Блог по клинической электрофизиологии: Отведение aVR. Блог по клинической электрофизиологии: Отведение aVR Является ли элевация ST в aVR эквивалентом ИМпST

Электрокардиография (ЭКГ) - это трансторакальное (производимое через грудную клетку) исследование электрической активности сердца за период времени, производимое с помощью электродов, располагаемых на поверхности кожи, и записываемое при помощи наружного устройства. Запись, полученную в процессе этой процедуры , называют электрокардиограммой (также называемой ЭКГ). Электрокардиограмма - это запись электроактивности сердца.


ЭКГ используется для оценки ритма и регулярности сердечных сокращений, измерения размера и расположения его камер, определения наличия каких-либо повреждений сердца, а также оценки эффективности препаратов и устройств, регулирующих сердечную деятельность, таких как пейсмекеры.

Чаще всего ЭКГ используется для диагностики и исследования сердца человека, но также может производиться на животных, чаще всего в целях диагностики или с исследовательской целью.

Назначение

ЭКГ - лучший метод исследования и диагностики сердечных аритмий, в особенности, аномальных ритмов, вызванных повреждением проводящей системы сердца или электролитными нарушениями. При инфаркте миокарда (ИМ), на ЭКГ можно увидеть, какая стенка сердца была поражена, хотя не все области сердца видны. С помощью ЭКГ нельзя достоверно оценить насосную функцию сердца, для этих целей используют Эхо-КГ (ультразвуковое исследование сердца) или радиологические исследования. В некоторых ситуациях человек , страдающий сердечной недостаточностью, может тем не менее иметь нормальную ЭКГ (состояние, известное как болезнь отсутствия пульса).

ЭКГ-устройство фиксирует и усиливает слабые изменения электрического потенциала на коже, возникающие во время деполяризации сердечной мышцы при каждом сердечном сокращении. Во время расслабления каждая мышечная клетка сердца имеет отрицательный заряд на своей клеточной мембране, называемый мембранным потенциалом. Изменение этого отрицательного заряда до нуля, путем входа положительно заряженных ионов Na и Ca называется деполяризацией, этот процесс активирует механизм, заставляющий клетку сокращаться. Во время каждого сердечного сокращения, в здоровом сердце формируется волна деполяризации, которая берет начало в триггерных клетках синоатриального узла (СА), затем распространяется на предсердия, проходит через атриовентрикулярный узел (АВ-соединение) и, наконец, охватывает желудочки.

Эти процессы улавливаются в виде крошечных подъемов и падений вольтажа между двумя электродами, размещёнными на каждой исследуемой стороне сердца, и отображаются в виде волнистой линии на экране и на ленте для записи ЭКГ. На дисплее отображаются общее состояние сердечного ритма и нарушения в миокарде, в разных его участках.

Как правило, используют более двух электродов, они могут быть сгруппированы в несколько пар. Например: электроды на левой руке (ЛР), правой руке (ПР) и левой ноге (ЛН) формируют три пары - ЛР+ПР, ЛР+ЛН и ПР+ЛН. Выходной сигнал от каждой пары называется отведением . Каждое отведение показывает активность сердца под разным углом обзора. Разные виды ЭКГ отличаются количеством отведений, которые они записывают, например, ЭКГ в 3 отведениях, 5 отведениях или 12 отведениях. ЭКГ в 12 отведениях фиксирует 12 различных электрических сигналов, записываемых почти одновременно, и используется для одноразовой записи ЭКГ, как правило, распечатанной на бумаге. ЭКГ в 3 и 5 отведениях чаще записываются в режиме реального времени и выводятся только на специальный монитор, к примеру, во время операции или при транспортировке каретой скорой помощи. В зависимости от используемого оборудования, постоянная запись ЭКГ в 3 или 5 отведениях может записываться или не записываться.

История

Этимология слова восходит к греческому слову «электро», поскольку речь идет об электрической активности, «кардио » - на греческом означает сердце, «граф» - писать.

По некоторым данным, в 1872 году, в госпитале св. Бартоломью, Александр Мирхед использовал провода, установленные на грудь больного, для записи его сердцебиений в ходе своего докторского исследования (в области электричества). Сердечную активность удалось записать и визуализировать с использованием капиллярного электрометра Липпмана британскому физиологу Джону Бердону Сандерсону. Первым, кто нашел систематический подход к сердцу с точки зрения электричества, был Август Воллер, работавший в госпитале св. Марии в Паддингтоне, Лондон.

Его электрокардиограф, созданный на основе электрометра Липпмана, подключался к проектору. Запись сердцебиения проектировалась на фотографическую пластинку, которая, в свою очередь, крепилась к игрушечному поезду. Это позволило записать серию сердечных сокращений в реальном времени. Тем не менее, в 1911 году он все еще не видел широкого применения своей работы в клинической практике.

Первый действительный прорыв в области электрокардиографии был совершен Уильямом Эйтховеном из Лейдена (Нидерланды), который использовал изобретенный им в 1901 году струнный гальванометр. Это устройство обладало гораздо большей чувствительностью, чем капиллярный электрометр, используемый Воллером и альтернативная модель струнного гальванометра, изобретенная в 1897 году Клементом Адером (французский инженер). В отличие от современных самокрепящихся электродов, электроды Эйнтховена погружались в контейнеры с солевым раствором.

Эйнтховен ввел в употребление буквы P, R, Q, S и T для обозначения зубцов ЭКГ и описал ЭКГ-признаки ряда сердечно сосудистых заболеваний. В 1924 году он был удостоен Нобелевской премии по медицине за свое открытие.

Несмотря на то, что базовые принципы не претерпели изменений с тех пор, за прошедшие годы в электрокардиографии было введено множество усовершенствований. К примеру, оборудование для записи ЭКГ эволюционировало от громоздких стационарных аппаратов до компактных электронных систем, зачастую включающих возможность компьютерной интерпретации электрокардиограммы.

Лента для записи ЭКГ сердца

Запись ЭКГ производится в виде графической кривой (или иногда нескольких кривых, каждая из которых описывает одно отведение), в которой время представлено по оси x, а вольтаж по оси y. Как правило, электрокардиограф осуществляет запись на ленте, расчерченной на мелкие клетки по 1 мм каждая (красного или зеленого цвета), и более крупные и жирные - по 5 мм.

В большинстве ЭКГ-устройств можно изменять скорость записи, но по умолчанию она равняется 25мм/с, а каждый мВ равняется 1 см по оси у. Более высокая скорость используется, как правило, при необходимости более детального рассмотрения ЭКГ. При скорости записи 25мм/с один маленький квадратик на ленте равняется 40мс. Пять маленьких квадратиков составляют один большой, который соответствует 200мс. Таким образом, за секунду на ленте ЭКГ выходит 5 больших квадратов. На записи может также присутствовать калибровочный сигнал. Стандартный сигнал в 1 мВ сдвигает перо самописца на 1см вертикально, что равняется двум большим квадратам на ленте ЭКГ.

