Врожденный и приобретенный иммунитет. Приобретенный иммунитет: активный и пассивный Каким образом приобретается иммунитет

Приобретённый иммунитет развивается, как правило, в результате первичного контакта иммунной системы с инфекционным агентом. Начинается пролиферация соответствующих антиген-специфических клеток, эффекторные механизмы устраняют антиген, вследствие этого интенсианость ответа данной специфичности падает при сохранении возможности организма реагировать на другие инфекции. Для ограничения образования антител должен существовать механизм обратной связи. Иначе после антигенной стимуляции наш организм переполнился бы клонами антителообразующих клеток и их продуктима. Главным регулятором образования антител может быть сам антиген. В его присутствии иммунный ответ повышается, а при уменьшении концентрации – снижается. Существование такого регулирующего механизма антиген-антитело многократно подтверждено научными исследованиями. Способность образования антител определяется кодом в определенной хромосоме. Экспериментально доказано, что способность продуцировать идиотипичные антитела наследуется генетически закодированными части иммуноглобулинов, то есть ген кодирующий идиотип антитела находится на той же хромосоме. Эффективность механизмов генерации разнообразия антител на основе имеющихся антигенов настолько велика, что предположения развития иммунодефицитных состояний организма врядли может быть обусловлено дефектами набора генов в иммуноглобулинах.

Иммунитет к инфекциям представляет собой постоянное поле сражения между защитными механизмами хозяина и постоянно мутирующими микробами, стратегия которых состоит в том, как противостоять действию механизмов защиты хозяина. Бактерии стараются избегать фагоцитоза, окружая себя капсулами, секретируя экзотоксины, убивающие фагоцитов. Они стараются заселять относительно недоступные для иммунной системы участки организма. Секреторная иммунная система защищает контактирующие с внешней средой слизистые оболочки и покровы тела. Например, внутриклеточные микроорганизмы, такие как, микобактерии туберкулёза и проказы, растут и размножаются внутри макрофагов. Они защищаются от механизмов уничтожения, подавляя слояние фагосом с лизосомами, образуя наружную оболочку или выходя из фагосом в цитоплазму.

Вирусы уклоняются от действия иммунной системы, изменяя антигенные свойства поверхностной оболочки. Точечные мутации вызывают существенные изменения, приводящие к массовым эпидемиям, в результате обмена генетическим материалом с другими вирусами, имеющими других хозяев. При анализе ответной реакции организма на инфекцию, выясняются подробные детали того, как специфический иммунный ответ усиливает эффективность врождённых неспецифических механизмов иммунитета.

Было бы много проще, если бы педиатры, имеющие отношение к иммунопрофилактике, досконально знали основы иммунологии и вакцинации... ещё со студенческой скамьи. Они учили иммунологию, которая давно отошла от первоначальных представлений в прошлое, когда термин «иммунитет» использовали исключительно для обозначения свойств и явлений, позволяющих противостоять нападению «болезнетворных микробов».

Известный учёный, онковирусолог Л.Зильбер дополнил и развил учение И.Мечникова тем, что определил состояние невосприимчивости как совокупность всех наследственно полученных и индивидуально приобретённых свойств, препятствующих проникновению и размножению микробов. Непосредственно, действию выделяемых ими токсичных продуктов жизнедеятельности. Совокупность внутренних защитных процессов, считал Л.Зильбер, направлена на восстановление постоянства внутренней среды организма человека в случаях нарушения её функционирования инфекционными или другими антигенами.

Следует отметить, что раньше работ Л.Зильбера, были опубликованы заключения академика Н.Гамалея, который относил иммунологические реакции к явлениям гомеостаза, а именно к регуляторам динамического постоянства внутренней среды организма человека. Именно академик Гамалея обращал, особое внимание на то, что среди нас находится 15% таких лиц, у которых никогда не образуются специфические защитные антитела даже после защитной иммунизации, причём, у каждого человека это происходит индивидуально с разными патогенными антигенами. Например, для дифтерии необходима ранняя диагностика и лечение, ни один случай нельзя запускать. Надо быть "талантливым" врачом, чтобы при отсутствии дефицита антибиотиков довести бактериальное заболевание до тяжелых осложнений.

Особое место в «новой» иммунологии как очередном этапе её развития занимает клонально-селекционная теория австралийского учёного М.Бернета. В основу этой теории положены ранее известные, давние представления П. Эрлиха о предсуществовании в организме человека антител разной специфичности. Давно доказано, что на протяжении всей жизни, каждый индивидуум испытывается «на прочность» большим количеством патогенных микроорганизмов, в результате чего вырабатываются специфические антитела - называемыми ИММУНОГЛОБУЛИНАМИ. Каждое специфическое антитело синтезируется отдельным клоном иммунокомпетентных клеток. Научные исследования указывают на то, что вакцины привязывают иммунные клетки к специфическим антигенам, входящих в их состав. При этом они делают эти клетки неспособными реагировать на иные инфекции. Именно М.Бернетом в значительной степени определено «лицо» современной иммунологии как возможности дифференцировать всё «СВОЁ» от всего «ЧУЖОГО». Он обратил внимание на клетки лимфоцитов, как на основной компонент специфического иммунного реагирования, дав ему название «иммуноцит». Наконец, М.Бернет указал на особую роль ТИМУСА в формировании иммунного ответа.

В формуле клонально-селекционной теории нет ничего сложного: один клон лимфоцитов способен реагировать только на одну конкретную антигенную специфическую детерминанту. Принцип такой организации иммунной системы, доказанный М.Бернетом в 50-е годы XX столетия, полностью подтвердился. Считается, что некоторым недостатком теории является представление о том, что многообразие антител возникает только за счёт мутационного процесса. Но в то время, когда М. Бернет разрабатывал свою теорию, ничего не было известно о генах иммуноглобулинов и рекомбинации в процессе созревания. Хотя антитела - защитники организма были обнаружены, как говорилось выше, ещё П. Эрлихом. «Объединила все теоретические построения убеждённость в том, что антиген является лишь фактором селекции, а не участником формирования специфического ответа». Для того чтобы «спровоцировать» иммунный ответ, антиген должен обладать свойствами чужеродности, иметь достаточный молекулярный вес, отвечать определённым особенностям структуры.

