Активность дыхательного центра. Химическая регуляция дыхания

До сих пор мы обсуждали основные механизмы, вызывающие возникновение вдоха и выдоха , но не менее важно знать, как меняется интенсивность сигналов, регулирующих вентиляцию в зависимости от потребностей организма. Например, при тяжелой физической работе скорость потребления кислорода и образования двуокиси углерода часто повышаются в 20 раз по сравнению с покоем, что требует соответствующего увеличения вентиляции легких. Остальная часть этой главы посвящена регуляции вентиляции в зависимости от уровня потребностей организма.

Высшей целью дыхания является сохранение должных концентраций кислорода , двуокиси углерода и ионов водорода в тканях. К счастью, дыхательная активность очень чувствительна к изменениям этих показателей.

Излишек двуокиси углерода или ионов водорода в крови действует главным образом прямо на дыхательный центр, вызывая значительное усиление моторных инспираторных и экспираторных сигналов к дыхательным мышцам.

Кислород, наоборот, не имеет значительного прямого влияния на мозговой дыхательный центр для регуляции дыхания. Вместо этого он действует преимущественно на периферические хеморецепторы, расположенные в каротидных и аортальных тельцах, а те, в свою очередь, передают соответствующие сигналы по нервам в дыхательный центр для регуляции дыхания на этом уровне.
Обсудим сначала стимуляцию дыхательного центра двуокисью углерода и ионами водорода.

Хемочувствительная зона дыхательного центра . До сих пор мы рассматривали в основном функции трех зон дыхательного центра: дорсальной группы дыхательных нейронов, вентральной группы дыхательных нейронов и пневмотакси-ческого центра. Считается, что на эти зоны изменения концентрации двуокиси углерода или ионов водорода не оказывают прямого влияния. Существует дополнительная зона нейронов, так называемая хемочувствительная зона, которая расположена билатерально и лежит под вентральной поверхностью продолговатого мозга на глубине 0,2 мм. Эта зона обладает высокой чувствительностью как к изменениям Рсо2, так и к изменениям концентрации ионов водорода и, в свою очередь, возбуждает другие части дыхательного центра.

Сенсорные нейроны хемочувствительной зоны особо чувствительны к ионам водорода; считается, что ионы водорода могут быть единственным важным для этих нейронов прямым раздражителем. Но ионам водорода нелегко преодолеть барьер между кровью и мозгом, поэтому изменения в концентрации ионов водорода в крови имеют значительно меньшую способность стимулировать хемочувствительные нейроны, чем изменения концентрации двуокиси углерода в крови, несмотря на то, что двуокись углерода стимулирует эти нейроны опосредованно, вызывая сначала изменение концентрации ионов водорода.

Прямое стимулирующее влияние двуокиси углерода на нейроны хемочувствительной зоны незначительно, но оно оказывает мощное непрямое действие. После присоединения воды к двуокиси углерода в тканях образуется угольная кислота, диссоциирующая на ионы водорода и бикарбоната; ионы водорода оказывают на дыхание мощный прямой стимулирующий эффект.

Содержащаяся в крови двуокись углерода стимулирует хемочувствительные нейроны сильнее, чем находящиеся там же ионы водорода, поскольку барьер между кровью и мозгом малопроницаем для ионов водорода, а двуокись углерода проходит через него почти беспрепятственно. Следовательно, как только в крови Рсо2 повышается, оно повышается и в интерстициальной жидкости продолговатого мозга, и в цереброспинальной жидкости. В этих жидкостях двуокись углерода немедленно реагирует с водой, и появляются новые ионы водорода. Получается парадокс: при повышении концентрации двуокиси углерода в крови в хемочувствительной дыхательной зоне продолговатого мозга появляется больше ионов водорода, чем при повышении концентрации ионов водорода в крови. В результате при повышении концентрации двуокиси углерода в крови активность дыхательного центра резко изменится. Далее мы вернемся к количественному анализу этого факта.

Снижение стимулирующего влияния двуокиси углерода после первых 1 -2 сут. Стимуляция дыхательного центра двуокисью углерода велика в первые несколько часов первичного увеличения ее концентрации, а затем она в течение последующих 1-2 сут градуально уменьшается до 1/5 начального подъема. Часть этого снижения вызывается работой почек, стремящихся после первичного подъема концентрации ионов водорода (вследствие увеличения концентрации двуокиси углерода) нормализовать этот показатель.

Для этого почки работают в сторону увеличения количества бикарбонатов в крови , которые присоединяются к ионам водорода в крови и цереброспинальной жидкости, снижая таким образом в них концентрацию ионов водорода. Еще большее значение имеет тот факт, что через несколько часов ионы бикарбоната медленно диффундируют через барьеры между кровью и мозгом, кровью и цереброспинальной жидкостью и соединяются с ионами водорода непосредственно около дыхательных нейронов, снижая концентрацию ионов водорода почти до нормы. Таким образом, изменение концентрации двуокиси углерода имеет мощное немедленное регулирующее влияние на импульсацию дыхательного центра, а длительное влияние после некоторых дней адаптации окажется слабым.

На рисунке с приблизительной точностью показано влияние Рсо2 и рН крови на альвеолярную вентиляцию. Обратите внимание на резко выраженное усиление вентиляции вследствие повышения Рсо2 в нормальном диапазоне между 35 и 75 мм рт. ст.

Это демонстрирует огромное значение изменений концентрации двуокиси углерода в регуляции дыхания. В противоположность этому изменение рН крови в нормальном диапазоне 7,3-7,5 вызывает изменение дыхания в 10 раз меньшее.

Регуляция дыхания - это согласованное нервное управление дыхательными мышцами, последовательно осуществляющими дыхательные циклы, состоящие из вдоха и выдоха.

Дыхательный центр - это сложное многоуровневое структурно-функциональное образование мозга, осуществляющее автоматическую и произвольную регуляцию дыхания.

Дыхание - процесс автоматический, но он поддается произвольной регуляции. Без такой регуляции невозможна была бы речь. Вместе с тем, управление дыханием построено на рефлекторных принципах: как безусловно-рефлекторных, так и условно-рефлекторных.

Регуляция дыхания построена на общих принципах автоматической регуляции, которые используются в организме.

Пейсмейкерные нейроны (нейроны - "создатели ритма") обеспечивают автоматическое возникновение возбуждения в дыхательном центре даже в том случае, если не будут раздражаться дыхательные рецепторы.

Тормозные нейроны обеспечивают автоматическое подавление этого возбуждения через определённое время.

В дыхательном центре используется принцип реципрокного (т.е. взаимоисключающего) взаимодействия двух центров: вдоха и выдоха . Их возбуждение находится в обратно пропорциональной зависимости. Это означает, что возбуждение одного центра (например, центра вдоха) тормозит связанный с ним второй центр (центр выдоха).

Функции дыхательного центра
- Обеспечение вдоха.
- Обеспечение выдоха.
- Обеспечение автоматии дыхания.
- Обеспечение приспособления параметров дыхания к условиям внешней среды и деятельности организма.
Например, при повышении температуры (как в окружающей среде, так и в организме) дыхание учащается.