Внешний вид

По умолчанию ЭКГ на 12 отведений предоставляет небольшой фрагмент записи каждого отведения. Три линии разделяют ленту на 4 раздела, первый из которых показывает основные отведения от конечностей (I, III и II), второй - усиленные отведения от конечностей (aVR, aVF и aVL), а последние два представляют грудные отведения (V1-V6). Этот порядок может быть изменен, поэтому необходимо проверять, какое отведение подписано на ленте. Каждый раздел фиксирует одномоментно три отведения, после чего переходит к следующему. Ритм сердца может меняться в процессе записи.

Каждый из этих сегментов фиксирует примерно 1-3 сердечных сокращения, в зависимости от ЧСС, по этой причине анализ сердечного ритма может вызывать затруднения. Для того, чтобы облегчить эту задачу, зачастую печатают дополнительную "полосу ритма". Как правило, она регистрируется во втором отведении (которое отображает электрический сигнал от предсердий, P-волну) и фиксирует сердечный ритм за весь период снятия ЭКГ (как правило, 5-6 секунд). Некоторые электрокардиографы печатают дополнительный отрезок во втором отведении. Фиксация этого отведения продолжается в течение всего процесса снятия ЭКГ.

Термин «полоса ритма» может также обозначать всю запись ЭКГ, выводимую на монитор, которая может показывать только одно отведение, позволяя врачу вовремя обнаружить развитие опасной для жизни ситуации.

Отведения

Термин «отведение» в электрокардиографии иногда вызывает трудности, в связи с тем, что он может иметь два различных значения. Помимо основного значения, «отведение» также обозначает электрический кабель, который присоединяет электроды к ЭКГ-устройству. В этом качестве он используется, например, в выражении «отведение левой руки », обозначая электрод (и его провод), который должен быть установлен на левой руке. Стандартная ЭКГ в 12 отведениях, как правило, использует 10 таких электродов.

Альтернативным (или, скорее, основным, в контексте электрокардиографии) значением слова «отведение» является кривая разности потенциалов двух электродов, запись которой собственно и производит ЭКГ. Каждое отведение имеет свое специфическое название. Например, «Отведение I» (первое стандартное отведение) показывает разность потенциалов электродов на правой и левой руках, а «Отведение II» (второе стандартное) - между правыми рукой и ногой. «ЭКГ в стандартных 12 отведениях» подразумевает именно этот смысл данного термина.

Расположение электродов

В обычной ЭКГ (в 12 отведениях) используется 10 электродов. Они представляют собой покрытые проводящим гелем самоклеющиеся мягкие подкладки с присоединенными проводами. Иногда гель выполняет также функцию адгезива (крепит электрод к коже). Каждый из них промаркирован и устанавливается на тело пациента следующим образом:

Маркировка электрода

Место установки электрода

ПР (красный)

На правой руке, избегая зон с выраженным мышечным слоем.

ЛР (желтый)

То же самое, но на левой руке.

ПН (черный)

На правой ноге, латерально от икроножной мышцы.

ЛН (зеленый)

То же самое, на левой ноге.

В 4 межреберье (между 4 и 5 ребром), справа около грудины.

В 4 межреберье (между 4 и 5 ребром), слева около грудины.

Между V4 и V2

В 5 межреберье (между 5 и 6 ребром) по средне-ключичной линии.

По левой передней подмышечной линии, на том же уровне, что и V4.

По левой средней подмышечной линии, на том же уровне, что и V4.

Дополнительные электроды

Классическую ЭКГ в 12 отведениях можно расширить несколькими способами с целью обнаружения участков инфаркта в зонах, которые не отображаются в стандартных отведениях. Для этой цели служит, например отведение rV4, аналогичное V4 , но с правой стороны, а также дополнительные грудные отведения, расположенные на спине - V7, V8 и V9.

Отведение Льюиса или S5 (заключающееся в установке электродов ПР и ЛР справа от грудины во 2 и 4 межреберьях соответственно и отображающееся как I стандартное) используется для более точной оценки активности предсердий и диагностики таких патологий как трепетание предсердий или тахикардия с широкими комплексами.

Отведения от конечностей (стандартные отведения)

Отведения I, III и II называются отведениями от конечностей . Электроды, создающие эти сигналы, располагаются на конечностях - по одному на каждой руке и ноге. Отведения от конечностей формируют вершины треугольника Эйнтховена .

  • Отведение I регистрирует напряжение вежду электродами на левой руке (ЛР) и правой руке (ПР):

I=ЛР-ПР

  • Отведение II регистрирует напряжение между электродами на левой ноге (ЛН) и правой руке (ПР):

II=ЛН-ПР

  • Отведение III регистрирует напряжение между электродами на левой ноге (ЛН) и левой руке (ЛР):

III=ЛН-ЛР

Упрощенные варианты ЭКГ, используемые в образовательных целях (на уровне старшей школы), как правило, ограничиваются этими тремя отведениями.

Униполярные и биполярные отведения

Отведения бывают двух видов: униполярные и биполярные. Биполярные отведения имеют положительный и отрицательный полюс. Отведения от конечностей при снятии ЭКГ в 12 отведениях являются биполярными. Униполярные отведения также имеют два полюса, однако отрицательно заряженный полюс является составным (центр. терминаль Вильсона), состоящим из совокупности сигналов от других электродов. Все отведения, кроме отведений от конечностей, являются униполярными при записи ЭКГ в 12 отведениях: aVR, aVF, aVL, V1, V3, V2, V4, V6, V5.

Центральная терминаль Вильсона Vw образуется при соединении электродов ПР, ЛН и ЛР через сопротивление , суммарный потенциал этого электрода приближается к нулю.

Vw =1/3(ПР+ЛР+ЛН)

Усиленные отведения от конечностей

Отведения aVR, aVF и aVL называются усиленными отведениями от конечностей (также известны как отведения Голдбергера , по фамилии их изобретателя доктора Э. Голдбергера). Они являются производными тех же электродов, что и отведения I, II, III. Тем не менее, они отображают сердце под другими углами (векторами), так как отрицательный электрод для этих отведений представлен нулевым электродом (центр. терминаль Вильсона). Заряд отрицательного электрода сбрасывается до нуля, что делает положительно заряженный электрод «рабочим электродом». Это объясняется правилом Эйнтховена, гласящим, что I + (−II) + III = 0. Это равенство также может быть записано как I + III = II. Вторая запись является предпочтительной, так как Эйнтховен реверсировал полярность II отведения в своем треугольнике, возможно из-за того что предпочел рассматривать комплексы QRS в вертикальном положении. Центральная терминаль Вильсона сделала возможным создание усиленных отведений от конечностей aVR, aVF и aVL и грудных отведений V1, V3, V2, V4, V6 и V5.