Таким образом, приобретенный иммунный ответ целиком базируется на функционировании лимфоцитов. В первой фазе иммунного ответа происходит их активация, во второй - клональная пролиферация и в заключительной - превращение значительной части лимфоцитов в эффекторные клетки, а оставшейся части - в клетки памяти, обеспечивающие вторичный ответ.

Наиболее характерными признаками иммунной системы, отличающими её от других систем организма человека, являются следующие:

1. способность дифференцировать всё «своё» от всего «чужого»;

2. создание генетического архива памяти о первичном контакте с чужеродным антигенным материалом;

3. клональная организация иммунокомпетентных клеток, проявляющаяся в способности отдельного клеточного клона реагировать только на одну из множества антигенных детерминант.

Применяя сказанное к системе «вакцинировать всех подряд» по одной и той же схеме, следует обратить внимание на следующее:

во-первых, на постоянную нагрузку иммунной системы путём искусственного «спасения» от того, чего на самом деле нет и когда будет неизвестно! Вмешательства в иммунитет ребёнка систематически дезорганизует данные природой защитные силы организма, отвлекая на сверхработу против того, с чем ребёнок в наше время вряд ли встретится, пропуская более важные и опасные приоритеты в борьбе с чужеродным и агрессивным окружением среды обитания;

во-вторых, «создание генетического архива памяти о первичном контакте» может исходить от разного проявления такого контакта с возбудителями инфекционных болезней. Например, от перенесённого ребёнком в скрытой форме, без проявления типичной клинической картины, без соответствующего лечения: полиомиелита, дифтерии, туберкулёза, коклюша и даже паротита. При постановке педиатром диагноза на бронхит или ОРЗ, часто не выявленный и вовремя не идентифицированный возбудитель может нанести непоправимый вред молодому организму.

в-третьих, «клональная организация» иммунокомпетентных клеток, как и другая «организация» любой системы организма - НЕ ВЕЧНЫЙ ДВИГАТЕЛЬ! Чтобы спасти ребёнка от активной, искусственно навязываемой вакцинальной сверхнагрузки с рождения до юношеского возраста, все внутренние природные защитные силы вынуждены пребывать в состоянии «напряжённости». Даже при условии, что чужеродные агенты поступают лавиной в детский организм, только диагностическое обследование и лабораторные анализы помогут определить степень защиты от инфекционных болезней. «Плановый осмотр» и «плановая вакцинация всех подряд» дискредитирует эту «медицинскую помощь», создавая иллюзию незаменимости прививок в «ликвидации» всех или почти «всех» инфекционных болезней.

Определяемые значения риска вакцинаций рассчитаны на широкое применение результатов проведенных исследований в педиатрической практике. Однако, выраженность ответных реакций новорожденных на вводимые токсиканты не может быть однозначной и одинаковой, так как зависит от многих факторов: в какие сроки была перерезана пуповина и насколько быстро был приложен к груди матери, когда было произведено первое кормление и сколько времени после рождения малыш находится с матерью, новорожденного кормят грудью или он находится на искуственном вскармливании, состояние иммунитета на момент вакцинации. В этой связи установление единого подхода в «плановой вакцинации всех подряд» несёт опасность для всей популяции и приводит к инвалидности детей, чувствительность которых к токсикантам и антигенам является высокой. Таким образом, усреднение коэффициента риска и искажение статистических данных поствакцинальных осложнений, выявляет ещё одну неразрешимую проблему современной медицины, ставит перед всеми нами множество вопросов, на которые я сейчас пытают дать свои собственные коментарии и обьяснения.

В последнее время в токсикологических лабораториях часто используют для исследования подопытных животных. Получаемые результаты варьируют в пределах реальной генетически гетерогенной популяции. Использование таких данных, обеспечивает вероятность ошибок в отношении возможного риска для тех групп новорожденных, чувствительность которых к токсиканту особенно велика.

Оценка воздействия - самый слабый элемент системы оценки риска. Дозы, которые обычно получают малолетние дети при вакцинации, были установлены расчетным методом. При этом, определение этих доз осуществлялось с учетом усредненных характеристик массы организма новорожденного или малолетнего ребёнка, а не наличием и количеством антител. В итоге вакцинаций появляются результаты существенно отличающиеся от реальных предпологаемых последствий, записанных в сопровожддеющих документах к применению вакцин.

Уровень воздействия биопрепаратов, сила, продолжительность, способ воздействия или способ введения вакцины никогда в полной мере не являются неизменными. Источник воздействия, новорожденный ребёнок, в первые часы и первые дни жизни не поддается общепринятой для всех детей характеристике. Поэтому в определении дозы вакцины прибегали к использованию усредненных результатов отдельных измерений, а еще чаще - расчетным методам. Никто никогда не учитывал предвакцинальную диагностику, состояние иммунной системы, особенности токсикокинетики веществ попавших в организм в первые дни жизни и действие токсинов на формирование иммунитета.

Таким образом, в широком смысле все разнообразные формы иммунного ответа можно разделить на два типа - врожденный иммунитет и приобретенный иммунитет. Основное различие между этими двумя типами иммунореактивности состоит в том, что приобретенный иммунитет высокоспецифичен в отношении каждого конкретного возбудителя. Кроме того, повторная встреча с тем или иным патогенным микроорганизмом не приводит к изменениям врожденного иммунитета, а повышает уровень приобретенного. Главными характеристиками приобретенного иммунитета являются специфичность и иммунологическая память.

