОФОСФАМИД. Введение ЦФ приводило к 7 суткам наблюдения к умеренной атрофии лимфоидной ткани, которая сохранялась до 15 суток эксперимента. Количество мегакариобластов и мегакариоцитов на 7 сутки несколько увеличено. К 15 суткам оно существенно возрастает. Очаги экстрамедуллярного кроветворения на 7 сутки встречаются не чаще, чем в контроле. Через 2 недели после однократного введения ЦФ их становится значительно больше.

ЦФ + Аскорбиген. При применении аскорбигена в виде 14-дневного курса на следующий день после однократного введения ЦФ на 1 сутки по окончании введений аскорбигена (15 сутки после введения ЦФ) число очагов экстрамедуллярного кроветворения увеличивалось во много раз. При этом они были, в основном, миелоцитарного типа. Количество мегакариоцитов и мегакариобластов также возрастало. Никаких признаков атрофии лимфоидной ткани не выявлено.

Лимфоузел.

ЦИКЛОФОСФАМИД. На 7 сутки после введения ЦФ в лимфоузлах была найдена умеренная атрофия лимфоидной ткани в корковой зоне, которая сохранялась до 15 суток наблюдения. К 15 суткам под капсулой лимфоузла можно видеть небольшие очаги склероза. В мозговой зоне встречались очаги миелоидного кроветворения.

ЦФ + Аскорбиген. Структура лимфоузлов не отличается от контроля.

Таким образом, пероральное введение аскорбигена в дозе 100 мг/кг в течение 14 дней после однократного внутрибрюшинного введения ЦИКЛО-ФОСФАМИДА позволяет ускорить восстановление лимфоидной ткани тимуса, селезенки и лимфоузлов.

Мышам-гибридам F 1 (CBAxC 57 B1) самцам массой тела 18-22 грамма вводили однократно ЦФ внутрибрюшинно, в дозе 300 мг/кг в сутки 0.

Субстанцию АСКОРБИГЕНА вводили в желудок при помощи шприца с металлической канюлей в дозе 100 мг/кг ежедневно в течение 14 дней, начиная с нулевых суток.

Ежедневно следили за состоянием и поведением животных, на 3, 5, 8, 11 и 16 сутки определяли массу животных и брали периферическую кровь из хвоста для определения общего количества лейкоцитов.

Показано, что ЦИКЛОФОСФАМИД к 3 суткам приводит к снижению общего количества лейкоцитов до 500-1500 клеток в мм 3 . Наблюдается второе снижение лейкоцитов до 7-10,5 тыс. клеток в мм 3 . Восстановление до нормы происходит к 15-16 суткам.

Применение АСКОРБИГЕНА в указанном выше режиме не влияло на уровень общего количества лейкоцитов.

Применение АСКОРБИГЕНА после ЦИКЛОФОСФАМИДА предотвращало развитие глубокой цитопении к 3-м суткам. Уровень лейкоцитов на этот срок составлял 1-3 тыс. клеток в мм 3 . Восстановление нормального количества лейкоцитов наступало к 6 суткам. Повторного снижения количества лейкоцитов не наблюдалось. Подсчет лейкоцитарной формулы показал, что восстановление уровня лейкоцитов происходит за счет нейтрофилов.

В группе животных, получавших ЦИКЛОФОСФАМИД, с 2-х суток развивался понос, а к 5-м суткам отмечалось снижение массы тела на 10%. (Фиг. 2) Восстановление массы тела до исходного уровня происходило лишь к 12-м суткам. При применении АСКОРБИГЕНА на фоне ЦИКЛОФОСФАМИДА у животных диарея была менее выраженная и кратковременная. Снижения массы тела животных в этой группе не наблюдалось.

Применение АСКОРБИГЕНА в дозе 100 мг/кг ежедневно в течение 14 дней перорально после однократного внутрибрюшинного применения ЦИКЛОФОСФАМИДА в дозе 300 мг/кг ускоряет восстановление показателей периферической крови до нормы, а также способствует снижению кишечной токсичности последнего.