  • Отведение aVR регистрируется с помощью положительного электрода на левой руке; отрицательное представлено комбинацией электродов левой ноги и левой руки, которые «усиливают» сигнал от положительно заряженного электрода правой руки.

aVR= ПР-1/2(ЛР+ЛН)

  • Отведение aVL регистрируется с помощью положительного электрода на левой руке; отрицательное представлено комбинацией электродов левой ноги и правой руки, которые «усиливают» сигнал от положительно заряженного электрода левой руки.

aVL= ЛР-1/2(ПР+ЛН)

  • Отведение aVF регистрируется с помощью положительного электрода на левой ноге; отрицательное представлено комбинацией электродов правой/левой рук, которые «усиливают» сигнал от положительно заряженного электрода левой ноги.

aVF =ЛН-1/2(ПР+ЛР)

Усиленные отведения от конечностей aVR, aVF и aVL распространяются таким образом, поскольку их сигналы слишком малы, чтобы быть полезными, при условии когда отрицательный электрод представлен центральной терминалью Вильсона. Вместе с отведениями I, II и III, усиленные отведения aVR, aVF и aVL формируют основу шестиосевой системы отведений по Бейли, которая используется для расчета электрооси сердца в фронтальной плоскости.

Отведения aVR, aVF и aVL можно также представить через I и II отведения:

aVR=-(I+II)/2

aVL=I-II/2

aVF=II-I/2

Грудные отведения

Электроды для снятия грудных отведений - V1, V3, V2, V5, V4 и V6 - устанавливаются непосредственно на грудную клетку. Благодаря их близкому соседству с сердцем, эти электроды не требуют усиления. Для отрицательно заряженного электрода используется центральная терминаль Вильсона, и эти отведения являются униполярными. Грудные отведения отображают электроактивность сердца в так называемой горизонтальной плоскости. Электроось сердца в горизонтальной плоскости известна как Z-ось.

Зубцы и интервалы

Типичная кривая сердечного сокращения, записанная на ЭКГ, состоит из QRS, зубца P, зубца T и зубца U (последний наблюдается в 50-75% случаев). Базовый вольтаж кардиограммы называют изоэлектрической линией (изолинией). Как правило изолиния определяется на участке записи ЭКГ между концом зубца Т и началом следующего зубца Р.

Элемент

Описание

Длительность

Интервал R-R

Интервал между последовательными зубцами R. Нормальная ЧСС, определяемая с помощью этого интервала, составляет 60-100 уд/мин.

В ходе нормальной деполяризации предсердий, главный электрический вектор направляется от СА к АВ-соединению, и распространяется от правого предсердия к левому. Этот процесс представлен на ЭКГ в виде зубца P.

Интервал P-R

Измеряют от начала зубца P до начала QRS. Этот интервал отображает время, за которое электрический импульс доходит от синусового узла через АВ-соединение до желудочков. Таким образом PR интервал оценивает функцию АВ-соединения.

Сегмент PR

Сегмент PR соединяет зубец P с комплексом QRS. Импульс направляется из АВ-соединения в пучок Гиса, а затем распространяется по волокнам Пуркинье. Этот участок показывает исключительно проведение импульса, сокращения при этом не происходит, поэтому этот сегмент лежит на изолинии. Интервал PR клинически более информативен.

Комплекс QRS

Комплекс QRS отображает быструю деполяризацию правого и левого желудочков. Мышечный слой желудочков гораздо массивнее, чем в предсердиях, поэтому амплитуда комплекса QRS обычно гораздо больше, чем зубца P.

Точка, в которой заканчивается комплекс QRS и начинается сегмент ST. Используется для оценки подъема/депрессии сегмента ST.

Сегмент ST

Сегмент ST соединяет комплекс QRS с зубцом T. Он показывает период деполяризации желудочков. Сегмент ST в норме лежит на изолинии.

Отображает реполяризацию желудочков. Интервал между окончанием QRS и вершиной зубца T называется абсолютным рефрактерным периодом . Вторая половина зубца Т обозначается как относительный рефрактерный период .

Интервал S-T

Интервал S-T длится от точки J до конца зубца Т.

Интервал Q-T

Длится от начала QRS до конца зубца Т. Удлинение этого интервала является фактором вероятности развития желудочковой тахиаритмии и последующей внезапной смерти. Его продолжительность варьирует в зависимости от ЧСС.

До 420 мс при ЧСС 60уд/мин.

Предполагается, что зубец U отображает процесс реполяризации межжелудочковой перегородки. Как правило этот зубец имеет небольшую амплитуду, а зачастую вовсе отсутствует. Этот зубец всегда следует за зубцом Т и имеет одинаковое с ним направление и амплитуду. Чрезмерная выраженность этого зубца может свидетельствовать о гипокалиемии, гиперкалиемии или гипертиреозе.


Зубец J, подъем точки J или зубец Осборна представляет собой запоздалую дельта-волну, возникающую после комплекса QRS или в виде маленького дополнительного зубца R. Считается патогномоничным признаком гипотермии и гипокальциемии.


Изначально на кардиограмме выделяли 4 зубца, однако позднее благодаря математической коррекции искажений, продуцируемых ранними приборами, было открыто 5 основных зубцов. Эйнтховен обозначил их буквами O, P, S, R и T, которые соответствуют отображаемым им явлениям, взамен безликим и некорректным A, C, B и D.

На внутрисердечной электрокардиаграмме, которая может быть записана с помощью специальных внутрисердечных сенсоров, можно увидеть добавочную волну H , которая отображает деполяризацию пучка Гиса. Интервал H-V представляет собой отрезок от начала зубца Н до самой первой волны желудочковой деполяризации, записанной в любом отведении.

Векторы и позиции

Интерпретация ЭКГ основана на идее о том, что различные отведения «показывают» сердце под разными углами. У этого есть два преимущества. Во-первых, то, в каком отведении регистрируется патология (например, подъем сегмента ST) помогает определить, какая именно часть сердца поражена. Во-вторых, может быть определено общее направление волны деполяризации, что помогает диагностировать другие сердечные нарушения. Это направление также именуют электрической осью сердца . Понятие электрооси сердца базируется на представлении о векторе волны деполяризации. Этот вектор может быть описан с помощью своих компонентов, в зависимости от направления отведения, в котором он рассматривается. Суммарное увеличение высоты комплекса QRS (высота зубца R минус глубина зубца S) говорит о том, что волна деполяризации распространяется в направлении, совпадающем с отведением, в котором снимается этот участок ЭКГ.