Вакцина - чужеродна, об этом надо помнить всегда при введении её в организм ребёнка, поскольку, как чужеродное, обязательно нарушает иммунологический баланс, присущий в индивидуальном «количестве и качестве» каждому малышу. Кроме того, при наличии всех «достоинств» антигена - вакцина не всегда может быть гарантом развития полноценного желаемого иммунного ответа. Конечный результат, а именно формирование защиты - зависит, прежде всего, от организма прививаемого, от исходного состояния его иммунной системы, её иммуногенетической характеристики - ГЕНОТИПА. Кто и когда из обычных педиатров и вакцинаторов об этом задумывался? Поэтому привить – это не значит - защитить! Очень важно иметь результаты исследований саморегуляции внутренней среды организма ребёнка. Циркулируют ли специфические антитела? Идеально, конечно, иметь ответ на этот вопрос ещё до вмешательства в иммунную систему.

Можно привести бесчисленное множество примеров, когда в отдельных закрытых учреждениях (детских или военных) при возникновении инфекции, не все заболевают даже гриппом, а тем более - свинкой, дифтерией, крайне редко полиомиелитом и другими «массовыми инфекционными заболеваниями», хотя многие имели между собой непосредственный контакт. Кроме того, возможностей для передачи инфекционного агента у нас предостаточно.

Каждый ребёнок - индивидуальность, вакцинировать «всех подряд» невыгодно для государства и очень опасно для здоровья малышей, многие подходы к иммунопрофилактике является антинаучными и антигуманными в непосредственной стратегии оздоровления любой нации. Общеизвестно, что иммунная система новорождённых характеризуется специфическими особенностями, без знания которых невозможен рациональный подход к вакцинопрофилакгике и в целом к вакцинологии. Поэтому, чтобы не прибегать к ненужному и «небезопасному» введению чужеродных белков, необходимо ответить не только на вопрос, МОЖНО, но и НУЖНО ли вмешиваться в природные защитные силы организма. Многие наследственные болезни могут быть приобретены ещё родителями путём генетических изменений под действием концерогенных начал входящих в состав вакцин. Не стоит переоценивать факт, что от высокого титра антител в организме до иммунитета к определённой болезни, дорога ещё очень неблизкая. Современная иммунология накапливает всё больше свидетельств в пользу того, что антитела отнюдь не являются единственным условием иммунитета. Известно, что и люди с высоким титром антител успешно болеют соответствующими болезнями, в то время как люди без антител остаются здоровыми. Больные агаммаглобулинемией (болезнью, при которой антитела вообще не вырабатываются) вовсе не болеют всеми известными науке инфекционными болезнями, и даже отнюдь не первые жертвы эпидемий гриппа.

Природа сформировала иммунную систему так, что она должна работать гладко и выносливо. Нельзя не отметить, что уже существует точка зрения, что вообще антитела, в качестве второй линии обороны организма, нужны лишь при слабости первой линии - неспецифического иммунитета. Если с последнем всё в порядке, то в постоянно присутствующих в организме антителах большой надобности нет. Естественные антигены проникают в организм естественными путями, активируя по дороге защитные силы организма, их ослабляющие или уничтожающие. Прививочные же антигены вводятся в организм парентерально, минуя его защитные системы и лишая организм возможности против них бороться. Необходимо акцентировать внимание и на ядовитых составляющих вакцин (ртуть, формальдегид, фенол, алюминий, антифриз, метилпарабен и др.), также попадающих в организм, минуя его защитные барьеры.

«Довольно часто мы слышим утверждения, в том числе и от имени Всемирной Организации Здравоохранения, что только вакцинопрофилакгика является идеальным и наиболее рентабельным инструментом ликвидации инфекций. На практике, все чрезмерно категорические утверждения - не соответствует действительности. Более того, гигантомания в безудержном расширении вакцинопрофилактики и существенном увеличении числа вакцин в календаре прививок, к счастью для человечества никогда не будет реализована. При подобном развитии событий ущерб от массовой вакцинопрофилактики, многократно перекроет выгоды, получаемые защитой от инфекций. «Улучшение» природы человека, начиная с рождения, без учёта индивидуальных особенностей организма конкретного ребёнка приводит к полному краху здоровья. «Мир поражён раком, и этот рак - сам человек»...

Возможно, в будущем человечество придёт к оформлению ГЕНЕТИЧЕСКОГО ПАСПОРТА на каждого новорожденного. Это избавит систему здравоохранения от диагностических ошибок на наследственные заболевания и болезни, приобретённые в процессе жизни.

Барьеры неспецифической защиты.

При существующей вседозволенности на вмешательство в индивидуальную природу человека, неспецифичечкие факторы защиты также приходят к деградации. Неповреждённые кожные покровы и слизистые оболочки, непосредственно соприкасающиеся с внешней средой, служат прочными барьерами, препятствующими проникновению чужеродных веществ, патогенных и условно патогенных микроорганизмов. Вот почему важно не нарушать искусственным вторжением природные неспецифические факторы защиты, индивидуально присущие каждому из нас.

Кожные покровы - первая линия обороны от любых ксенобиотиков и возбудителей инфекционных болезней. Степень проявления защиты также зависит от индивидуальных особенностей организма, от ряда внутренних и внешних воздействий, влияющих на состояние неспецифических механизмов защиты, резистентности. Неспецифичесхая устойчивость в целом обеспечивается, прежде всего, кожей, слизистыми оболочками, различными выделительными системами организма человека. Неспецифической противоинфекционной защитой служат фагоциты и внутриклеточное переваривание чужеродного начала, а также защитные факторы, как лизоцим, эндогенный интерферон, медиаторы и комплемент.

Кожные барьеры более устойчивы, чем слизистые. Накоплены многочисленные сведения о неблагоприятных последствиях нарушения целостности кожных покровов, открывающих возможности инфекционным агентам к беспрепятственному проникновению в организ. Поэтому, воспалительную реакцию нельзя рассматривать только как защитную, тем более что характер воспалительной реакции также зависит от воздействия, нарушающего кожную поверхность. Любое повреждение целостности кожных покровов, независимо от причин, приводит к воспалению. Однако течение воспалительного процесса при бактериальном загрязнении или попадании эндотоксинов отличается от воспаления, вызванного механическим, химическим или физическим повреждением ткани. Другими словами, повреждение кожной поверхности, следует рассматривать как нарушение целостности организма, сопровождающееся гибелью клеток или их повреждением с вполне возможным изменением исходных свойств.