Уровни дыхательного центра

1. Спинальный (в спинном мозге). В спинном мозге расположены центры, координирующие деятельность диафрагмы и дыхательных мышц - L-мотонейроны в передних рогах спинного мозга. Диафрагмальные нейроны - в шейных сегментах, межреберные - в грудных. При перерезке проводящих путей между спинным и головным мозгом дыхание нарушается, т.к. спинальные центры не обладают автономностью (т.е. самостоятельностью) и не поддерживают автоматию дыхания.

2. Бульбарный (в продолговатом мозге) - основной отдел дыхательного центра. В продолговатом мозге и варолиевом мосту располагаются 2 основных вида нейронов дыхательного центра - инспираторные (вдыхательные) и экспираторные (выдыхательные).

Инспираторные (вдыхательные) - возбуждаются за 0,01-0,02 с до начала активного вдоха. Во время вдоха у них увеличивается частота импульсов, а затем мгновенно прекращается. Подразделяются на несколько видов.

Виды инспираторных нейронов

По влиянию на другие нейроны:
- тормозные (прекращают вдох)
- облегчающие (стимулируют вдох).
По времени возбуждения:
- ранние (за несколько сотых долей секунды до вдоха)
- поздние (активны в процессе всего вдоха).
По связям с экспираторными нейронами:
- в бульбарном дыхательном центре
- в ретикулярной формации продолговатого мозга.
В дорсальном ядре 95% - инспираторные нейроны, в вентральном - 50%. Нейроны дорсального ядра связаны с диафрагмой, а вентрального - с межрёберными мышцами.

Экспираторные (выдыхательные) - возбуждение возникает за несколько сотых долей секунды до начала выдоха.

Различают:
- ранние,
- поздние,
- экспираторно-инспираторные.
В дорсальном ядре 5% нейронов являются экспираторными, а в вентральном - 50%. В целом экспираторных нейронов значительно меньше, чем инспираторных. Получается, что вдох важнее выдоха.

Автоматию дыхания обеспечивают комплексы из 4-х нейронов с обязательным присутствием тормозных.

Взаимодействие с другими центрами мозга

Дыхательные инспираторные и экспираторные нейроны имеют выход не только на дыхательные мышцы, но и на другие ядра продолговатого мозга. Например, при возбуждении дыхательного центра реципрокно тормозится центр глотания и в то же время, наоборот, возбуждается сосудо-двигательный центр регуляции сердечной деятельности.

На бульбарном уровне (т.е. в продолговатом мозге) можно выделить пневмотаксический центр , расположенный на уровне варолиева моста, выше инспираторных и экспираторных нейронов. Этот центр регулирует их активность и обеспечивает смену вдоха и выдоха . Инспираторные нейроны обеспечивают вдох и одновременно от них возбуждение поступает в пневмотаксический центр. Оттуда возбуждение бежит к экспираторным нейронам, которые возбуждаются и обеспечивают выдох. Если перерезать пути между продолговатым мозгом и варолиевым мостом, то уменьшится частота дыхательных движений, засчёт того, что уменьшается активирующее действие ПТДЦ (пневмотаксического дыхательного центра) на инспираторные и экспираторные нейроны. Это также приводит к удлинению вдоха засчёт длительного сохранения тормозного влияния экспираторных нейронов на инспираторные.

3. Супрапонтиальный (т.е. "надмостовый") - включает в себя несколько областей промежуточного мозга:
Гипоталамическая область - при раздражении вызывает гиперпноэ - увеличение частоты дыхательных движений и глубины дыхания. Задняя группа ядер гипоталамуса вызывает гиперпноэ, передняя группа действует противоположным образом. Именно засчёт дыхательного центра гипоталамуса дыхание реагирует на температуру окружающей среды.
Гипоталамус совместно с таламусом обеспечивает изменение дыхания при эмоциональных реакциях .
Таламус - обеспечивает изменение дыхания при болевых ощущениях.
Мозжечок - приспосабливает дыхание к мышечной активности.

4. Моторная и премоторная зона коры больших полушарий головного мозга. Обеспечивает условно-рефлекторную регуляцию дыхания. Всего за 10-15 сочетаний можно выработать дыхательный условный рефлекс. Засчёт этого механизма, например, у спортсменов перед стартом возникает гиперпноэ.
Асратян Э.А. в своих опытах удалял у животных эти области коры. При физической нагрузке у них быстро возникала одышка - диспноэ, т.к. им не хватало этого уровня регуляции дыхания.
Дыхательные центры коры дают возможность произвольного изменения дыхания.

Регуляция деятельности дыхательного центра
Бульбарный отдел дыхательного центра является главным, он обеспечивает автоматию дыхания, но его деятельность может изменяться под действием гуморальных и рефлекторных влияний.