Электрическая ось сердца

Электроось сердца показывает направление, в котором распространяется волна деполяризации (средний электрический вектор ) во фронтальной плоскости. При условии здоровой проводящей системы сердца, электроось направлена туда, где мышечный слой сердца (миокард) мощнее всего. В норме это стенка левого желудочка с небольшим захватом стенки правого желудочка. Обычно эта ось направлена от правого плеча к левой ноге, что соответствует левому нижнему квадранту в шестиосевой системе отведений, хотя нормой считается угол наклона в диапазоне от -30° до +90°. В случае увеличения мышечного слоя левого желудочка (гипертрофии миокарда) ось смещается влево («отклонение ЭОС в левую сторону»), и становится под углом меньше -30°, и наоборот - при гипертрофии правого желудочка ось поворачивается в правую сторону (>90°), происходит «отклонение ЭОС вправо». Нарушения проводящей системы сердца могут спровоцировать отклонение ЭОС, не связанное с изменениями в миокарде.

Норма

от -30° до +90°

Норма

Норма

Отклонение ЭОС влево

Может указывать на внутрижелудочковую (фасцикулярную) блокаду слева спереди или инфаркт миокарда нижней стенки с подъемом зубца Q.

Считается нормой для беременных женщин и больных с эмфиземой легких.

Отклонение ЭОС вправо

от +90° до +180°

Может указывать на внутрижелудочковую (фасцикулярную) блокаду слева сзади, инфаркт миокарда боковой стенки с подъемом зубца Q, или гипертрофии правого желудочка со смещением сегмента ST.

Считается нормой у детей и у людей с декстрапозицией сердца (сердце, повернутое вправо)

Резкое отклонение ЭОС вправо

от +180° до -90°

Встречается редко, недостаточно изучена.


В случае блокады правой ножки пучка Гиса, отклонение ЭОС вправо или влево может говорить о бифасцикулярной блокаде (присоединении блокады какой-либо ветви левой ножки пучка Гиса).

Группы отведений в клинике

Всего существует 12 стандартных отведений, фиксирующих электрополе сердца под разными углами, что соответствует также разным областям сердца, в которых могут быть отслежены патологические изменения (острая коронарная ишемия или инфаркт). Два отведения, фиксирующие изменения в соседних анатомических областях называются смежными отведениями . Клиническое значение смежных отведений состоит в подтверждении либо опровержении наличия действительной патологии на ЭКГ.

Отведения

Значение

Нижние отведения

I, aVF и II

Определяют электрическую активность на нижней стенке сердца (диафрагмальная поверхность).

Боковые отведения (латеральные)

Определяют электрическую активность на боковой стенке левого желудочка.

  • Положительно заряженный электрод для отведений I и aVL располагается более отдаленно, на левой руке пациента, по этой причине вышеуказанные отведения иногда называют отведениями высоких отделений боковой стенки .
  • Положительно заряженные электроды отведений V5 и V6 расположены на грудной клетке, их называют отведениями нижних отделений боковой стенки .

Отведения перегородки (септальные)

Определяют электрическую активность в области межжелудочковой перегородки.

Передние отведения

Определяют электрическую активность в области передней поверхности сердца.

В добавление к вышесказанному, смежными считают также отведения, следующие друг за другом. Например, хотя отведение V4 является передним, а V5 - боковым, они являются смежными, поскольку следуют друг за другом.

Отведение aVR не имеет специфической точки обзора левого желудочка. Вместо этого оно показывает внутреннюю поверхность правого предсердия со стороны правого плеча.

Фильтры

В современные ЭКГ-мониторах применяются фильтры, позволяющие обрабатывать поступающий сигнал. Чаще всего используются режимы мониторинга и диагностики. В режиме мониторинга применяется низкочастотный фильтр (ФВЧ или фильтр верхних частот), не пропускающий диапазон ниже 0,5-1 Гц и высокочастотный фильтр (ФНЧ - фильтр нижних частот), задерживающий сигнал сильнее 40 Гц. Эти фильтры уменьшают искажение при снятии сердечного ритма. В диагностическом режиме ФВЧ устанавливают на 0,05 Гц, что позволяет точно записать сегменты ST. ФНЧ устанавливают на 40, 100 или 150 Гц. Вследствие этого, режим мониторинга фильтруется сильнее, чем диагностический, так как его полоса пропускания уже.

Показания

Медицинское сообщество не рекомендует ЭКГ в качестве рутинного исследования для пациентов, у которых не выявлено кардиальных симптомов и которые не находятся в группе риска по развитию коронарных заболеваний. Причина в том, что злоупотребление этой процедурой с большей вероятностью приведет к ложной диагностике, нежели покажет реальную проблему. Ложная диагностика несуществующего заболевания приведет к неверно поставленному диагнозу, назначению ненужного лечения с массой побочных эффектов, поэтому риск , связанный с ней намного превышает риск отказа от рутинного ЭКГ исследования у лиц, не имеющих к нему показаний.

Симптомы , указывающие на необходимость ЭКГ-диагностики:

  • Сердечные шумы
  • Синкопальные состояния или коллапсы (потери сознания)
  • Судорожные приступы
  • Нарушение сердечного ритма
  • Симптомы инфаркта или острой ишемии

Также ЭКГ используется в диагностике пациентов с системными заболеваниями, а также в качестве мониторинга для тяжелых больных и больных под наркозом.

Некоторые патологии, которые можно обнаружить на ЭКГ

Укорачивание интервала QT

Гиперкальциемия, прием некоторых препаратов, ряд генетических аномалий, гиперкалиемия.

Удлинение интервала QT

Гипокальциемия, прием некоторых препаратов, ряд генетических аномалий.

Инверсия или уплощение зубца Т

Коронарная ишемия, гипокалиемия, гипертрофия ЛЖ, прием дигоксина, некоторых других препаратов.

Заострение зубца T

Возможный ранний признак острого инфаркта миокарда, зубцы Т становятся более выраженными, симметричными и заостренными.

Остроконечный зубец Т, удлинение интервала PR , расширение комплекса QRS , укорочение интервала QT

Гиперкалиемия, прием хлорида кальция, глюкозы, инсулина, гемодиализ.

Выраженный зубец U

Гипокалиемия.

Гетерогенность на электрокардиограмме

На электрокардиограмме может определяться гетерогенность (неодинаковость) участков. Современные исследования показывают, что гетерогенность часто свидетельствует о возможном развитии опасных нарушений сердечных ритмов.

В будущем для оценки одинаковости интервалов ЭКГ можно будет использовать вживляемые устройства, которые смогут не только контролировать ритм, но и осуществлять в случае необходимости неотложную помощь в виде стимуляции блуждающего нерва, инъекции бета-блокаторов или, при необходимости, дефибрилляции сердца.