Для получения сепсиса 3-4 дневным мышатам орально (через эластичный зонд) вводили бактериальную культуру в дозе 510 6 КОЕ/мышь. Через 24 часа мышат осматривали, учитывали % гибели животных; далее мышат в стерильных условиях вскрывали и делали высевы на питательные среды путем отпечатков органов - селезенки, печени, почек. Кроме того, всегда брали для посева из сердца кровь. Для Staphylococcus aureus использовали желточно-солевой агар (МЖСА); для высева Гр - культур - среду Левина. Для изучения профилактического действия АСГ новорожденных мышат в помете условно делили на 2 группы; в первой группе мышатам, начиная с 3-4-дневного возраста, орально (через эластичный зонд) вводили АСГ (из расчета 100 мг/кг) в течение 7-8 дней. Вторая группа являлась контрольной (без введения АСГ). Мышам в двух группах одновременно орально вводили Staphylococcus aureus (клинический изолят) в дозе 510 6 КОЕ/мышь. Через 24 часа наблюдений учитывали гибель животных; мышат, включая павших, в стерильных условиях вскрывали, путем отпечатков сеяли органы и кровь из сердца на МЖСА.

В результате орального заражения Staphylococcus aureus в дозе 510 6 КОЕ 3-4-дневных мышат отмечалась гибель животных в 20-37,5% случаев. При высеве на селективную питательную среду (МЖСА) фиксировали положительный или отрицательный высев. Выявлено, что предварительное/профилактическое введение АСГ в течение 7 дней сопровождалось снижением % высева из печени, почек и селезенки более чем в 2 раза, а из крови в 3 раза по сравнению с контролем (животными, не получавшими АСГ).

В предварительных опытах с использованием для заражения мышат Гр - культур бактерий (Е. coli, Proteus vulgaris, Klebsiella pneumoniae) также отмечалось резкое снижение высеваемости, особенно выраженное при посеве крови.

На мышатах-сосунках было показано положительное влияние АСГ на восстановление микрофлоры кишечника при дисбактериозе. Оральное введение мышатам с неспецифическим энтеритом, сопровождающимся диареей, АСГ (в дозе 100 мг/кг) в течение 3-х дней полностью прекращало диарею. Мышата начинали активно есть, больше двигаться. Продолжение введения АСГ до 10 дней способствовало улучшению количественных показателей микрофлоры кишечника. Так, например, у мышат, не получавших АСГ, содержание кишечной палочки (Е. coli), основного представителя нормальной микрофлоры кишечника, соответствовало 10 4 КОЕ на 1 г фекалий. После 10-дневного курса АСГ (100 мг/кг, орально, ежедневно) содержание Е. coli увеличивалось до 10 5 КОЕ на 1 г фекалий. Количественные показатели анаэробной флоры также приближались к норме. Уровень бифидобактерий (bifidobacterium) и лактобацилл (lactobacilli) увеличивался с 10 4 КОЕ и 10 7 КОЕ до 10 5 КОЕ и 10 8 КОЕ на 1 г фекалий соответственно. Следует отметить, что мышата, не получавшие АСГ, погибали в 80% случаев.

Мышатам-сосункам на 8-9 день от рождения вводили 200 мг/кг ЦФ внутрибрюшинно. Через 4-5 дней у них отмечалась полная потеря волосяного покрова. Предварительное введение аскорбигена в дозе 100 мг/кг в течение 5 дней до инъекции ЦФ снижает выраженность (интенсивность) алопеции, а последующее введение аскорбигена способствует более интенсивному восстановлению волосяного покрова (Фиг. 1). Мышата полностью восстанавливали волосяной покров на 3-4 дня раньше животных контрольной группы (без введения аскорбигена).

Это было подтверждено морфологическими исследованиями. При микроскопическом изучении в группе положительного контроля (мыши, получившие ЦФ однократно внутрибрюшинно в дозе 100 мг/кг) в коже был найден ряд патологических изменений. Они выражались в истончении слоя эпидермиса, умеренном отеке и фрагментации коллегановых волокон дермы. В части волосяных фолликулов волос отсутствовал. При этом отдельные клетки матричного (камбиального) слоя и мышца, поднимающая волос, находились в состоянии атрофии.

У мышей, получавших аскорбиген до и после введения ЦФ, эпидермис был без признаков повреждения, отек дермы отсутствовал, структура коллагеновых волокон дермы и придатков кожи без особенностей. Клетки матричного слоя волосяного фолликула и мышца, поднимающая волос, не отличались от нормы.

Таким образом, применение аскорбигена в изученных дозе и режиме предотвращало развитие атрофических изменений в коже новорожденных мышей, возникающих под влиянием ЦФ.