Гуморальные влияния на дыхательный центр
Опыт Фредерика (1890). Он сделал перекрестное кровообращение у двух собак - голова каждой собаки получила кровь от туловища другой собаки. У одной собаки зажимали трахею, следовательно, возрастал уровень углекислого газа и понижался уровень кислорода в крови. После этого другая собака начинала часто дышать. Возникало гиперпноэ. В следствие этого в крови уменьшался уровень СО2 и возрастал уровень О2. Эта кровь поступала к голове первой собаки и тормозила ее дыхательный центр. Гуморальное торможение дыхательного центра могло довести эту первую собаку до апноэ, т.е. остановки дыхания.
Факторы, гуморально влияющие на дыхательный центр:
Избыток СО2 - гиперкарбия, вызывает активацию дыхательного центра.
Недостаток О2 - гипоксилия, вызывает активацию дыхательного центра.
Ацидоз - накопление ионов водорода (закисление), активирует дыхательный центр.
Недостаток СО2 - торможение дыхательного центра.
Избыток О2 - торможение дыхательного центра.
Алколоз - +++торможение дыхательного центра
Сами нейроны продолговатого мозга засчет высокой активности вырабатывают много СО2 и локально воздействуют на самих себя. Положительная обратная связь (сами себя усиливают).
Кроме прямого действия СО2 на нейроны продолговатого мозга существует рефлекторное действие через рефлексогенные зоны сердечно-сосудистой системы (рефлексы Рейманса). При гиперкарбии возбуждаются хеморецепторы и от них возбуждение поступает к хемочувствительным нейронам ретикулярной формации и к хемочувствительным нейронам коры головного мозга.
Рефлекторное влияние на дыхательный центр.
1. Постоянное влияние.
Рефлекс Гелинга-Брейера. Механорецепторы в тканях легких и дыхательных путей возбуждаются при растяжении и спадении легких. Они чувствительны к растяжению. От них импульсы по вакусу (блуждающий нерв) идет в продолговатый мозг к инспираторным L-мотонейронам. Вдох прекращается и начинается пассивный выдох. Этот рефлекс обеспечивает смену вдоха и выдоха и поддерживает активность нейронов дыхательного центра.
При перегрузке вакуса и перерезке рефлекс отменяется: снижается частота дыхательных движений, смена вдоха и выдоха осуществляется резко.
Другие рефлексы:
растяжение легочной ткани тормозит последующий вдох (экспираторно-облегчающий рефлекс).
Растяжение легочной ткани при вдохе сверх нормального уровня вызывает дополнительный вздох (парадоксальный рефлекс Хеда).
Рефлекс Гейманса - возникает от хеморецепторов сердечно-сосудистой системы на концентрацию СО2 и О2.
Рефлекторное влияние с пропреорецепторов дыхательных мышц - при сокращении дыхательных мышц возникает поток импульсов от пропреорецепторов к ЦНС. По принципу обратной связи изменяется активность инспираторных и экспираторных нейронов. При недостаточном сокращении инспираторных мышц возникает респираторно-облегчающий эффект и вдох усиливается.
2. Непостоянные
Ирритантные - расположены в дыхательных путях под эпителием. Являются одновременно механо- и хеморецепторами. Имеют очень высокий порог раздражения, поэтому работают в экстраординарных случаях. Например, при понижении легочной вентиляции объем легких уменьшается, возбуждаются ирритантные рецепторы и вызывают рефлекс форсированного вдоха. В качестве хеморецепторов эти же рецепторы возбуждаются биологически активными веществами - никотин, гистамин, простогландин. Возникает чувство жжения, першения и в ответ - защитный кашлевой рефлекс. В случае патологии ирритантные рецепторы могут вызвать спазм дыхательных путей.
в альвеолах рецепторы юкста-альвеолярные и юкста-капиллярные реагируют на объем легких и биологически активные вещества в капиллярах. Повышают частоту дыхания и сокращают бронхи.
На слизистых оболочках дыхательных путей - экстерорецепторы. Кашель, чихание, задержка дыхания.
На коже - тепловые и холодовые рецепторы. Задержка дыхания и активация дыхания.
Болевые рецепторы - кратковременная задержка дыхания, затем усиление.
Энтерорецепторы - с желудка.
Пропреорецепторы - со скелетных мышц.
Механорецепторы - с сердечно-сосудистой системы.

По современным представлениям дыхательный центр - это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют несколько уровней регуляции:

1) спинальный;

2) бульбарный;

3) супрапонтиальный;

4) корковый.

Спинальный уровень представлен мотонейронами передних рогов спинного мозга, аксоны которых иннервируют дыхательные мышцы. Этот компонент не имеет самостоятельного значения, так как подчиняется импульсам из вышележащих отделов.

Нейроны ретикулярной формации продолговатого мозга и моста образуют бульбарный уровень . В продолговатом мозге выделяют следующие виды нервных клеток:

1) ранние инспираторные (возбуждаются за 0,1-0,2 с до начала активного вдоха);

2) полные инспираторные (активируются постепенно и посылают импульсы всю фазу вдоха);

3) поздние инспираторные (начинают передавать возбуждение по мере угасания действия ранних);

4) постинспираторные (возбуждаются после торможения инспираторных);

5) экспираторные (обеспечивают начало активного выдоха);

6) преинпираторные (начинают генерировать нервный импульс перед вдохом).

Аксоны этих нервных клеток могут направляться к мотонейронам спинного мозга (бульбарные волокна) или входить в состав дорсальных и вентральных ядер (протобульбарные волокна).

Нейроны продолговатого мозга, входящие в состав дыхательного центра, обладают двумя особенностями:

1) имеют реципрокные отношения;

2) могут самопроизвольно генерировать нервные импульсы.

Пневмотоксический центр образован нервными клетками моста. Они способны регулировать активность нижележащих нейронов и приводят к смене процессов вдоха и выдоха. При нарушении целостности ЦНС в области ствола мозга понижается частота дыхания и увеличивается продолжительность фазы вдоха.

Супрапонтиальный уровень представлен структурами мозжечка и среднего мозга, которые обеспечивают регуляцию двигательной активности и вегетативной функции.

Корковый компонент состоит из нейронов коры больших полушарий, влияющих на частоту и глубину дыхания. В основном они оказывают положительное влияние, особенно на моторные и орбитальные зоны. Кроме того, участие коры больших полушарий говорит о возможности самопроизвольно изменять частоту и глубину дыхания.

Таким образом, в регуляции дыхательного процесса принимают различные структуры коры больших полушарий, но ведущую роль играет бульбарный отдел.

2. Гуморальная регуляция нейронов дыхательного центра

Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым.

Г. Фредерик провел опыт перекрестного кровообращения, в котором соединил сонные артерии и яремные вены двух собак. В результате голова собаки № 1 получала кровь от туловища животного № 2, и наоборот. При пережатии трахеи у собаки № 1 произошло накопление углекислого газа, который поступил в туловище животного № 2 и вызвал у него повышение частоты и глубины дыхания - гиперпноэ. Такая кровь поступила в голову собаки под № 1 и вызвала понижение активности дыхательного центра вплоть до остановки дыхания гипопноэ и апопноэ. Опыт доказывает, что газовый состав крови напрямую влияет на интенсивность дыхания.

Возбуждающее действие на нейроны дыхательного центра оказывают:

1) понижение концентрации кислорода (гипоксемия);

2) повышение содержания углекислого газа (гиперкапния);

3) повышение уровня протонов водорода (ацидоз).

Тормозное влияние возникает в результате:

1) повышения концентрации кислорода (гипероксемии);

2) понижения содержания углекислого газа (гипокапнии);

3) уменьшения уровня протонов водорода (алкалоза).

В настоящее время учеными выделено пять путей влияния газового состава крови на активность дыхательного центра:

1) местное;

2) гуморальное;

3) через периферические хеморецепторы;

4) через центральные хеморецепторы;

5) через хемочувствительные нейроны коры больших полушарий.

Местное действие возникает в результате накопления в крови продуктов обмена веществ, в основном протонов водорода. Это приводит к активации работы нейронов.

Гуморальное влияние появляется при увеличении работы скелетных мышц и внутренних органов. В результате выделяются углекислый газ и протоны водорода, которые стоком крови поступают к нейронам дыхательного центра и повышают их активность.

Периферические хеморецепторы - это нервные окончания с рефлексогенных зон сердечно-сосудистой системы (каротидные синусы, дуга аорты и т. д.). Они реагируют на недостаток кислорода. В ответ начинают посылаться импульсы в ЦНС, приводящие к увеличению активности нервных клеток (рефлекс Бейнбриджа).

В состав ретикулярной формации входят центральные хеморецепторы , которые обладают повышенной чувствительностью к накоплению углекислого газа и протонов водорода. Возбуждение распространяется на все зоны ретикулярной формации, в том числе и на нейроны дыхательного центра.

Нервные клетки коры больших полушарий также реагируют на изменение газового состава крови.

Таким образом, гуморальное звено играет важную роль в регуляции работы нейронов дыхательного центра.