Барьерная функция кожного эпителия относится к механическим факторам неспецифической защиты организма за счёт плотного соединения эпителиальных клеток. Эпителиальные покровы выстилают дыхательные пути, желуцочно-кишечный и урогенитальный тракты. Кроме механической преграды, эпителиальные клетки продуцируют определённый набор веществ, выполняющих роль химической защиты, подавляя размножение микроорганизмов. Так, желудочный сок и пищеварительные ферменты желудочно-кишечного тракта являются реальной защитой от многих возбудителей инфекционных болезней. Эпителиальные клетки кишечника секретируют набор антимикробных пептидов широкого спектра

действия. Следует помнить также, что эпителиальные покровы имеют собственную микрофлору - непатогенную для ребёнка, препятствующую колонизации других возбудителей инфекционных болезней, подавляя их размножение, либо полностью нейтрализуя. Если нормальная микрофлора ребёнка уничтожается или меняется в результате антибиотикотерапии или вакцинации, то обязательно на освободившееся место заселяются патогенные вирусы или бактерии. В случаях, когда нарушается целостность покровов, задача проникновения внутрь организма значительно упрощается, тем более что возбудители обладают способностью продуцировать определённые ферменты, помогающие им менять среду защитного барьера в нужном им направлении. Суть микробиологического и макробиологического противостояния - в конкуренции между «своим» и «чужим» за источники питания и выживание.

Поэтому возбудители обязательно имеют факторы, защищающие их самих от иммунных механизмов человека (животных, растений и т.д.), как специфические, так и неспецифические. Они приспосабливаются. Но в каждом конкретном случае вирусы и бактерии находятся под контролем защитных сил организма до определённого момента. Если организм ослаблен вакцинациями, то он не борется с ОРЗ, ОРВИ, грипп и др. При уколах вакцин в разные участки тела, возможности для проникновения возбудителей инфекционных болезней практически неограничены.

Наша кожа тесно связанная с внутренней средой организма. Благодаря ей поддерживается соответствующий уровень иммунологической реактивности и неспецифических факторов защиты. Поддержание на определенном уровне неспецифического и специфического иммунитета - путь к здоровью формирующегося организма. Проф.И.Мечников уже в 1883 г. утверждал, что возникновение, течение и исход инфекционного процесса связаны с активностью самого организма, со всем многообразием аппарата его защитных сил. Биологический смысл такой защиты – это оберегать генетические целостности организма в течение всей индивидуальной жизни.

Чтобы предупреждать болезни, необходимо знать закономерности их развития. Лечить болезни необходимо в союзе с природой, с индивидуальными особенностями, присущими каждому из нас.

Процесс вакцинации обычно требует повторения инъекций вакцины через определённые промежутки времени. Сочетание адъювантов с ослабленными возбудителями заболеваний играет роль пускового механизма для иммунного ответа, что-то подобного реакции организма встрече с естественной инфекцией. Однако здесь имеется важнейшее отличие. В естественных условиях никакие заболевания не вторгаются в организм путем перескакивания барьеров защиты. Большинство болезней проникают в тело, пройдя кожные покровы, слизистые оболочки носа, горла, лёгочных путей, желудочно-кишечного тракта. Именно эта первая линия защиты и помогает настроиться иммунной системе и оказать сопротивление, полностью или частично остановить вторжение инфекции. Другая проблема современных вакцин состоит в том, что стимулирование иммунитета продолжается длительный период времени. Причиной этого являются входящие в состав вакцин адъюванты. Они длительное время не выводятся из организма, постоянно стимулируя иммунноактивные клетки. В большинстве случаев при естественных инфекциях активация иммунитета нарастает быстро и как только инфекция подавляется, активность иммунитета снижается.

Не всякий контакт с патогенными микроорганизмами обеспечивает заражение и развитие заболевания. Если иммунная система в порядке, то её владелец может избежать многих болезней, или перенести их в лёгкой форме. Большинство болезней, против которых нашим детям делают вакцины, являются нашими постоянными спутниками на протяжении тысячелетий. Некоторые детские болезни корректируют, адаптируют и развивают иммунную систему ребёнка таким образом, чтобы он в будущем смог защититься от более сильных инфекций и пережить их.

Практически доказано, что дети переболевшие натуральной корью, имеют большую защиту организма к другим болезнями. Приняв это во внимание, зададимся вопросом: заболеют ли привитые дети натуральной корью? Ответ: - это зависит от состояния их иммунной системы на момент попадания в организм инфекционного агента. Если вспышка инфекции приходится на сезоны (конец осени, начало весны), связанные с общим понижением иммунитета, когда в продуктах питания сниженное содержание витаминов, мало солнца. Если инфекция пассировалась на многих организмах, модифицировалась и приобрела более контагиозную форму, то избежать заражения и болезни врядли удастся даже вакцинированным детям и взрослым. Часто происходит всё наоборот, и вне всякого сомнения, что именно вакцины сенсибилизируют организм и делают иммунную систему ребёнка более чувствительной ко многим заболеваниям.

Приобретенный иммунитет у человека формируется в течение жизни, по наследству он не передается.

Естественный иммунитет. Активный иммунитет формируется после перенесенного заболевания (его назы­вают постинфекционным). В большинстве случаев он длительно сохраняется: после кори, ветряной оспы, чумы и др. Однако после некоторых заболеваний длительность иммунитета невелика и не превышает одного года (грипп, дизентерия и др.). Иногда естественный активный иммуни­тет развивается без видимого заболевания. Он формирует­ся в результате скрытой (латентной) инфекции или много­кратного инфицирования небольшими дозами возбудителя, не вызывающими явно выраженного заболевания (дроб­ная, бытовая иммунизация).