В целом, представленные материалы подтверждают преимущества заявленного способа, а именно: возможность повышения неспецифической резистентности к инфекционным и токсическим агентам, позволяющего уменьшить риск развития тяжелого заболевания и ускорить выздоровление больных.

Источники информации

1. Диксон М. и Уэбб Э. Ферменты. М.: Мир, 1966, с.816.

2. Добрица В.П. и др. Современные иммуномодуляторы для клинического применения. Руководство для врачей. СПб.: Политехника, 2001, с.251 (прототип).

3. Кравченко Л.В., Авреньева Л.И., Гусева Г.В., Поздняков А.Л. и Тутельян В.А, БЭБиМ., 2001, т.131, с.544-547.

4. Муханов В.И., Ярцева И.В, Кикоть B.C., Володин Ю.Ю., Кустова И.Л., Лесная Н.А., Софьина З.П., Преображенская М.Н. Изучение аскорбигена и его производных. Биоорганическая химия, 1984, т. 10, №4, №6, с.554-559.

5. Преображенская М.Н., Королев А.М.. Индольные соединения в овощах семейства крестоцветных. Биоорганическая химия, 2000, т.26, №2, с.97-110.

6. Blijlevens N.M., Donnelly J.P. and B.E. de Pauw, Clin. Microb. Infect., 2001, v.7, suppl. 4, p.47.

7. Bonnesen C., Eggleston I.M. and Hayes J.D., Cancer Res., 2001., v.61, pp. 6120-6130.

8. Boyd J.N., Babish J.G. and Stoewsand G.S., Food Chem., Toxicol., 1982, v.2, pp. 47-50.

9. Bramwell В., Ferguson S., Scarlett N. and Macintosh A., Altem. Med. Rev., 2000, v.5, pp. 455-462.

10. Ettlinger M.G., Dateo G.P., Harrison B.W., Mabry T.J., Thompson C.P., Proc. Natl. Acad. Sci. USA, 1961, v.47, pp. 1875-1880.

11. Graham S., Dayal H., Swanson M., Mittelman A. and Wilkinson G., J. Nat. Cancer Inst., 1978, v.61, p.p. 709-714.

12. Kiss G. and Neukom H., Helv Chim. Acta, 1966, v.49, pp. 989-992.

13. Preobrazhenskaya M.N., Bukhman V.M., Korolev A.M., Efimov S.A., Pharmacol. & Ther., 1994, v.60, pp. 301-313.

14. Prochaska Z., Sanda V. and Sorm F., Coil. Czech. Chem. Commun., 1957, v.22, p.333.

15. Sartori S., Trevisani L., Nielsen I., Tassinari D., Panzini I., Abbasciano V., J. Clin. Oncol., 2000, v.l8, p.463.

16. Sepkovic D.W., Bradlow H.L., Michnovicz J., Murtezani S., Levy I. and Osbome M.P., Steroids, 1994, v.59, pp. 318-323.

17. Stephensen P.U., Bonnesen C., Schaldach C., Andersen O., Bjeldanes L.F. and Vang O., Nutr. Cancer, 2000, v.36. pp. 112-121.

18. Stoewsand G.S., Babish J.B. and Wimberly B.C., J. Environ Path Toxic., 1978, v.2, pp. 399-406.

19. Wattenberg L.W., Cancer Res., 1983, v.43, (Suppl.), pp. 2448s-2453s.

20. Wattenberg L.W., Loub W.D., Lam L.K. and Speier J., Fed. Proc., 1975, v.35, pp. 1327-1331.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ повышения неспецифической резистентности организма, включающий введение лекарственного препарата, отличающийся тем, что в качестве лекарственного препарата используют аскорбиген, который вводят курсами в дозе 10 мг/кг ежедневно в течение 5-30 дней.

2. Способ по п.1, отличающийся тем, что аскорбиген вводят после окончания курса моно- или полихимиотерапии цитотоксическими препаратами.

3. Способ по п.1, отличающийся тем, что аскорбиген вводят при бактериальной инфекции.

4. Способ по п.1, отличающийся тем, что аскорбиген вводят при аллопеции, вызванной цитотоксическими препаратами.