ЭКГ плода

ЭКГ плода (фетальная ЭКГ) - это регистрация электроактивности сердца плода в утробе матери, осуществляемая во время родов путем установки электрода на головку плода через канал шейки матки. Согласно Кохрановскому обзору, использование ЭКГ-мониторинга плода в дополнение к кардиотокографии (КТГ) способствует снижению показаний к анализу крови плода и дополнительных хирургических вмешательств при родах, по сравнению с применением только КТГ. При этом не было обнаружено изменения количества кесаревых сечений и отличий в состоянии здоровья новорожденных.

Усиленное О. электрокардиограммы, при котором активный электрод расположен на правой руке.

  • - 2 биопотенциалов вариант расположения электродов при регистрации биопотенциалов...

    Большой медицинский словарь

  • - движение конечности или глаза, направленное от средней линии...

    Большой медицинский словарь

  • Большой медицинский словарь

  • - усиленное О. электрокардиограммы, при котором активный электрод расположен на левой...

    Большой медицинский словарь

  • - усиленное О. электрокардиограммы, при котором активный электрод расположен на правой...

    Большой медицинский словарь

  • - общее название О. электрокардиограммы по Уилсону, при которых активный электрод расположен в определенных точках поверхности грудной стенки...

    Большой медицинский словарь

  • - отведение V, при котором активный электрод расположен в четвертом межреберье по правому краю грудины...

    Большой медицинский словарь

  • - отведение V, при котором активный электрод расположен в четвертом межреберье по левому краю грудины...

    Большой медицинский словарь

  • - отведение V, при котором активный электрод расположен на середине расстояния между отведениями V2 и V4...

    Большой медицинский словарь

  • - см. отводить...

    Толковый словарь Даля

  • - ОТВЕСТИ́, -еду́, -едёшь; -ёл, -ела́; -е́дший; -едённый; -едя́...

    Толковый словарь Ожегова

  • - ОТВЕДЕ́НИЕ, отведения, мн. нет, ср. . Действие по гл. отвести в 3 знач. - отводить. Отведение реки. Отведение участков земли...

    Толковый словарь Ушакова

  • - отведе́ние ср. 1. процесс действия по гл. отвести 2. Результат такого действия...

    Толковый словарь Ефремовой

  • - отвед"...

    Русский орфографический словарь

  • - ...

    Формы слова

  • - предотвращение, предупреждение...

    Словарь синонимов

"отведение aVR" в книгах

Узел и заговор на отведение невезения от любимого

Из книги Славянские магические узлы и заговоры автора Крючкова Ольга Евгеньевна

Узел и заговор на отведение невезения от любимого Этот узел плетётся в день пребывающей луны, на шнурке принадлежащем тому, от кого вы хотите отвести невезение. Завяжите узел на шнурке, после чего прочитайте приведённый ниже заговор:«Заговариваю я, (имя женщины), своего

Форма 6 Шаг назад и отведение плеча слева и справа

автора Ван Лин

Форма 6 Шаг назад и отведение плеча слева и справа Часть первая Шаг назад и отведение плеча слева Движение первое Поворот туловища, отведение руки 1. Выполните поворот туловища немного вправо.2. Одновременно, вслед за поворотом туловища, разворачивая ладонь правой руки

Часть первая Шаг назад и отведение плеча слева

Из книги Тайцзицюань. Искусство гармонии и метод продления жизни автора Ван Лин

Часть первая Шаг назад и отведение плеча слева Движение первое Поворот туловища, отведение руки 1. Выполните поворот туловища немного вправо.2. Одновременно, вслед за поворотом туловища, разворачивая ладонь правой руки вверх, выполните движение снизу возле правого

Из книги Тайцзицюань. Искусство гармонии и метод продления жизни автора Ван Лин

Движение первое Поворот туловища, отведение руки 1. Выполните поворот туловища немного вправо.2. Одновременно, вслед за поворотом туловища, разворачивая ладонь правой руки вверх, выполните движение снизу возле правого бедра, затем по дуге вправо-назад и вверх до

Часть вторая Шаг назад и отведение плеча справа

Из книги Тайцзицюань. Искусство гармонии и метод продления жизни автора Ван Лин

Часть вторая Шаг назад и отведение плеча справа Движение первое Поворот туловища, отведение руки 1. Выполните поворот туловища слегка влево.2. Одновременно левую руку из положения возле бедра поднимайте по дуге влево-назад вверх до положения на уровне уха, ладонь под

Движение первое Поворот туловища, отведение руки

Из книги Тайцзицюань. Искусство гармонии и метод продления жизни автора Ван Лин

Движение первое Поворот туловища, отведение руки 1. Выполните поворот туловища слегка влево.2. Одновременно левую руку из положения возле бедра поднимайте по дуге влево-назад вверх до положения на уровне уха, ладонь под углом направлена вверх, локоть слегка согнут. Вслед

Движение первое Поворот туловища, отведение руки

Из книги Тайцзицюань. Искусство гармонии и метод продления жизни автора Ван Лин

Движение первое Поворот туловища, отведение руки Данное движение аналогично первому движению предыдущей (2) части формы, меняются лишь стороны.Перейти к

Часть четвёртая Шаг назад и отведение плеча справа

Из книги Тайцзицюань. Искусство гармонии и метод продления жизни автора Ван Лин

Часть четвёртая Шаг назад и отведение плеча справа Движение первое Поворот туловища, отведение руки Данное движение полностью аналогично первому движению (2) части формы.Перейти к

Глава 47 Отведение удара методом парирования

Из книги Из противников в союзники автора Бург Боб

Глава 47 Отведение удара методом парирования В главе 39 мы обсуждали выдающиеся способности Авраама Линкольна к убеждению и оказанию влияния. Он умел сводить конфликты к минимуму и превращать противников в союзников. Вот еще один прекрасный тому пример, давным-давно

Задний: Отведение рук в наклоне на тренажере

автора Делиа Пол

Задний: Отведение рук в наклоне на тренажере Рабочие мышцы:Основные рабочие мышцы - средний пучок дельтовидных.Второстепенные - верх спины, трапеции, предплечья.Оборудование:Блочное устройство с двумя нижними блоками.Выполнение:Захватите левую ручку правой рукой, а

Средний: Отведение рук с гантелями в стороны стоя

Из книги Силовой тренинг Мах-ОТ. Полный образовательный курс автора Делиа Пол

Средний: Отведение рук с гантелями в стороны стоя Рабочие мышцы:Основные рабочие мышцы - дельтоиды, особенно их средняя головка.Второстепенные - трапеции и предплечья.Оборудование:Гантели.Выполнение:Поставьте ноги на ширине плеч. Гантели находятся у талии; ладони