Рис. 59 Формирование иммунитета

Пассивный иммунитет-это иммунитет новорож­денных (плацентарный), приобретенный ими через плацен­ту в период внутриутробного развития. Новорожденные могут также получить иммунитет с молоком матери. Этот вид иммунитета непродолжителен и к 6-8 мес, как правило, исчезает. Однако значение естественного пассив­ного иммунитета велико-он обеспечивает невосприимчи­вость грудных детей к инфекционным заболеваниям.

Искусственный иммунитет. Активный иммунитет человек приобретает в результате иммунизации (приви­вок). Этот вид иммунитета развивается после введения в организм бактерий, их ядов, вирусов, ослабленных или убитых разными способами (прививки против коклюша, дифтерии, оспы).

При этом в организме происходит активная перестрой­ка, направленная на образование веществ, губительно действующих на возбудителя и его токсины (антитела).

Рис.60 Вакцинация

Рис.61 Принцип вакцинации.

Происходит также изменение свойств клеток, уничтожа­ющих микроорганизмы и продукты их жизнедеятельно­сти. Развитие активного иммунитета происходит постепен­но в течение 3-4 нед. и сохраняется он сравнительно длительное время - от 1 года до 3-5 лет.

Пассивный иммунитет создают введением в орга­низм готовых антител. Этот вид иммунитета возникает сразу после введения антител (сывороток и иммуноглобу­линов), но сохраняется всего 15-20 дней, после чего антитела разрушаются и выводятся из организма.



Понятие «местный иммунитет» было введено А. М. Безредкой. Он считал, что отдельные клетки и ткани организма обладают определенной восприимчиво­стью. Иммунизируя их, создают как бы барьер для проникновения возбудителей инфекции. В настоящее вре­мя доказано единство местного и общего иммунитета. Но значение невосприимчивости отдельных тканей и органов к микроорганизмам несомненно.

Помимо указанного выше разделения иммунитета по происхождению, различают формы иммунитета, направ­ленные на разные антигены.

Антимикробный иммунитет развивается при заболева­ниях, обусловленных различными микроорганизмами или при введении корпускулярных вакцин (из живых ослаблен­ных или убитых микроорганизмов.

Невосприимчивость человека к инфекционным заболе­ваниям обусловлена совместным действием неспецифиче­ских и специфических факторов защиты.

Неспецифическими называют врожденные свой­ства организма, которые способствуют уничтожению са­мых различных микроорганизмов на поверхности тела человека и в полостях его организма.

Развитие специфических факторов защиты происходит после соприкосновения организма с возбудителями или токсинами; действие этих факторов направленно только против этих возбудителей или их токсинов.

Неспецифические факторы защиты организма .

Существуют механические, химические и биологические факторы, предохраняющие организм от вредных воздействий различных микроорганизмов.

Кожа. Неповрежденная кожа является барьером для проникновения микроорганизмов. При этом имеет значение механические факторы: отторжение эпителия и выделения сальных и потовых желез, которые способствуют удалению микроорганизмов с кожи.

Роль химических факторов защиты также выполняют выделения желез кожи (сальных и потовых). Они содержат жирные и молочные кислоты, обладающие бактерицидным (убивающим бактерии) действием.

Рис.63 Функция мерцательного эпителия

Физиологической функцией мерцательного эпителия является очищение.

A.Соединительнаяткань
B.Базальнаямембрана
C.Поврежденныйучастокэпителия
D. Окружающая среда

Биологические факторы защиты обусловлены губительным воздействием нормальной микрофлоры кожи на патогенные микроорганизмы.

Слизистые оболочки разных органов являются одним из барьеров на пути проникновения микроорганизмов. В дыхательных путях механическая защита осуществляется с помощью мерцательного эпителия. Движение ресничек эпителия верхних дыхательных путей постоянно передвигает пленку слизи вместе с различными микроорганизмами по направлению к естественным отверстиям: ротовой полости и носовым ходам. Такое же воздействие на бактерии оказывают волоски носовых ходов. Кашель и чихание способствуют удалению микроорганизмов, предотвращают их аспирацию (вдыхание).

В слезах, слюне, материнском молоке и других жидкостях организма содержится лизоцим. Он оказывает губительное (химическое) действие на микроорганизмы. Также влияет на микроорганизмы кислая среда желудочного содержимого.

Нормальная микрофлора слизистых оболочек, как фактор биологической защиты, является антагонистом патогенных микроорганизмов.

Воспаление - реакция макроорганизма на чужеродные частицы, проникающие в его внутреннюю среду. Одной из причин воспаления является внедрение в организм возбу­дителей инфекции. Развитие воспаления приводит к унич­тожению микроорганизмов или освобождению от них.

Воспаление характеризуется нарушением циркуляции крови и лимфы в очаге поражения. Оно сопровождается повышением температуры, отеком, краснотой и болевыми ощущениями.

Что такое иммунитет человека, знают не только медики, но и все люди мира. А вот вопросом: какой бывает иммунитет – обычный человек интересуется мало, не подозревая, что виды иммунитета бывают разные, и от типа иммунной системы может зависеть здоровье не только человека, но и его последующих поколений.

Виды иммунной системы по природе и способу происхождения

Иммунитет человека - это многоступенчатая субстанция из многочисленных клеток, которые, как и все живое, каким-то образом рождаются. В зависимости от способа происхождения, подразделяется на: врожденный и приобретенный иммунитет. И, зная способы их зарождения, можно изначально предопределить, как работает иммунитет, и какие действия предпринять, чтобы ему помочь.

Приобретенный

Рождение приобретенного вида происходит после встречи человека с каким-либо заболеванием, потому еще называется специфическим.

Так зарождается приобретенный специфический иммунитет человека. При повторной встречи антигены не успевают нанести урон организму, так как в организме уже существуют специфические клетки, готовые дать микробу ответ.