Повышение Неспецифической Резистентности - Этому разделу терапии инфекционных осложнений в последние годы придают особое значение. Защита от инфекции связана с выработкой антител и зависит от продукции и доставки к месту бактериального загрязнения клеток, способных фагоцитировать микроорганизмы, а также разрушать их с помощью внутриклеточного переваривания. Доставка фагоцитов может быть недостаточной в связи с уменьшением тока крови через пораженную зону, снижением концентрации их в протекающей крови или введением противовоспалительных веществ (глюкокортикоидов, салицилатов и др.). Фагоцитоз с помощью нейтрофилов и мононуклеарных фагоцитов ретикулоэндотелиальной системы зависит в основном от присутствия в сыворотке и тканевых жидкостях специфических антител и комплемента. Потеря белка при истощении или голодании, кровопотере или гноетечении снижает способность синтезировать антитела и нарушает воспалительную

Реакцию. Дефицит витаминов также снижает синтез антител. Все эти условия ведут к снижению сопротивляемости развивающейся инфекции. Поэтому меры по повышению неспефической резистентности включают прежде всего стимуляцию белкового обмена, эритро- и лейкопоэза, продукции антител, воспалительной реакции и т. п. В этих целях применяют высококалорийное энтеральное и парентеральное питание, альбумин и гамма-глобулин, анаболические препараты, пиримидиновые производные, витамины, переливания цельной крови и лейковзвеси, зимозана, рестима, интерферона и других препаратов.

Среди показателей неспецифической резистентности в ближайшем послеоперационном периоде мы придавали большое значение азотистому и энергетическому балансу. При специальном изучении парентерального питания было установлено, что суточные потери азота после многих вмешательств весьма значительны. Так, например, после пластики дефекта межжелудочковой перегородки сердца в условиях искусственного кровообращения они в среднем составили 24 г, что в 1,5 раза превышает суточные потери азота после резекции пищевода (16 г), в 2 раза после резекции желудка (12 г) и в 4,8 раза после аппендэктомии (5 г). С возрастанием травматичности вмешательства азотистый дефицит увеличивался, что приводило к нарастающей гипопротеинемии. Оральным, зондовым и ректальным введением питательных веществ устранить отрицательный азотистый баланс не удавалось из-за пареза или атонии кишечника, неполноценной всасываемости, анорексии. При выраженной интоксикации продуктами аутолиза тканей и токсическими веществами, возникавшими в результате нарушения обмена веществ, гипопротеинемия нарастала. В результате изучения обмена в случаях так называемого раневого истощения было установлено, что в основе последнего лежит белковое голодание, возникшее вследствие катаболической послестрессовой реакции и нарушения ресинтеза белков в печени и других органах. Наряду с этим нарушался синтез пищеварительных ферментов, ухудшалось переваривание пищи, замедлялся процесс поступления аминокислот в кровь и ткани. Внешним проявлением белковой недостаточности была гипопротеинемия. Она указывала на обеднение органов и тканей пластическим материалом и на снижение иммуногенеза. Таким образом, гипопротеинемия характеризовала снижение неспецифической резистентности .

При белковом голодании нарушалась выработка аскорбиновой кислоты, ферментов, гормонов, иммунных тел, страдала дезинтоксикационная функция печени, перистальтика кишечника, что вело к его атонии или парезу, развивались нарушения трофики, коллоидно-осмотического равновесия (отеки), углублялся метаболический ацидоз и др.

Обычно инфекционное осложнение сопровождалось диспротеинемией: снижением уровня альбуминов и увеличением содержания гамма-глобулинов. При этом значительно изменялся альбуминово-глобулиновый коэффициент, что служило не только диагностическим, но и прогностическим признаком.

Для стимуляции неспецифической резистентности ежедневно вводился внутримышечно гамма-глобулин или полиглобулин в дозе 3 - 6 г.

Диспротеинемия свидетельствовала о том, что под влиянием операционной травмы возникли изменения в печени не только функционального, но и морфологического характера. Они достигали максимума на II и нормализовалась при лечении на V - VII неделе. Изменения белковых фракций находились в непосредственной зависимости и были пропорциональны тяжести оперативного вмешательства.

Одной из причин волемических нарушений у больных с септическими состояниями является уменьшение объема циркулирующего альбумина. Изменения эти носят фазовый характер. В связи с этим непременным компонентом инфузионной терапии при лечении инфекционных осложнений должны быть комбинации препаратов цельных и расщепленных белков: сочетания гидролизатов с 5 - 15% растворами альбумина, протеина, нативной плазмы. Азотистый дефицит чаще всего нормализуется из расчета 1 - 1,5 г нативного белка на 1 кг веса больного в сутки. При тяжелой инфекции из-за выраженной катаболической реакции внутривенное введение 50 - 70 г нативного белка не устраняет гипопротеинемию. В этих случаях необходимо сочетать белковые смеси с анаболическими препаратами и энергетическими продуктами.