3. Нервная регуляция активности нейронов дыхательного центра

Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний - эпизодические и постоянные.

К постоянным относятся три вида:

1) от периферических хеморецепторов сердечно-сосудистой системы (рефлекс Гейманса);

2) от проприорецепторов дыхательных мышц;

3) от нервных окончаний растяжений легочной ткани.

В процессе дыхания мышцы сокращаются и расслабляются. Импульсы от проприорецепторов поступают в ЦНС одновременно к двигательным центрам и нейронам дыхательного центра. Происходит регуляция работы мышц. При возникновении каких-либо препятствий дыхания инспираторные мышцы начинают еще больше сокращаться. В результате устанавливается зависимость между работой скелетных мышц и потребностями организма в кислороде.

Рефлекторные влияния от рецепторов растяжения легких были впервые обнаружены в 1868 г. Э. Герингом и И. Брейером. Они обнаружили, что нервные окончания, расположенные в гладкомышечных клетках, обеспечивают три вида рефлексов:

1) инспираторно-тормозные;

2) экспираторно-облегчающие;

3) парадоксальный эффект Хеда.

При нормальном дыхании возникает инспираторно-тормозные эффекты. Во время вдоха легкие растягиваются, и импульсы от рецепторов по волокнам блуждающих нервов поступают в дыхательный центр. Здесь происходит торможение инспираторных нейронов, что приводит к прекращению активного вдоха и наступлению пассивного выдоха. Значение этого процесса заключается в обеспечении начала выдоха. При перегрузке блуждающих нервов смена вдоха и выдоха сохраняется.

Экспираторно-облегчающий рефлекс можно обнаружить только в ходе эксперимента. Если растягивать легочную ткань в момент выдоха, то наступление следующего вдоха задерживается.

Парадоксальный эффект Хеда можно осуществить в ходе опыта. При максимальном растяжении легких в момент вдоха наблюдается дополнительный вдох или вздох.

К эпизодическим рефлекторным влияниям относятся:

1) импульсы от ирритарных рецепторов легких;

2) влияния с юкстаальвеолярных рецепторов;

3) влияния со слизистой оболочки дыхательных путей;

4) влияния от рецепторов кожи.

Ирритарные рецепторы расположены в эндотелиальном и субэндотелиальном слое дыхательных путей. Они выполняют одновременно функции механорецепторов и хеморецепторов. Механорецепторы обладают высоким порогом раздражения и возбуждаются при значительным спадании легких. Подобные спадания наступают в норме 2-3 раза в час. При уменьшении объема легочной ткани рецепторы посылают импульсы к нейронам дыхательного центра, что приводит к дополнительному вдоху. Хеморецепторы реагируют на появление частиц пыли в слизи. При активации ирритарных рецепторов возникают чувство першения в горле и кашель.

Юкстаальвеолярные рецепторы находятся в интерстиции. Они реагируют на появление химических веществ - серотонина, гистамина, никотина, а также на изменение жидкости. Это приводит к особому виду одышки при отеке (при пневмонии).

При сильном раздражении слизистой оболочки дыхательных путей происходит остановка дыхания, а при умеренном появляются защитные рефлексы. Например, при раздражении рецепторов носовой полости возникает чиханье, при активации нервных окончаний нижних дыхательных путей - кашель.

На частоту дыхания оказывают влияние импульсы, поступающие от температурных рецепторов. Так, например, при погружении в холодную воду наступает задержка дыхания.

При активации ноцецепторов сначала наблюдается остановка дыхания, а затем происходит постепенное учащение.

Во время раздражения нервных окончаний, заложенных в тканях внутренних органов, происходит уменьшение дыхательных движений.

При повышении давления наблюдается резкое понижение частоты и глубины дыхания, что влечет уменьшение присасывающей способности грудной клетки и восстановление величины кровяного давления, и наоборот.

Таким образом, рефлекторные влияния, оказываемые на дыхательный центр, поддерживают на постоянном уровне частоту и глубину дыхания.

Дыхательный центр не только обеспечивает ритмическое чередование вдоха и выдоха, но и способен изменять глубину и частоту дыхательных движений, приспосабливая тем самым легочную вентиляцию к текущим потребностям организма. Факторы внешней среды, например состав и давление атмосферного воздуха, окружающая температура, и изменения состояния организма, например при мышечной работе, эмоциональном возбуждении и др., влияя на интенсивность обмена веществ, а, следовательно, потребление кислорода и выделение углекислого газа, действуют на функциональное состояние дыхательного центра. В результате меняется объем легочной вентиляции.

Как и все другие процессы автоматической регуляции физиологических функций, регуляция дыхания осуществляется в организме на основе принципа обратной связи. Это значит, что деятельность дыхательного центра, регулирующего снабжение организма кислородом и удаление образующегося в нем углекислого газа, определяется состоянием регулируемого им процесса. Накопление в крови углекислоты, а также недостаток кислорода являются факторами, вызывающими возбуждение дыхательного центра.

Значение газового состава крови в регуляции дыхания было показано Фредериком путем опыта с перекрестным кровообращением. Для этого у двух собак, находившихся под наркозом, перерезали и соединяли перекрестно их сонные артерии и отдельно яремные вены (рисунок 2) После такого соединения этих и зажатия других сосудов шеи голова первой собаки снабжалась кровью не от собственного туловища, а от туловища второй собаки, голова же второй собаки - от туловища первой.

Если у одной из этих собак зажать трахею и таким образом производить удушение организма, то через некоторое время у нее происходит остановка дыхания (апноэ), у второй же собаки возникает резкая одышка (диспноэ). Это объясняется тем, что зажатие трахеи у первой собаки вызывает накопление СО 2 в крови ее туловища (гиперкапния) и уменьшение содержания кислорода (гипоксемия). Кровь из туловища первой собаки поступает в голову второй собаки и стимулирует ее дыхательный центр. В результате возникает усиленное дыхание - гипервентиляция - у второй собаки, что приводит к снижению напряжения СО 2 и повышению напряжения О 2 в крови сосудов туловища второй собаки. Богатая кислородом и бедная углекислым газом кровь из туловища этой собаки поступает в голову первой и вызывает у нее апноэ.

Рисунок 2 - Схема опыта Фредерика с перекрестным кровообращением

Опыт Фредерика показывает, что деятельность дыхательного центра изменяется при изменении напряжения СО 2 и О 2 в крови. Рассмотрим влияние на дыхание каждого из этих газов в отдельности.

Значение напряжения углекислого газа в крови в регуляции дыхания. Повышение напряжения углекислого газа в крови вызывает возбуждение дыхательного центра, приводящее к увеличению вентиляции легких, а понижение напряжения углекислого газа в крови угнетает деятельность дыхательного центра, что приводит к уменьшению вентиляции легких. Роль углекислого газа в регуляции дыхания доказана Холденом в опытах, в которых человек находился в замкнутом пространстве небольшого объема. По мере того как во вдыхаемом воздухе уменьшается содержание кислорода и увеличивается содержание углекислого газа, начинает развиваться диспноэ. Если же поглощать выделяющийся углекислый газ натронной известью, содержание кислорода во вдыхаемом воздухе может снизиться до 12%, причем заметного увеличения легочной вентиляции не наступает. Таким образом, увеличение объема вентиляции легких в этом опыте обусловлено повышением содержания во вдыхаемом воздухе углекислого газа.