Основные заболевания приобретенного вида:

  • ветреная оспа (ветрянка);
  • эпидемический паротит, в народе именуемый – свинка или заушница;
  • скарлатина;
  • краснуха;
  • инфекционный мононуклеоз;
  • желтуха (вирусный гепатит);
  • корь.

Антитела приобретенного не передаются по наследству детям, в отличии от другого типа иммунной системы по происхождению.

Врожденный

Врожденный иммунитет присутствует в организме человека с первых секунд жизни и поэтому еще называется естественным, наследственным и конституционным. Естественная невосприимчивость организма к какой-либо инфекции закладывается природой еще на генетическом уровне, передаваясь от поколения к поколению. В этом природном свойстве прослеживается и отрицательное качество врожденной иммунной системы: если в семье наблюдается аллергическая или онкологическая предрасположенность, то этот генетический дефект также предается в наследство.

Отличия врожденного и приобретенного видов иммунной системы:

  • врожденным видом распознаются лишь точно определенные антигены, а не весь спектр возможных вирусов, массовое опознание бактерий входит в функции приобретенного;
  • в момент внедрения вируса врожденный иммунитет готов к работе, в отличии от приобретенного иммунитета, антитела которого появляются лишь спустя 4-5 дней;
  • врожденный вид справляется с бактериями своими силами, в то время, как приобретенный требует помощи у наследственных антител.

Наследственный иммунитет с годами не меняется, в отличии от приобретенного, который на протяжении всей жизни продолжает формироваться в зависимости от новообразования антител.

Искусственный и естественный виды приобретенного иммунитета

Специфический тип иммунной системы может приобретаться естественным путем или искусственно: через внедрение в тело человека ослабленных или же вовсе мертвых микробов. Цель введения чужеродных антиген проста: насильственно заставить иммунную систему выработать специфические антитела для противостояния данного микроба. Искусственный иммунитет, также, как и естественный, может выражаться в пассивной и активной форме.

Чем естественный иммунитет отличается от искусственного:

  • искусственный иммунитет начинает свое существование после вмешательства докторов, а естественный приобретенный иммунитет своему рождению обязан вирусу, который самостоятельно попадает в организм.
  • Естественный активный иммунитет – антитоксический и антимикробный – вырабатывается организмом после какого-либо заболевания, а искусственный активный иммунитет формируется после ввода в организм вакцины.
  • Искусственный пассивный иммунитет возникает с помощью вводимой сыворотки, а естественный пассивный иммунитет – трансовариальный, плацентарный и колостральный – происходит при передаче антител детям от родительницы.

Приобретенный активный иммунитет более устойчивый в сравнении с пассивным: антитела, выработанные самим организмом, могут держать оборону от вирусов всю жизнь, а антитела, созданные пассивной иммунизацией – несколько месяцев.

Виды иммунной системы по локализации действия на организм

Структура иммунной системы подразделяется на общий и местный иммунитет, функции которых взаимосвязаны. Если общий вид обеспечивает защиту от инородных антигенов внутренней среды, то местный является «входными вратами» общего, вставая на защиту слизистых и кожных покровов.

Механизмы иммунитета местной защиты:

  • Физические факторы врожденного иммунитета: «реснички» внутренней поверхности носовых пазух, гортани, миндалин и бронхов, на которых скапливаются микробы, и со слизью при чихании и кашле выходят наружу.
  • Химические факторы: при контакте бактерии со слизистой образуются специфические антитела – иммуноглобулины: IgA, IgG, способные нейтрализовать инородные микроорганизмы.

Резервные силы общего вида вступают на арену борьбы с антигенами лишь, если микробам удается преодолеть первый местный барьер. Основная задача местного типа – обеспечить локальную защиту в пределах слизистой и ткани. Защитные функции зависят от количества скопления лимфоидной ткани (B – лимфоциты), которая также несет ответственность за деятельность различных ответов организма.

Виды иммунитета по типу иммунного ответа:

  • гуморальный – защита организма во внеклеточном пространстве преимущественно антителами, созданными B – лимфоцитами;
  • клеточный (тканевый) ответ задействует клетки-эффекторы: T – лимфоциты и макрофаги – клетки, поглощающие чужеродные микроорганизмы;
  • фагоцитарный – работа фагоцитов (постоянных или появляющихся после возникновения микроба).

Эти иммунные ответы являются также механизмами инфекционного иммунитета.

Виды иммунной системы по направленности их действия

В зависимости от направленности на присутствующих в организме антиген, могут формироваться инфекционный (антимикробный) и неинфекционный виды иммунной системы, строение которых наглядно покажет таблица.

Инфекционный иммунитет

Неинфекционный иммунитет

Инфекционный иммунитет в зависимости от длительности иммунологической памяти его видов может отличаться и быть:

  • нестерильный – память имеет транзисторный характер, и исчезает сразу после избавления антигена;
  • стерильный – специфические антитела сохраняются даже после удаления возбудителя.

Стерильный адаптивный иммунитет по сроку сохранения памяти может быть кратковременным (3-4 недели), долгосрочным (2-3 десятилетия) и пожизненным, когда антитела охраняют все виды и формы иммунитета на протяжении жизни человека.

Приобретённый иммунитет возникает вследствие адаптации иммунной системы к чужеродным элементам, которые проникают в организм человека. Для того, чтобы адаптироваться к новой угрозе, иммунная система должна сначала распознать нарушителя, затем создать специальное оружие против него, и, наконец, сохранить в памяти информацию о данном нарушителе, чтобы своевременно отреагировать на повторное проникновение данного инфекционного агента.
Оптимальное функционирование системы приобретённого иммунитета определяется четырьмя ключевыми моментами:
1) функционирование тимуса и созревание Т-лимфоцитов;
2) образование антител;
3) синтез цитокинов;
4) трансфер фактор.