Препараты расщепленных белков (белковые гидролизаты, растворы аминокислот) быстро выводятся из кровяного русла, утилизируются тканями и в большей степени, чем растворы, содержащие цельные белки, служат пластическим целям, стимуляции иммуногенеза и эритропоэза, дезинтоксикации.

Изучение основного обмена - наиболее доступного критерия энергетического баланса - у больных с инфекционными осложнениями показало, что суточные энергетические траты у них весьма значительны. В среднем они составили у взрослых 2500 ± 370 кал в сутки (35 - 40 кал на 1 кг веса). У детей отмечалось еще большее повышение основного обмена (70 - 90кал/кг), который при благоприятном течении возвращался к исходному не ранее 10 - 12-го дня после операции. Поэтому белково-углеводные смеси составлялись из расчета не менее 35 кал/кг веса у взрослых и 75 кал/кг - у детей. От достаточного энергетического обеспечения зависел анаболический эффект вводимой смеси. Однако этот вопрос не нашел пока удовлетворительного решения. Затруднения обусловлены следующими обстоятельствами. Основной наиболее доступный источник энергии - глюкоза - обладает низкой энергетической ценностью (4,1 кал/г). В связи с этим возникает необходимость введения больших количеств концентрированных гипертонических растворов глюкозы (20 - 60% 1 - 3 л), что увеличивает риск флебитов при использовании периферических вен, требует постоянного подщелачивания растворов (растворы глюкозы имеют pH 6,0 - 5,4 и ниже).

Против использования глюкозы в качестве единственного источника энергии при парентеральном питании имеются возражения и другого порядка. Длительные внутривенные вливания глюкозы приводили к снижению альбумино-глобулинового коэффициента, угнетению синтеза альбуминов, диспротеинемии, что указывало на ухудшение функционального состояния печени. Отрицательной стороной использования глюкозы является и необходимость введения больших доз инсулина, увеличивающего риск гипергидратации и способствующего переходу аминокислот из печени в мышцы.

Кроме того, глюкоза - хорошая питательная среда для дрожжевых грибов, поэтому сочетание с антибиотиками приводит к развитию кандидамикоза, что несколько ограничивает ее применение. Энергетическое обеспечение больного должно включать, помимо глюкозы, комплекс других препаратов.

Чаще используют 20% растворы глюкозы. Инсулин вводят из расчета 1 ЕД на 4 - 5 г сухого вещества глюкозы. В качестве энергетического продукта применяются также 5 - 6% гексозофосфат, сорбитол, 33% этиловый спирт, диолы и полиолы. Несомненные преимущества перед глюкозой имеет инвертный сахар, который быстрее извлекается из русла вены, меньше раздражает интиму, не требует инсулина.

Наиболее мощным поставщиком энергии и своеобразным биологическим стимулятором являются жировые эмульсии. Речь идет о компенсации лишь части энергетических потребностей: полное восполнение за счет жира недопустимо, в первую очередь, из-за опасности кетоза. Основное преимущество внутривенного введения жира обусловлено высокой его калорийностью (9,3 кал/г), что дает возможность в небольшом объеме жидкости полностью обеспечить энергетические потребности больного. С помощью жировых эмульсий можно вводить такие незаменимые факторы питания, как высоконепредельные жирные кислоты и жирорастворимые витамины. Жировые эмульсии не оказывают осмотических эффектов и не обладают перечисленными недостатками глюкозы.

В настоящее время широко применяются интралипид (Швеция), липифизан (Франция), липомул и инфонутрол (США), ли-пофундин (ФРГ), отечественная жировая эмульсия ЛИПК и другие. В результате клинических испытаний большинство авторов пришли к выводу, что жиры в смесях для парентерального питания не должны превышать 30% суточной калорийности, 50% - должны составлять углеводы, 20% - белковые калории.