Средний: Отведение рук с гантелями в стороны сидя

Из книги Силовой тренинг Мах-ОТ. Полный образовательный курс автора Делиа Пол

Средний: Отведение рук с гантелями в стороны сидя Рабочие мышцы:Основные рабочие мышцы - дельтоиды.Второстепенные - трапеции и предплечья.Оборудование:Гантели, скамья.Выполнение:Сядьте на край скамьи. Руки свободно опущены и немного согнуты в локтях.Мощным

Средний: Отведение руки в сторону на тренажере

Из книги Силовой тренинг Мах-ОТ. Полный образовательный курс автора Делиа Пол

Средний: Отведение руки в сторону на тренажере Рабочие мышцы:Основные рабочие мышцы - дельтоиды, особенно средняя головка.Второстепенные - трапеции и предплечья.Оборудование:Тренажер с нижними блоками.Выполнение:Захватите ручку одной рукой. Немного согните руку в

Отведение локтей назад

автора Димитров Олег

Отведение локтей назад Отведите локти максимально назад. Спину не выгните дугой. Это упражнение растягивает грудные мышцы. Вы можете усилить натяжение, попросив партнера отвести ваши локти назад.Сильные и нерастянутые (относительно спины) грудные мышцы часто являются

Отведение руки с упором

Из книги Идеальная осанка автора Димитров Олег

Отведение руки с упором Найдите опору и упершись в нее рукой, повернитесь в другую сторону. Спину держите ровно! Это упражнение хорошо тянет ваши грудные мышцы. Не торопитесь, т. к используя упор можно повредить мышцы и связки. Делайте упражнение медленно и осторожно.

Отведения носят также название усиленных отведений от ко­нечностей по Гольдбергеру. Активный электрод находится на правой руке, левой руке или левой ноге. Потенциал индифферентного электро­ да близок к нулю.

AVR – усиленное отведение от правой руки. Активный элек­трод наложен на правую руку. Индифферентный электрод– ле вая рука и левая нога, соединенные через сопротивление.

AVL – усиленное отведение от левой руки. Активный электрод накладывают на левую руку. Индифферентный электрод– на правую руку, левую ногу.

AVF – усиленное отведение от левой ноги. Активный электрод поисоединяется к левой ноге. Индифферентный электрод– к правой руке, левой руке.

Отведение avR отражает потенциалы субэндокардиальной по­верхности левого желудочка, является зеркальным отражением пеового стандартного отведения. Зубец Р отрицательный 0,5–2 мм. Комплекс QRS имеет форму rS , QS , Qr . Амплитуда Q или S не превышает в норме 15 мм, r не более 5–7 мм. Увеличение Q или S указывает на гипертро­фию левого желудочка. Амплитуда RavR увеличивается при гипертро­фии правого желудочка, блокаде правой ножки пучка Гиса, синдроме

WPW типа А, инфаркте миокарда левого желудочка. В норме R / Q avR < l .

Отведение avL отражает потенциалы субэпикардиальной по­верхности левого желудочка. Зубец Р в норме положительный 0,5–2,0 мм, длительностью 0,06–0,1. Форма желудочкового комплекса зависит от вращения сердца вокруг продольной оси (ос ь идет от верхушки к основанию сердца) по часовой или против часовой стрелки. При вра­щении сердца против часовой стрелки активный электрод записывает потенциалы преимущественно левого желудочка, диполь положитель­ным зарядом движется в сторону активного электрода. Желудочковый комплекс имеет вид – qRs .

При вращении сердца вокруг продольной оси по часовой стрел­ ке к активному электроду обращен преимущественно правый желудо­чек, комплекс QRS имеет форму rS .

Зубец QavL может отсутствовать, его продолжительность не более 0,03, амплитуда <25 % R .

Зубец RavL в норме не пре­ вышает 11 мм, увеличение R>ll мм указывает на гипертрофию левого желудочка.

Амплитуда S колеблется от 0 до 18 мм, продолжительность не превышает 0,04. SavL>0,04 ука­зывает на блокаду правой ножки пучка Гиса.

Зубец T при горизонталь­
ном положении сердца по­
ложительный 2–5 мм, при верти­
кальном положении может быть
сниженным, изоэлектричным,

слабоотрицательным.

Отведение avF отражает потенциалы субэпикардиальной поверхности правого желудочка и задней стенки левого желудочка. Зубец Р положительный 0,5–2,5мм, форма желудочкового комплекса зависит от вращения сердца вокруг продольной оси. При вращении сердца по часовой стрелке к активному электроду прилегает субэпикардиальная поверхность правого желудоч­ ка, комплекс QRS имеет форму gRS . При вращении сердца против ча­совой стрелки комплекс QRS имеет форму rS . Зубец QavF в норме не


превышает 0,04, амплитуда Q 25–30 % RavF .

Зубец RavF в норме не превышает 20 мм, RavF>20 мм имеет место при гипертрофии левого желудочка.

Бейли предложил шестиосевую систему отведении, она объ­единяет стандартные и однополюсные отведения (рис. 5) и регистриру­ ет ЭДС во фронтальной плоскости.

Несмотря на прогрессивное развитие медицинских методов диагностики, электрокардиография является наиболее востребованным. Данная процедура позволяет быстро и точно установить нарушения работы сердца и их причину. Обследование является доступным, безболезненным и неинвазивным. Декодирование результатов производится незамедлительно, кардиолог может достоверно определить заболевание, и своевременно назначить правильную терапию.

Метод ЭКГ и обозначения на графике

Вследствие сокращения и расслабления сердечной мышцы возникают электрические импульсы. Так, создается электрополе, охватывающее все тело (включая ноги и руки). В ходе своей работы, сердечная мышца образует электрические потенциалы с положительным и отрицательным полюсом. Разность потенциалов между двумя электродами сердечного электрического поля регистрируется в отведениях.

Таким образом, отведения ЭКГ – это схема расположения сопряженных точек тела, которые имеют различные потенциалы. Электрокардиограф регистрирует сигналы, полученные за определенный временной период, и преобразует их в наглядный график на бумаге. На горизонтальной линии графика производится регистрация временного диапазона, на вертикальной – глубина и частота трансформации (изменения) импульсов.

Направление тока к активному электроду фиксирует положительный зубец, удаление тока – зубец отрицательный. На графическом изображении зубцы представлены острыми углами, расположенными сверху (зубец «плюс») и снизу (зубец «минус»). Слишком высокие зубцы свидетельствуют о патологии в том, или ином сердечном отделе.

Обозначения и показатели зубцов:

  • Т-зубец – это показатель восстановительного этапа мышечной ткани желудочков сердца между сокращениями среднего мышечного слоя сердца (миокарда);
  • зубец Р отображает уровень деполяризации (возбуждения) предсердий;
  • Q, R, S – эти зубцы показывают ажитацию сердечных желудочков (возбужденное состояние);
  • зубец U отражает восстановительный цикл отдаленных участков желудочков сердца.