В другой серии экспериментов Холден определял объем вентиляции легких и содержание углекислого газа в альвеолярном воздухе при дыхании газовой смесью с разным содержанием углекислого газа. Полученные результаты приведены в таблице 1.

дыхание мышечная газовый кровь

Таблица 1 - Объем вентиляции легких и содержание углекислого газа в альвеолярном воздухе

Данные, приведенные в таблице 1, показывают, что одновременно с увеличением содержания углекислого газа во вдыхаемом воздухе нарастает его содержание в альвеолярном воздухе, а значит, и в артериальной крови. При этом происходит увеличение вентиляции легких.

Результаты экспериментов дали убедительное доказательство того, что состояние дыхательного центра зависит от содержания углекислого газа в альвеолярном воздухе. Выявлено, что увеличение содержания СО 2 в альвеолах на 0,2% вызывает увеличение вентиляции легких на 100%.

Уменьшение содержания углекислого газа в альвеолярном воздухе (и, следовательно, уменьшение напряжения его в крови) понижает деятельность дыхательного центра. Это происходит, например, в результате искусственной гипервентиляции, т. е. усиленного глубокого и частого дыхания, которое приводит к снижению парциального давления СО 2 в альвеолярном воздухе и напряжения СО 2 в крови. В результате наступает остановка дыхания. Пользуясь таким способом, т. е. производя предварительную гипервентиляцию, можно значительно увеличить время произвольной задержки дыхания. Так поступают ныряльщики, когда им нужно провести под водой 2…3 минуты (обычная длительность произвольной задержки дыхания составляет 40…60 секунд).

Прямое возбуждающее действие углекислоты на дыхательный центр доказано путем различных экспериментов. Инъекция 0,01 мл раствора, содержащего углекислоту или ее соль, в определенный участок продолговатого мозга вызывает усиление дыхательных движений. Эйлер подвергал изолированный продолговатый мозг кошки действию углекислого газа и наблюдал, что это вызывает увеличение частоты электрических разрядов (потенциалов действия), свидетельствующее о возбуждении дыхательного центра.

На дыхательный центр оказывает влияние повышение концентрации водородных ионов. Винтерштейн в 1911 г. высказал точку зрения, что возбуждение дыхательного центра вызывает не сама угольная кислота, а, повышение концентрации водородных ионов вследствие увеличения ее содержания в клетках дыхательного центра. Это мнение основывается на том, что усиление дыхательных движений наблюдается при введении в артерии, питающие мозг, не только угольной кислоты, но и других кислот, например молочной. Возникающая при увеличении концентрации водородных ионов в крови и тканях гипервентиляция способствует выделению из организма части содержащейся в крови углекислоты и тем самым приводит к уменьшению концентрации водородных ионов. Согласно этим экспериментам, дыхательный центр является регулятором постоянства не только напряжения углекислоты в крови, но и концентрации водородных ионов.

Установленные Винтерштейном факты нашли подтверждение в экспериментальных исследованиях. Вместе с тем ряд физиологов настаивал на том, что угольная кислота является специфическим раздражителем дыхательного центра и оказывает на него более сильное возбуждающее действие, чем другие кислоты. Причиной этого оказалось то, что углекислый газ легче, чем Н+-ион, проникает через гематоэнцефалический барьер, отделяющий кровь от цереброспинальной жидкости, которая является непосредственной средой, омывающей нервные клетки, и легче проходит через мембрану самих нервных клеток. При поступлении СО 2 внутрь клетки образуется Н 2 СО 3 , которая диссоциирует с освобождением Н+-ионов. Последние и являются возбудителями клеток дыхательного центра.

Другой причиной более сильного по сравнению с другими кислотами действия Н 2 СО 3 является, по мнению ряда исследователей, то, что она специфически влияет на некоторые биохимические процессы в клетке.

Стимулирующее влияние углекислого газа на дыхательный центр является основанием одного мероприятия, нашедшего применение в клинической практике. При ослаблении функции дыхательного центра и возникающем при этом недостаточном снабжении организма кислородом больного заставляют дышать через маску смесью кислорода с 6% углекислого газа. Такая газовая смесь носит название карбогена.

Механизм действия повышенного напряжения СО 2 и увеличенной концентрации Н+-ионов в крови на дыхание. Долгое время считалось, что повышение напряжения углекислого газа и увеличение концентрации Н+-ионов в крови и цереброспинальной жидкости (ликворе) влияют непосредственно на инспираторные нейроны дыхательного центра. В настоящее же время установлено, что изменения напряжения СО 2 и концентрации Н + -ионов действуют на дыхание, возбуждая находящиеся вблизи дыхательного центра хеморецепторы, чувствительные к указанным выше изменениям. Эти хеморецепторы находятся в тельцах диаметром около 2 мм, расположенных симметрично с двух сторон продолговатого мозга на вентролатеральной его поверхности поблизости от места выхода подъязычного нерва.

Значение хеморецепторов продолговатого мозга видно из следующих фактов. При воздействии на эти хеморецепторы углекислого газа или растворов с повышенной концентрацией Н+-ионов наблюдается стимуляция дыхания. Охлаждение одного из хеморецепторных телец продолговатого мозга влечет за собой, согласно опытам Лешке, прекращение дыхательных движений на противоположной стороне тела. Если хеморецепторные тельца разрушены или отравлены новокаином, дыхание прекращается.

Наряду с хеморецепторами продолговатого мозга в регуляции дыхания важная роль принадлежит хеморецепторам, находящимся в каротидном и аортальном тельцах. Это было доказано Геймансом в методически сложных опытах, в которых сосуды двух животных соединялись так, что каротидный синус и каротидное тельце или дуга аорты и аортальное тельце одного животного снабжались кровью другого животного. Оказалось, что увеличение концентрации Н + -ионов в крови и повышение напряжения СО 2 вызывают возбуждение каротидных и аортальных хеморецепторов и рефлекторное усиление дыхательных движений.

Имеются данные, что 35% эффекта, вызываемого вдыханием воздуха с высоким содержанием углекислого газа, обусловлены влиянием на хеморецепторы увеличенной концентрации Н + -ионов в крови, а 65% являются результатом повышения напряжения СО 2 . Действие СО 2 объясняется быстрой диффузией углекислого газа через мембрану хеморецептора и сдвигом концентрации Н + -ионов внутри клетки.

Рассмотрим влияние недостатка кислорода на дыхание. Возбуждение инспираторных нейронов дыхательного центра возникает не только при повышении напряжения углекислого газа в крови, но и при понижении напряжения кислорода.