Проведенные нами специальные исследования показали, что в послеоперационном периоде при развитии инфекционного осложнения процессы белкового катаболизма значительно преобладают над анаболическими. Заместительная терапия белковыми препаратами была эффективной лишь при условии одновременного применения комплекса анаболических средств. Для ограничения катаболических и стимуляции анаболических процессов применялись сочетания естественных и синтетических андрогенных гормонов. Выраженного побочного действия или осложнений от них не наблюдали. Обычно применяли 5% раствор тестостерона-пропионата по 1 - 2 мл внутримышечно или метиландростендиол по 50 - 100 мг сублингвально, неробол по 40 мг орально, ретаболил по 50 мг внутримышечно (через 3 - 6 дней). В анаболических целях применяли также пиримидиновые производные (пентоксил по 0,4 или метилурацил по 0,25 - 0,5 Зраза в сутки внутрь). Последний применялся и внутримышечно в 0,8% растворе. Был отмечен выраженный анаболический эффект, несколько увеличивалось содержание общего белка, альбуминов, гамма-глобулинов.

Из литературы (Н. В. Лазарев, 1956; В. И. Русаков, 1971, и др.) известно, что пиримидиновые производные близки к естественным азотистым основаниям нуклеиновых кислот и являются стимуляторами белкового обмена. Помимо этого, было доказано, что они оказывают выраженное противовоспалительное действие, уменьшают процессы экссудации, одновременно стимулируя регенерацию, фагоцитоз. Авторы отмечали также способность пентоксила и метилурацила усиливать выработку антител, повышать эффективность антибиотиков. В связи с этим для целесообразно применять пиримидиновые производные.

В настоящее время в целях стимуляции восстановительных процессов применяют, кроме того, пуриновые производные - оротат калия. Пиримидиновые и пуриновые стимуляторы регенерации малотоксичны и практически не имеют противопоказаний. Они ускоряют синтез антител при химиотерапии и вакцинации в случаях нарушений эритро- и лейкопоэза токсико-аллергиче-ской природы. Лучший эффект получен, когда их сочетали с витамином B 12 , С, фолиевой кислотой.

В качестве стимулятора синтеза белков и жиров применяют инсулин. При этом необходим круглосуточный контроль за содержанием сахара в крови и моче.

В последние годы усиленно изучаются полисахариды бактериального происхождения, выделенные в основном от грамотрицательных микроорганизмов (ацетоксан, кандан, ауреан и др.). Установлено, что они весьма успешно активируют неспецифическую иммунобиологическую реактивность организма . В клинической практике при лечении инфекционных осложнений мы использовали чаще пирогенал, пирексал, пиромен. Наш опыт применения этих препаратов незначителен, однако первые впечатления весьма обнадеживают.

Большое значение имеют вопросы витаминного обмена и витаминотерапии. В результате многолетних исследований и клинических наблюдений мы пришли к выводу, что у септического больного всегда отмечалось развитие токсического, а иногда и алиментарного авитаминоза. Результатом острого дефицита витамина А является снижение резистентности к инфекции главным образом из-за потери эпителием способности препятствовать проникновению микроорганизмов. Потребность организма в витаминах С и группы В при тяжелой гнойной интоксикации резко возрастала, поэтому в комплексную терапию инфекционных осложнений непременно включались аскорбиновая кислота (внутривенно - 10 г и более в сутки), витамины А, В 1 , В 2 , Be, B 12 , фолиевая и пантотеновая кислоты. Указанные препараты вводились ежедневно парентерально с учетом степени авитаминоза, но не менее, чем в утроенных дозах. Помимо этого, больные получали витамины орально в составе лечебного питания и поливитаминно-дрожжевой терапии. Витаминотерапия стимулировала процессы регенерации и дезинтоксикации (С. М. Навашин, И. П. Фомина, 1974; И. Теодореску-Экзарку, 1972, и др.).