Диапазонный промежуток между зубцами, расположенными по соседству, составляет сегмент (сегменты обозначаются, как ST,QRST, TP). Соединение сегмента и зубца является интервалом прохождения импульса.

Подробнее об отведениях

Для точной диагностики фиксируется разность показателей электродов (электрический потенциал отведения), закрепленных на теле пациента. В современной кардиологической практике принято 12 отведений:

  • стандартные – три отведения;
  • усиленные – три;
  • грудные – шесть.

Диагностику проводят только те специалисты, которые получили соответствующую квалификацию

Стандартные или двухполюсные отведения фиксируются разностью потенциалов, исходящих от электродов, закрепленных в следующих областях тела пациента:

  • левая рука – электрод «+», правая – минус (первое отведение - I);
  • левая нога – датчик «+», правая рука – минус (второе отведение - II);
  • левая нога – плюс, левая рука – минус (третье отведение - III).

Электроды для стандартных отведений закрепляются клипсами в нижней части конечностей. Проводником между кожей и датчиками служат обработанные физраствором салфетки или медицинский гель. Отдельный вспомогательный электрод, установленный на правой ноге, выполняет функцию заземления. Усиленные или однополюсные отведения, по способу фиксации на теле, идентичны стандартным.

Электрод, который регистрирует изменения разности потенциалов между конечностями и электрическим нулем, на схеме имеет «V»-обозначение. Левая и правая рука, обозначаются «L» и «R» (от английского «левые», «правые»), нога соответствует букве «F» (нога). Таким образом, место прикрепления электрода к телу на графическом изображении определяется, как аVL, аVR, аVF. Они фиксируют потенциал конечностей, на которых закреплены.

Усиленные электроды необходимы для удобного декодирования кардиограммы, поскольку без них зубцы на графике будут выражены слабо.

Двухполюсные стандартные и однополюсные усиленные отведения обуславливают формирование системы координат из 6 осей. Угол между стандартными отведениями составляет 60 градусов, между стандартным и близлежащим к нему усиленным отведением – 30 градусов. Сердечный электроцентр разбивает оси пополам. Минусовая ось направлена к отрицательному электроду, плюсовая ось, соответственно, обращена к положительному.

Грудные отведения ЭКГ регистрируются однополюсными датчиками, прикрепленными к кожному покрову грудной клетки посредством шести присосок, соединенных лентой. Они фиксируют импульсы с окружности сердечного поля, которая является равно потенциальной к электродам на конечностях. На бумажном графике грудным отведениям соответствует обозначение «V» с порядковым номером.

Кардиологическое исследование выполняется по определенному алгоритму, поэтому стандартная система установки электродов в области груди, не может быть изменена:

  • в районе четвертого анатомического пространства между ребрами с правой стороны грудины – V1. В том же сегменте, только с левой стороны – V2;
  • соединение линии, идущей от середины ключицы и пятого межреберья – V4;
  • на одинаковом расстоянии от V2 и V4 располагается отведение V3;
  • соединение передней подмышечной линии слева и пятого межреберного пространства – V5;
  • пересечение левой средней части подмышечной линии и шестого пространства между ребрами – V6.


Дополнительные электроды используются в случае затруднения постановки диагноза, когда декодирование шести основных показателей не дает объективной картины заболевания

Каждое отведение на груди осью соединено с электроцентром сердца. При этом угол расположения V1–V5 и угол V2–V6 равняется 90 градусам. Клиническая картина работы сердца может фиксироваться кардиографом при помощи 9-ти ответвлений. К шести обычным добавляются три однополюсных отведения:

  • V7 – в месте соединения 5-го межреберного пространства и задней линии подмышки;
  • V8 – та же межреберная область, но по средней линии подмышки;
  • V9 – околопозвоночная зона, параллельно V7 и V8 по горизонтали.

Отделы сердца и отвечающие за них отведения

Каждое из шести основных отведений отображает тот, или иной отдел сердечной мышцы:

  • I и II стандартные отведения – передняя и задняя сердечные стенки, соответственно. Их совокупность отражает III стандартное отведение.
  • aVR – боковая сердечная стенка справа;
  • aVL – боковая сердечная стенка впереди слева;
  • aVF – нижняя стенка сердца сзади;
  • V1 и V2 – правый желудочек;
  • VЗ – перегородка между двумя желудочками;
  • V4 – верхний сердечный отдел;
  • V5 – боковая стенка левого желудочка спереди;
  • V6 – левый желудочек.

Таким образом, упрощается расшифровка электрокардиограммы . Сбои в каждом отдельном ответвлении характеризуют патологию определенной области сердца.

ЭКГ по Небу

В методике ЭКГ по Небу принято использование только трех электродов. Датчики красного и желтого цвета фиксируются на пятом межреберном пространстве. Красный справа на груди, желтый – на задней поверхности подмышечной линии. Зеленый электрод располагается на линии середины ключицы. Чаще всего, электрокардиограмма по Небу применяется для диагностики некроза задней сердечной стенки (заднебазальный инфаркт миокарда), и для контроля состояния сердечных мышц у профессиональных спортсменов.


Схематичное расположение желудочков и предсердий, на основании локализации которых и располагают электроды

Нормативные показатели основных ЭКГ-параметров

Нормальными ЭКГ показателями принято считать следующее расположение зубцов в отведениях:

  • равноценное расстояние между R-зубцами;
  • зубец Р всегда положительный (возможно его отсутствие в отведениях III, V1, aVL);
  • горизонтальный интервал между Р-зубцом и Q-зубцом – не более 0,2 сек.;
  • зубцы S и R присутствуют во всех отведениях;
  • Q-зубец – исключительно отрицательный;
  • зубец Т – положительный, всегда изображен после QRS.

Снятие ЭКГ производится амбулаторно, в условиях стационара, и на дому. Декодированием результатов занимается врач-кардиолог или терапевт. В случае несоответствия полученных показателей установленной норме, пациента госпитализируют или назначают лечение медикаментами.

Из этой статьи вы узнаете о таком методе диагностики, как ЭКГ сердца – что он собой представляет и что показывает. Как происходит регистрация электрокардиограммы, и кто ее может наиболее точно расшифровать. А также вы научитесь самостоятельно определять признаки нормальной ЭКГ и основных заболеваний сердца, доступных диагностике этим методом.

Дата публикации статьи: 02.03.2017

Дата обновления статьи: 29.05.2019

Что такое ЭКГ (электрокардиограмма)? Это один из самых простых, доступных и информативных методов диагностики заболеваний сердца. Он основан на регистрацииэлектрических импульсов, возникающих в сердце, и их графической записи в виде зубцов на специальную бумажную пленку.