Пониженное напряжение кислорода в крови вызывает рефлекторное усиление дыхательных движений, действуя на хеморецепторы сосудистых рефлексогенных зон. Прямое доказательство того, что понижение напряжения кислорода в крови возбуждает хеморецепторы каротидного тельца, получено Геймансом, Нилом и другими физиологами путем регистрации биоэлектрических потенциалов в синокаротидном нерве. Перфузия каротидного синуса кровью с пониженным напряжением кислорода приводит к учащению потенциалов действия в этом нерве (рисунок 3) и к учащению дыхания. После разрушения хеморецепторов понижение напряжения кислорода в крови не вызывает изменений дыхания.

Рисунок 3 - Электрическая активность синусного нерва (по Нилу) А - при дыхании атмосферным воздухом; Б - при дыхании газовой смесью, содержащей 10% кислорода и 90% азота. 1 - запись электрической активности нерва; 2 - запись двух пульсовых колебаний артериального давления. Калибровочные линии соответствуют величине давления 100 и 150 мм рт. ст.

Запись электрических потенциалов Б показывает непрерывную частую импульсадию, возникающую при раздражении хеморецепторов недостатком кислорода. Высокоамплитудные потенциалы в периоды пульсовых повышений артериального давления обусловлены импульсацией прессорецепторов каротидного синуса.

Тот факт, что раздражителем хеморецепторов является понижение напряжения кислорода в плазме крови, а не уменьшение общего содержания его в крови, доказывается следующими наблюдениями Л. Л. Шика. При понижении количества гемоглобина или при связывании его угарным газом содержание кислорода в крови резко уменьшено, но растворение О 2 в плазме крови не нарушено и напряжение его в плазме остается нормальным. При этом возбуждения хеморецепторов не происходит и дыхание не меняется, хотя транспорт кислорода резко нарушен и ткани испытывают состояние кислородного голодания, так как недостаточно кислорода доставляется им гемоглобином. При понижении атмосферного давления, когда уменьшается напряжение кислорода в крови, возникает возбуждение хеморецепторов и учащение дыхания.

Характер изменения дыхания при избытке углекислоты и понижении напряжения кислорода в крови различен. При небольшом понижении напряжения кислорода в крови наблюдается рефлекторное учащение ритма дыхания, а при незначительном повышении напряжения углекислоты в крови происходит рефлекторное углубление дыхательных движений.

Таким образом, деятельность дыхательного центра регулируется воздействием повышенной концентрации Н+-ионов и увеличенного напряжения СО 2 на хеморецепторы продолговатого мозга и на хеморецепторы каротидного и аортального телец, а также действием на хеморецепторы указанных сосудистых рефлексогенных зон понижения напряжения кислорода в артериальной крови.

Причины первого вдоха новорожденного объясняются тем, что в утробе матери газообмен плода происходит через пупочные сосуды, тесно контактирующие с материнской кровью в плаценте. Прекращение этой связи с матерью при рождении приводит к понижению напряжения кислорода и накоплению углекислоты в крови плода. Это, по данным Баркрофта, вызывает раздражение дыхательного центра и приводит к вдоху.

Для наступления первого вдоха важно, чтобы прекращение эмбрионального дыхания произошло внезапно: при медленном зажатии пуповины дыхательный центр не возбуждается и плод погибает, не совершив ни единого вдоха.

Следует учитывать также, что переход в новые условия вызывает у новорожденного раздражение ряда рецепторов и поступление по афферентным нервам потока импульсов, повышающих возбудимость центральной нервной системы, в том числе и дыхательного центра (И. А. Аршавский).

Значение механорецепторов в регуляции дыхания. Дыхательный центр получает афферентные импульсы не только от хеморецепторов, но и от прессорецепторов сосудистых рефлексогенных зон, а также от механорецепторов легких, дыхательных путей и дыхательных мышц.

Влияние прессорецепторов сосудистых рефлексогенных зон обнаруживается в том, что повышение давления в изолированном каротидном синусе, связанном с организмом только нервными волокнами, приводит к угнетению дыхательных движений. Это происходит и в организме при повышении артериального давления. Наоборот, при понижении артериального давления дыхание учащается и углубляется.

Важное значение в регуляции дыхания имеют импульсы, поступающие к дыхательному центру по блуждающим нервам от рецепторов легких. От них в значительной степени зависит глубина вдоха и выдоха. Наличие рефлекторных влияний с легких было описано в 1868 г. Герингом и Брейером и легло в основу представления о рефлекторной саморегуляции дыхания. Она проявляется в том, что при вдохе в рецепторах, находящихся в стенках альвеол, возникают импульсы, рефлекторно тормозящие вдох, и стимулирующих выдох, а при очень резком выдохе, при крайней степени уменьшения объема легких возникают импульсы, поступающие к дыхательному центру и рефлекторно стимулирующие вдох. О наличии такой рефлекторной регуляции свидетельствуют следующие факты:

В легочной ткани в стенках альвеол, т. е. в наиболее растяжимой части легкого, имеются интерорецепторы, представляющие собой воспринимающие раздражения окончания афферентных волокон блуждающего нерва;

После перерезки блуждающих нервов дыхание становится резко замедленным и глубоким;

При раздувании легкого индифферентным газом, например азотом, при обязательном условии целости блуждающих нервов, мускулатура диафрагмы и межреберий внезапно перестает сокращаться, вдох останавливается, не достигнув обычной глубины; наоборот, при искусственном отсасывании воздуха из легкого наступает сокращение диафрагмы.

На основании всех этих фактов авторы пришли к выводу, что растяжение легочных альвеол во время вдоха вызывает раздражение рецепторов легких, вследствие чего учащаются импульсы, приходящие к дыхательному центру по легочным ветвям блуждающих нервов, а это рефлекторно возбуждает экспираторные нейроны дыхательного центра, и, следовательно, влечет за собой возникновение выдоха. Таким образом, как писали Геринг и Брейер, «каждый вдох, поскольку он растягивает легкие, сам подготовляет свой конец».

Если соединить с осциллографом периферические концы перерезанных блуждающих нервов, можно зарегистрировать потенциалы действия, возникающие в рецепторах легких и идущие по блуждающим нервам к центральной нервной системе не только при раздувании легких, но и при искусственном отсасывании из них воздуха. При естественном же дыхании частые токи действия в блуждающем нерве обнаруживаются только во время вдоха; во время же естественного выдоха их не наблюдается (рисунок 4).


Рисунок 4 - Токи действия в блуждающем нерве при растяжении легочной ткани во время вдоха (по Эдриану) Сверху вниз: 1 - афферентные импульсы в блуждающем нерве: 2 - запись дыхания (вдох - вверх, выдох - вниз); 3 - отметка времени

Следовательно, спадение легких обусловливает рефлекторное раздражение дыхательного центра только при таком сильном их сжатии, какого не бывает при нормальном, обычном выдохе. Это наблюдается лишь при очень глубоком выдохе или внезапном двустороннем пневмотораксе, на что диафрагма рефлекторно реагирует сокращением. Во время естественного дыхания рецепторы блуждающих нервов раздражаются только при растяжении легких и рефлекторно стимулируют выдох.