Помимо заместительного, мощным стимулирующим действием обладает кровь и отдельные ее компоненты (альбумин, гамма-глобулин, эритроцитарная масса и др.). В связи с этим гемотрансфузии у больных с инфекционными осложнениями проводились ежедневно или через 1 - 2 дня. Чаще применялась свежее-гепаринизированная кровь. Лучшие результаты получены при вливаниях крови, взятой у предварительно иммунизированных доноров. У больных с тяжелой интоксикацией и нараставшей анемией прямые переливания стали неотъемлемой частью общего лечения. Это обстоятельство позволило исключить значительную анемизацию. Одним из главных преимуществ прямого переливания перед цитратной кровью является его высокая заместительная, стимулирующая и дезинтоксикационная функция. Гемотрансфузии непосредственно от доноров давали немедленный и стойкий эффект. В некоторых случаях прямое переливание сочеталось с вливанием свежее-цитратной крови (не более чем трехдневной давности). Цитратную кровь больших сроков хранения нецелесообразно применять. Специальными исследованиями, проведенными в клинике в 1965 г. (В. И. Немченко, И. М. Маркелов), было показано, что цитратная кровь 3 - 4-дневной давности и больших сроков хранения теряла ферментативную активность, увеличивала риск интоксикации цитратом, пирогенных реакций, гемолиза, ряда неблагоприятных иммунологических сдвигов. Для прямых трансфузий использовался аппарат оригинальной конструкции с роликовым эксцентриком, а также пальчиковый аппарат объединения «Красногвардеец».

В последнее время при септических осложнениях мы используем не классическую методику прямой гемотрансфузии, а переливания свежестабилизированной крови, взятой у донора в сосуд с гепарином непосредственно перед переливанием. Изменение методики объясняется этическими соображениями и риском инфицирования донора. Сравнение приживаемости крови, перелитой непосредственно от донора и свежестабилизированной, не выявило существенных преимуществ первой. В обоих случаях процент функционирующих меченых эритроцитов к концу первых суток был не менее 95, а полупериод длительности жизни превышал 25 суток (Ю. Н. Журавлев, Л. И. Ставинская, 1970).

Наибольшее количество перелитой одному больному свежестабилизированной крови за период лечения (синегнойная бактериемия) - 14,2 л. Проведение повторных гемотрансфузий позволяло поддерживать гемодинамические и иммунологические показатели на вполне удовлетворительных уровнях, несмотря на тяжелую гнойную интоксикацию (даже в разгар инфекции). Прямые гемотрансфузий или переливания свежестабилизированной крови повышали фагоцитарную активность лейкоцитов в среднем в 8 - 9 раз.

В последние годы, наряду с цельной кровью, мы широко применяем и отдельные ее компоненты или заменители (отмытые эритроциты, эритроцитарную и лейкоцитарную массы, тромболейковзвесь, альбумин, гидролизаты и др.). Это вызывается не только экономическими соображениями, но также и тем, что показания к переливанию цельной крови из-за риска осложнений и побочного действия из года в год сужаются.

Таким образом, в целях повышения неспецифической резистентности и для устранения метаболических нарушений при инфекционном осложнении инфузионная терапия должна включать следующие компоненты (табл. 17).

Антибактериальные препараты и средства для дезинтоксикации вводятся по показаниям. Всего суточная доза жидкости - 3450 - 5700 мл, в том числе белка (в пересчете на нативный) - 85 - 150 г, глюкозы - 200 - 600 г, суточная калорийность - 2000 - 4600 кал. При отсутствии жировых эмульсий и спиртов - 2650 - 4000 мл и 1200 - 2800 кал соответственно.

Эффективность парентерального питания чаще всего оценивают по азотистому балансу (азот вводимых препаратов - общий азот мочи по Кьельдалю), весу, белковым фракциям, гема-токриту, основному обмену. Помимо этого, нужно учитывать также гемо-гидробаланс (кровопотерю, объем циркулирующей крови, потери жидкости мочой, дыханием) и другие показатели. Все внутривенные вливания должны производиться под контролем центрального венозного давления (ЦВД). Объем вводимой жидкости координируется с количеством выделенной (моча, рвотные массы, экссудация, гноетечение). В целях дезинтоксикации предпочтительнее положительный водный баланс. Если выделительная функция почек не нарушена, расчет количества жидкости для инфузионной терапии у взрослого - 40 мл/кг/24 ч, у ребенка - 80 - 100 мл/кг/24 ч. При повышении температуры на ГС необходимо добавлять в сутки жидкости из расчета (в среднем) 10 - 14 мл на 1 кг веса и 13% суточной калорийности.

При гипергидратации проводилась дегидратационная терапия.

Клинические наблюдения свидетельствуют о наличии частых сочетаний повышенной сенсибилизации к стафилококку и другим возбудителям со сниженной общей иммунологической реактивностью. Это вызывает необходимость проведения, наряду со стимулирующей неспецифические механизмы защиты, десенсибилизирующей терапии.
читайте так-же