Роль тимуса. Систему обучения иммунных клеток можно сравнить с системой образования, в которой выделяют несколько ступеней: дошкольное обучение, начальное и среднее школьное образование, а также высшее. Если следовать этому сравнению, в тимусе иммунные клетки получают дошкольное и начальное школьное образование. Поскольку эти лимфоциты созревают в тимусе, они носят название Т-лимфоцитов. К Т-лимфоцитам относятся Т-хелперы, Т-супрессоры и цитотоксические Т-лимфоциты.
Каждый класс Т-лимфоцитов выполняет свою строго определённую функцию. Т-хелперы помогают другим клеткам иммунной системы выполнять свои важные функции. Т-супрессоры контролируют степень иммунного ответа и не допускают чрезмерной активации иммунной системы. Как Т-хелперы, так и Т-супрессоры выполняют свои функции опосредованно, влияя на функции других иммунных клеток. Цитотоксические Т-лимфоциты (ЦТЛ) воздействуют непосредственно на чужеродные клетки. Во время созревания в тимусе ЦТЛ обучаются распознавать свои и чужие "опознавательные знаки".
Интенсивность процессов обучения иммунных клеток в тимусе является относительно низкой в детском возрасте и постепенно нарастает к моменту наступления полового созревания. После полового созревания тимус начинает уменьшаться в размерах и постепенно теряет свою иммунологическую активность на протяжении всей оставшейся жизни. Процесс утраты функций тимуса можно сравнить со снижением эффективности школьного образования. Уменьшение числа подготовленных Т-лимфоцитов в связи со старением тимуса считается одной из причин развития иммунодифицитных состояний у пожилых.
Кроме того тимус продуцирует целый ряд гормоноподобных веществ (тимозин?-1, тимулин, тимопоэтин и т.д.), которые способствуют поддержанию специфической иммунной активности Т-лимфоцитов. С возрастом концентрация тимических факторов снижается, т.е. развивается так называемая "тимическая менопауза". В результате этого снижается эффективность Т-лимфоцитов, что проявляется более частым развитием заболеваний у пожилых.
Чтобы пояснить сказанное, заметим, что тимус осуществляет контроль над тем, чтобы иммунная система поражала только чужеродные клетки, не повреждая при этом нормальные клетки нашего организма. По мере снижения функциональной активности тимуса способность иммунной системы уничтожать чужеродные элементы постепенно снижается, тогда, как возможность аутоиммунных реакций против тканей собственного организма неуклонно нарастает. Этот феномен получил название возрастного парадокса.
Без достаточной подготовки в начальной и средней школе многие ученики будут слабо знать математику и свой родной язык, в результате чего они не смогут понимать более сложный материал на дальнейших ступенях обучения. Точно так же недостаточно обученные в тимусе Т-лимфоциты будут неспособны понять и правильно интерпретировать внешние сигналы, с которыми им придётся столкнуться в дальнейшем.
В заключении добавим, что способность иммунной системы к полноценному обучению и усвоению стратегий охраны здоровья может также снижаться в связи с воздействием самых разнообразных стрессирующих факторов - эмоционального стресса, инфекционных и онкологических процессов, травматического поражения, плохого питания и т.д.
Антитела - это белковые молекулы, которые синтезируются В-лимфоцитами и являются главной ударной силой иммунной системы. Антитела соединяются с антигенами, т.е. с чужими "опознавательными знаками", которые имеются на чужеродных клетках. Антитела имеют особую форму, соответствующую форме каждого из антигенов. Соединяясь с соответствующими антигенами, антитела обезвреживают чужеродные элементы. Антитела также имеют и другое название - иммуноглобулины . Наиболее важные классы антител - это иммуноглобулины А (IgA), IgG, IgE, IgM. Каждый из классов иммуноглобулинов выполняет свою особую функцию в иммунной системе.
Макрофаги (дословно "большие пожиратели ") - это большие иммунные клетки, которые захватывают и затем по частям уничтожают чужеродные, мёртвые или повреждённые клетки. В том случае, если "поглощенная" клетка является инфицированной или злокачественной, макрофаги оставляют нетронутыми ряд её чужеродных компонентов, которые затем используются в качестве антигенов для стимуляции образования специфических антител. Таким образом, макрофаги выступают в качестве антиген-презентирующих клеток . Это означает, что макрофаги специально выделяют антигены из структуры чужеродной клетки в таком виде, в котором эти антитела могут быть легко распознаны Т-лимфоцитами. Уже после этого запускаются реакции специфического иммунного ответа, в результате которых избирательно уничтожаются чужеродные или раковые клетки.
Клетки памяти (Т- и В-клетки) выполняют функцию хранения иммунологической информации, которую организм получает в течении всей жизни. Именно благодаря сохранению информации о первичном контакте с чужеродной клеткой, иммунный ответ при повторном её проникновении обычно бывает настолько эффективным, что мы даже не замечаем факта повторного заражения.
Цитокины . Помимо выработки специальных клеток в иммунной системе синтезируется целый ряд сигнальных молекул, которые носят название цитокинов . Цитокины играют очень важную роль на всех этапах иммунного ответа. Одни цитокины выступают в качестве медиаторов реакций врождённого иммунитета, а другие контролируют реакции специфического иммунитета. В последнем случае цитокины регулируют активацию, рост и дефференцировку клеток. Например, образование иммунных клеток регулируется колониестимулирующими факторами (КСФ), относящимися к классу цитокинов. К числу наиболее важных цитокинов относится и трансфер фактор (фактор переноса ).

Приобретённый иммунитет - способность организма обезвреживать чужеродные и потенциально опасные микроорганизмы (или молекулы токсинов), которые уже попадали в организм ранее. Представляет собой результат работы системы высокоспециализированных клеток (лимфоцитов), расположенных по всему организму. Считается, что система приобретённого иммунитета возникла у челюстноротых позвоночных . Она тесно взаимосвязана с гораздо более древней системой врождённого иммунитета , которая является основным средством защиты от патогенных микроорганизмов у большинства живых существ.