Помимо механорецепторов легких, в регуляции дыхания принимают участие механорецепторы межреберных мышц и диафрагмы. Они возбуждаются растяжением при выдохе и рефлекторно стимулируют вдох (С. И. Франштейн).

Соотношения между инспираторными и экспираторными нейронами дыхательного центра. Между инспираторными и экспираторными нейронами существуют сложные реципрокные (сопряженные) соотношения. Это означает, что возбуждение инспираторных нейронов тормозит экспираторные, а возбуждение экспираторных нейронов тормозит инспиряторные. Такие явления частично обусловлены наличием прямых связей, существующих между нейронами дыхательного центра, но в основном они зависят от рефлекторных влияний и от функционирования центра пневмотаксиса.

Взаимодействие между нейронами дыхательного центра в настоящее время представляют следующим образом. Вследствие рефлекторного (через хеморецепторы) действия углекислоты на дыхательный центр возникает возбуждение инспираторных нейронов, которое передается на мотонейроны, иннервирующие дыхательные мышцы, вызывая акт вдоха. Одновременно импульсы от инспираторных нейронов поступают к центру пневмотаксиса, расположенному в варолиевом мосту, а от него по отросткам его нейронов импульсы приходят к экспираторным нейронам дыхательного центра продолговатого мозга, вызывая возбуждение этих нейронов, прекращение вдоха и стимуляцию выдоха. Кроме того, возбуждение экспираторных нейронов во время вдоха осуществляется и рефлекторно посредством рефлекса Геринга - Брейера. После перерезки блуждающих нервов приток импульсов от механорецепторов легких прекращается и экспираторные нейроны могут возбуждаться лишь посредством импульсов, приходящих из центра пневмотаксиса. Импульсация, возбуждающая центр выдоха, значительно уменьшается и возбуждение его несколько запаздывает. Поэтому после перерезки блуждающих нервов вдох продолжается значительно дольше и сменяется выдохом позднее, чем до перерезки нервов. Дыхание становится редким и глубоким.

Аналогичные изменения дыхания при целых блуждающих нервах возникают после перерезки ствола мозга на уровне варолиева моста, отделяющей центр пневмотаксиса от продолговатого мозга (см. рисунок 1, рисунок 5). После такой перерезки поступление импульсов, возбуждающих центр выдоха, также уменьшается, и дыхание становится редким и глубоким. Возбуждение центра выдоха в этом случае осуществляется только импульсами, поступающими к нему по блуждающим нервам. Если у такого животного произвести еще и перерезку блуждающих нервов или прервать распространение импульсов по этим нервам путем охлаждения их, то возбуждения центра выдоха не наступает и дыхание останавливается в фазе максимального вдоха. Если после этого восстановить проводимость блуждающих нервов путем согревания их, то вновь периодически возникает возбуждение центра выдоха и восстанавливается ритмическое дыхание (рисунок 6).

Рисунок 5 - Схема нервных связей дыхательного центра 1 - инспираторный центр; 2 - центр пневмотаксиса; 3 - экспираторный центр; 4 - механорецепторы легкого. После перезки по линиям / и // в отдельности ритмическая деятельность дыхательного центра сохраняется. При одновременной перерезке происходит остановка дыхания в фазе вдоха.

Таким образом, жизненно важная функция дыхания, возможная лишь при ритмическом чередовании вдоха и выдоха, регулируется сложным нервным механизмом. При его изучении обращает на себя внимание множественное обеспечение работы этого механизма. Возбуждение центра вдоха возникает как под влиянием увеличения концентрации водородных ионов (повышения напряжения СО 2) в крови, вызывающего возбуждение хеморецепторов продолговатого мозга и хеморецепторов сосудистых рефлексогенных зон, так и в результате влияния пониженного напряжения кислорода на аортальные и каротидные хеморецепторы. Возбуждение центра выдоха обусловлено как рефлекторными импульсами, приходящими к нему по афферентным волокнам блуждающих нервов, так и влиянием центра вдоха, осуществляемым через центр пневмотаксиса.

Возбудимость дыхательного центра изменяется при действии нервных импульсов, поступающих по шейному симпатическому нерву. Раздражение этого нерва повышает возбудимость центра дыхания, что усиливает и учащает дыхание.

Влиянием симпатических нервов на дыхательный центр отчасти объясняются изменения дыхания при эмоциях.

Рисунок 6 - Влияние выключения блуждающих нервов на дыхание после перерезания мозга на уровне между линиями I и II (см. рисунок 5) (по Стелла) а - запись дыхания; б - отметка охлаждения нервов

1) кислород

3) углекислый газ

5) адреналин

307. Центральные хеморецепторы, участвующие в регуляции дыхания, локализуются

1) в спинном мозге

2) в варолиевом мосту

3) в коре головного мозга

4) в продолговатом мозге

308. Периферические хеморецепторы, участвующие в регуляции дыхания, в основном локализуются

1) в кортиевом органе, дуге аорты, каротидном синусе

2) в капиллярном русле, дуге аорты

3) в дуге аорты, каротидном синусе

309. Гиперпноэ после произвольной задержки дыхания возникает в результате

1) снижения в крови напряжения СО2

2) снижения в крови напряжения О2

3) увеличения в крови напряжения О2

4) увеличения в крови напряжения СО2

310. Физиологическое значение рефлекса Геринга- Брейера

1) в прекращении вдоха при защитных дыхательных рефлексах

2) в увеличении частоты дыхания при повышении температуры тела

3) в регуляции соотношения глубины и частоты дыхания в зависимости от объема легких

311. Сокращения дыхательных мышц полностью прекращаются

1) при отделении моста от продолговатого мозга

2) при двусторонней перерезке блуждающих нервов

3) при отделении головного мозга от спинного на уровне нижних шейных сегментов

4) при отделении головного мозга от спинного на уровне верхних шейных сегментов

312. Прекращение вдоха и начало выдоха обусловлено преимущественно влиянием от рецепторов

1) хеморецепторов продолговатого мозга

2) хеморецепторов дуги аорты и каротидного синуса

3) ирритантных

4) юкстакапиллярных

5) растяжения легких

313. Диспноэ (одышка) возникает

1) при вдыхании газовых смесей с повышенным (6%) содержанием двуокиси углерода

2) ослаблении дыхания и его остановке

3) недостаточности или затрудненности дыхания (тяжелая мышечная работа, патология органов дыхания).