Различают активный и пассивный приобретённый иммунитет. Активный может возникать после перенесения инфекционного заболевания или введения в организм вакцины . Образуется через 1-2 недели и сохраняется годами или десятками лет. Пассивно приобретённый возникает при передаче готовых антител от матери к плоду через плаценту или с грудным молоком , обеспечивая в течение нескольких месяцев невосприимчивость новорожденных к некоторым инфекционным заболеваниям. Такой иммунитет можно создать и искусственно, вводя в организм иммунные сыворотки , содержащие антитела против соответствующих микробов или токсинов (традиционно используют при укусах ядовитых змей).

Как и врождённый иммунитет, приобретённый иммунитет разделяют на клеточный (T-лимфоциты) и гуморальный (антитела, продуцируемые B-лимфоцитами; комплемент является компонентом как врождённого, так и приобретённого иммунитета).

Энциклопедичный YouTube

    1 / 3

    ✪ Евгения Волкова - Как работает иммунитет?

    ✪ 13 10 Лекция Адаптивный Иммунитет. Лектор Чудаков

    ✪ Иммунитет. Как повысить иммунитет. [Галина Эриксон]

    Субтитры

Три этапа приобретённой иммунной защиты

Распознавание антигенов

Все лейкоциты способны в какой-то мере распознавать антигены и враждебные микроорганизмы. Но специфический механизм распознавания - функция лимфоцитов. Организм производит многие миллионы клонов лимфоцитов, отличающихся рецепторами . Основой вариабельного рецептора лимфоцитов является молекула иммуноглобулина (Ig). Разнообразие рецепторов достигается контролируемым мутагенезом генов рецепторов, а также большим числом аллелей генов, кодирующих разные фрагменты вариабельной части рецептора. Таким образом удаётся распознавать не только известные антигены, но также новые, те, которые образуются в результате мутаций микроорганизмов. При созревании лимфоцитов они проходят строгий отбор - уничтожаются предшественники лимфоцитов, вариабельные рецепторы которых воспринимают собственные белки организма (это бо́льшая часть клонов).

T-клетки не распознают антиген как таковой. Их рецепторы распознают лишь изменённые молекулы организма - фрагменты (эпитопы) антигена (для белкового антигена эпитопы имеют размер 8-10 аминокислот), встроенные в молекулы главного комплекса гистосовместимости (МНС II) на мембране антиген-презентирующей клетки (АПК). Презентировать антиген могут как специализированные клетки (дендритные клетки, вуалевидные клетки, клетки Лангерганса), так и макрофаги и B-лимфоциты. MHC II есть только на мембране АПК. B-лимфоциты могут сами распознавать антиген (но лишь при условии его очень высокой концентрации в крови, что встречается редко). В типичном случае B-лимфоциты, как и T-лимфоциты, распознают эпитоп, представленный АПК. Натуральные киллеры (NK-клетки, или большие гранулярные лимфоциты) способны распознавать изменения MHC I (набор белков, присутствующий на мембране ВСЕХ нормальных клеток данного организма) при злокачественных мутациях или вирусной инфекции. Так же эффективно они распознают клетки, поверхность которых лишена или утратила значительную часть МНС I.

Иммунный ответ

На начальном этапе иммунный ответ происходит при участии механизмов врождённого иммунитета , но позднее лимфоциты начинают осуществлять специфический (приобретённый) ответ. Для включения реакции иммунитета недостаточно простой связи антигена с рецепторами лимфоцитов. Для этого требуется довольно сложная цепь межклеточного взаимодействия. Необходимы антигенпредставляющие клетки (см. выше). АПК активируют только определённый клон T-хелперов, имеющий рецептор к определённому виду антигенов. После активации T-хелперы начинают активно делиться и выделять цитокины , с помощью которых активизируются фагоциты и другие лейкоциты, в том числе T-киллеры. Дополнительная активация некоторых клеток иммунной системы происходит при контакте их с T-хелперами. B-клетки (только клона, имеющего рецептор к тому же антигену), при активации размножаются и превращаются в плазматические клетки, которые начинают синтезировать множество молекул, похожих на рецепторы. Такие молекулы называются антителами . Эти молекулы взаимодействуют с антигеном, который активировал B-клетки. В результате этого чужеродные частицы нейтрализуются, становятся более уязвимыми для фагоцитов и т. п. T-киллеры при активации убивают чужеродные клетки. Таким образом, в результате иммунного ответа малочисленная группа неактивных лимфоцитов, встретившая «свой» антиген, активируется, размножается и превращается в эффекторные клетки, которые способны бороться с антигенами и причинами их появления. В процессе иммунного ответа включаются супрессорные механизмы, регулирующие иммунные процессы в организме.

Нейтрализация

Нейтрализация - это один из самых простых способов иммунного ответа. В данном случае само связывание антител с чужеродными частицами обезвреживает их. Это работает для токсинов, некоторых вирусов. Например, антитела к наружным белкам (оболочке) некоторых риновирусов, вызывающих простудные заболевания, препятствуют связыванию вируса с клетками организма.

Т-киллеры

Т-киллеры (цитотоксические клетки) при активации убивают клетки с чужеродным антигеном, к которому имеют рецептор, вставляя в их мембраны перфорины (белки, образующие широкое незакрывающееся отверстие в мембране) и впрыскивая внутрь токсины. В некоторых случаях Т-киллеры запускают апоптоз заражённой вирусом клетки через взаимодействие с мембранными рецепторами.

Запоминание контакта с антигенами

Иммунный ответ с участием лимфоцитов не проходит для организма бесследно. После него остаётся иммунная память - лимфоциты, которые будут долгое время (годы, иногда - до конца жизни организма) пребывать в «спящем состоянии» до повторной встречи с тем же антигеном и быстро активируются при его появлении. Клетки памяти образуются параллельно эффекторным клеткам. В клетки памяти преобразуются как T-клетки (Т-клетки памяти), так и B-клетки. Как правило, при первом попадании антигена в организм в кровь выбрасываются в основном антитела класса IgM; при повторном попадании - IgG.

Источники

А.Ройт, Дж. Бростофф, Д.Мейл. Иммунология. М., «Мир», 2000.