314. Газовый гомеостаз в условиях высокогорья сохраняется благодаря

1) снижению кислородной емкости крови

2) снижению частоты сокращений сердца

3) уменьшению частоты дыхания

4) увеличению количества эритроцитов

315. Нормальный вдох обеспечивается за счет сокращения

1) внутренних межреберных мышц и диафрагмы

2) внутренних и наружных межреберных мышц

3) наружных межреберных мышц и диафрагмы

316. Сокращения дыхательных мышц полностью прекращаются после перерезки спинного мозга на уровне

1) нижних шейных сегментов

2) нижних грудных сегментов

3) верхних шейных сегментов

317. Усиление активности дыхательного центра и увеличение вентиляции легких вызывает

1) гипокапния

2) нормокапния

3) гипоксемия

4) гипоксия

5) гиперкапния

318. Увеличение вентиляции легких, которое обычно наблюдается при подъеме на высоту более 3 км, приводит

1) к гипероксии

2) к гипоксемии

3) к гипоксии

4) к гиперкапнии

5) к гипокапнии

319. Рецепторный аппарат каротидного синуса контролирует газовый состав

1) спино-мозговой жидкости

2) артериальной крови, поступающей в большой круг кровообращения

3) артериальной крови, поступающей в головной мозг

320. Газовый состав крови, поступающей в головной мозг, контролирует рецепторы

1) бульбарные

2) аортальные

3) каротидных синусов

321. Газовый состав крови, поступающей в большой круг кровообращения, контролирует рецепторы

1) бульбарные

2) каротидных синусов

3) аортальные

322. Периферические хеморецепторы каротидного синуса и дуги аорты чувствительны, преимущественно,

1) к повышению напряжения О2 и СО2, уменьшению рН крови

2) к повышению напряжения О2, снижению напряжения СО2, увеличению рН крови

3) снижению напряжения О2 и Со2, увеличению рН крови

4) снижению напряжения О2, увеличению напряжения СО2, уменьшению рН крови

ПИЩЕВАРЕНИЕ

323. Какие составные части пищи и продуктов ее переваривания усиливают моторику кишечника?(3)

· Черный хлеб

· Белый хлеб

324. Какова основная роль гастрина:

· Активирует ферменты поджелудочной железы

· Превращает в желудке пепсиноген в пепсин

· Стимулирует секрецию желудочного сока

· Тормозит секрецию поджелудочной же­лезы

325. Какова реакция слюны и желудочного сока в фазу пищеварения:

· рН слюны 0,8-1,5, рН желудочного сока 7,4-8.

· рН слюны 7,4-8,0, рН желудочного сока 7,1-8,2

· рН слюны 5,7-7,4, рН желудочного сока 0,8-1,5

· рН слюны 7,1-8,2, рН желудочного сока 7,4-8,0

326. Роль секретина в процессе пищеварения:

· Стимулирует секрецию HCI.

· Тормозит секрецию желчи

· Стимулирует секрецию сока поджелудочной железы

327. Как влияют указанные ниже вещества на моторику тонкого кишечника?

· Адреналин усиливает, ацетилхолин тормозит

· Адреналин тормозит, ацетилхолин усиливает

· Адреналин не влияет, ацетилхолин усиливает

· Адреналин тормозит, ацетилхолин не влияет

328. Вставьте пропущенные слова, выбрав наиболее правильные ответы.

Стимуляция парасимпатических нервов....................... величину секреции слюны с ………………………… концентрацией органических соединений.

· Увеличивает, низкой

· Уменьшает, высокой

· Увеличивает, высокой.

· Уменьшает, низкой

329. Под действием какого фактора нерастворимые жирные кислоты превращаются в пищеварительном тракте в растворимые:

· Под действием липазы сока поджелудочной железы

· Под воздействием липазы желудочного сока

· Под воздействием желчных кислот

· Под воздействием соляной кислоты желудочного сока

330. Что вызывает набухание белков в пищеварительном тракте:

· Бикарбонаты

· Соляная кислота

· Кишечный сок

331. Назовите, какие из перечисленных ниже веществ являются естественными эндогенными стимуляторами желудочной секреции. Выберите наиболее правильный ответ:

· Гистамин, гастрин, секретин

· Гистамин, гастрин, энтерогастрин

· Гистамин, соляная кислота, энтерокиназа

· .Гастрин, соляная кислота, секретин

11. Будет ли всасываться в кишечнике глюкоза, если в крови концентрация ее равна 100 мг%, а в просвете кишечника- 20 мг%:

· Не будет

12. Как изменится моторная функция кишечника, если собаке ввести атропин:

· Моторная функция кишечника не изменится

· Наблюдается ослабление моторной функции кишечника

· Наблюдается усиление моторной функции кишечника

13. Какое вещество при введении в кровь вызывает торможение выделения соляной кислоты в желудке:

· Гастрин

· Гистамин

· Секретин

· Продукты переваривания белков

14. Какое из перечисленных ниже веществ усиливает движение ворсинок кишечника:

· Гистамин

· Адреналин

· Вилликинин

· Секретин

15. Какое из перечисленных ниже веществ усиливает моторику желудка:

· Гастрин

· Энтерогастрон

· Холецистокинин-панкреозимин

16.Выделите из перечисленных ниже веществ гормоны, которые вырабатываются в 12-перстной кишке:

· Секретин, тироксин, вилликинин, гастрин

· Секретин, энтерогастрин, виллликинин, холецистокинин

· Секретин, энтерогастрин, глюкагон, гистамин

17. В каком из вариантов исчерпывающе и правильно перечислены функции желудочно-кишечного тракта?

· Моторная, секреторная, экскреторная, всасывание

· Моторная, секреторная, всасывание, экскреторная, инкреторная

· Моторная, секреторная, всасывание, инкреторная

18. Желудочный сок содержит ферменты:

· Пептидазы

· Липазу, пептидазы, амилазу

· Протеазы, липазу

· Протеазы

19. Непроизвольный акт дефекации осуществляется при участии центра, расположенного:

· В продолговатом мозге

· В грудном отделе спинного мозга

· В пояснично-крестцовом отделе спинного мозга

· В гипоталамусе

20. Выберите наиболее правильный ответ.

Поджелудочный сок содержит:

· Липазу, пептидазу

· Липазу, пептидазу, нуклеазу

· Липазу, пептидазу, протеазу, амилазу, нуклеазу, эластазу

· Эластазу, нуклеазу, пептидазу

21. Выберите наиболее правильный ответ.

Симпатическая нервная система:

· Тормозит моторику ЖКТ

· Тормозит секрецию и моторику ЖКТ

· Тормозит секрецию ЖКТ

· Активирует моторику и секрецию ЖКТ

· Активирует моторику ЖКТ

23. В 12-перстную кишку ограничено поступление желчи. Это приведет:

· К нарушению расщепления белка

· К нарушению расщепления углеводов

· К торможению моторики кишечника

· К нарушению расщепления жирсв

25. Центры голода и насыщения располагаются:

· В мозжечке

· В таламусе

· В гипоталамусе

29. Гастрин образуется в слизистой оболочке:

· Тела и дна желудка

· Антрального отдела

· Большой кривизны

30. Гастрин стимулирует преимущественно:

· Главные клетки

· Слизистые клетки

· Париетальные клетки

33. Моторику желудочно-кишечного тракта стимулирует:

· Парасимпатическая нервная система

· Симпатическая нервная система