На основании этих данных можно судить не только об электрической активности сердца, но и о структуре миокарда. Это значит, что с помощью ЭКГ можно диагностировать множество различных заболеваний сердца. Поэтому самостоятельная расшифровка ЭКГ человеком, не имеющим специальных медицинских познаний, невозможна.

Все что может простой человек – лишь ориентировочно оценить отдельные параметры электрокардиограммы, соответствуют ли они норме и о какой патологии могут говорить. Но окончательные выводы по заключению ЭКГможет сделать лишь квалифицированный специалист – врач-кардиолог, а также терапевт или семейный врач.

Принцип метода

Сократительная активность и функционирование сердца возможно благодаря тому, что в нем регулярно возникают спонтанные электрические импульсы (разряды). В норме их источник расположен в самом верхнем участке органа (в синусовом узле, расположенном возле правого предсердия). Предназначение каждого импульса – пройти по проводящим нервным путям через все отделы миокарда, побудив их сокращение. Когда импульс возникает и проходит через миокард предсердий, а затем желудочков, возникает их поочередное сокращение – систола. В период, когда импульсов нет, сердце расслабляется – диастола.

ЭКГ-диагностика (электрокардиография) основана на регистрации электрических импульсов, возникающих в сердце. Для этого используется специальный аппарат – электрокардиограф. Принцип его работы заключается в улавливании на поверхности тела разницы биоэлектрических потенциалов (разрядов), которые возникают в разных отделах сердца в момент сокращения (в систолу) и расслабления (в диастолу). Все эти процессы записываются на специальную термочувствительную бумагу в виде графика, состоящего из остроконечных или полусферических зубцов и горизонтальных линий в виде промежутков между ними.

Что еще важно знать об электрокардиографии

Электрические разряды сердца проходят не только через этот орган. Поскольку тело обладает хорошей электропроводимостью, силы возбуждающих сердечных импульсов достаточно, чтобы пройти через все ткани организма. Лучше всего они распространяются на грудную клетку в области , а также на верхние и нижние конечности. Эта особенность лежит в основе ЭКГ и объясняет, что это такое.

Для того чтобы зарегистрировать электрическую активность сердца, необходимо зафиксировать по одному электроду электрокардиографа на руках и ногах, а также по переднебоковой поверхности левой половины грудной клетки. Это позволяет уловить все направления распространения электрических импульсов по телу. Пути следования разрядов между участками сокращения и расслабления миокарда называют сердечными отведениями и на кардиограмме обозначают так:

  1. Стандартные отведения:
  • I – первое;
  • II – второе;
  • Ш – третье;
  • AVL (аналог первого);
  • AVF (аналог третьего);
  • AVR (зеркальное отображение всех отведений).
  • Грудные отведения (разные точки на левой половине грудной клетки, расположенные в области сердца):
  • Значение отведений в том, что каждое из них регистрирует прохождение электрического импульса через определенный участок сердца. Благодаря этому можно получить информацию о том:

    • Как сердце расположено в грудной клетке (электрическая ось сердца, которая совпадает с анатомической осью).
    • Какая структура, толщина и характер кровообращения миокарда предсердий и желудочков.
    • Насколько регулярно в синусовом узле возникают импульсы и нет ли перебоев.
    • Все ли импульсы проводятся по путям проводящей системы, и нет ли препятствий на их пути.

    Из чего состоит электрокардиограмма

    Если бы сердце имело одинаковое строение всех своих отделов, нервные импульсы проходили бы по ним за одно и то же время. В результате этого на ЭКГ каждому электрическому разряду соответствовал бы всего один зубец, который отражает сокращение. Период между сокращениями (импульсами) на ЭГК имеет вид ровной горизонтальной линии, которую называют изолинией.

    Человеческое сердце состоит из правой и левой половин, в которых выделяют верхний отдел – предсердия, и нижний – желудочки. Поскольку они имеют разные размеры, толщину и разделены перегородками, возбуждающий импульс с разной скоростью проходит по ним. Поэтому на ЭКГ записываются разные зубцы, соответствующие определенному отделу сердца.

    Что означают зубцы

    Последовательность распространения систолического возбуждения сердца такая:

    1. Зарождение электроимпульсных разрядов происходит в синусовом узле. Поскольку он расположен близко к правому предсердию, то именно этот отдел сокращается первым. С небольшой задержкой, почти одновременно, сокращается левое предсердие. На ЭКГ такой момент отражается зубцом Р, из-за чего его называют предсердным. Он обращен вверх.
    2. Из предсердий разряд переходит на желудочки через атриовентрикулярный (предсердно-желудочковый) узел (скопление видоизмененных нервных клеток миокарда). Они обладают хорошей электропроводимостью, поэтому задержки в узле в норме не происходит. Это отображается на ЭКГ в виде интервала Р–Q – горизонтальная линия между соответствующими зубцами.
    3. Возбуждение желудочков. Этот отдел сердца имеет самый толстый миокард, поэтому электрическая волна проходит через них дольше, чем через предсердия. В результате на ЭКГ появляется самый высокий зубец – R (желудочковый), обращенный вверх. Ему может предшествовать небольшой зубец Q, вершина которого обращена в противоположном направлении.
    4. После завершения систолы желудочков миокард начинает расслабляться и восстанавливать энергетические потенциалы. На ЭКГ это выглядит как зубец S (обращен вниз) – полное отсутствие возбудимости. После него идет небольшой зубец Т, обращенный вверх, которому предшествует короткая горизонтальная линия – сегмент S–T. Они говорят о том, что миокард полностью восстановился и готов совершать очередное сокращение.

    Поскольку каждый электрод, прикрепленный к конечностям и грудной клетке (отведение), соответствует определенному отделу сердца, одни и те же зубцы по-разному выглядят в разных отведениях – в одних они больше выражены, а в других меньше.

    Как расшифровать кардиограмму

    Последовательная ЭКГ расшифровка как у взрослых, так и у детей подразумевает измерение размеров, протяженности зубцов и интервалов, оценку их формы и направленности. Ваши действия с расшифровкой должны быть такими:

    • Разверните бумагу с записанной ЭКГ. Она может быть либо узкой (около 10 см), либо широкой (около 20 см). Вы увидите несколько зубчатых линий, идущих горизонтально, параллельно друг другу. Через небольшой промежуток, в котором нет зубцов, после прерывания записи (1–2 см) линия с несколькими комплексами зубцов вновь начинается. Каждый такой график отображает отведение, поэтому перед ним стоит обозначение, какое именно это отведение (например,I, II, III, AVL, V1 и т. д.).
    • В одном из стандартных отведений (I, II или III), в котором самый высокий зубец R (обычно это второе), измеряйте расстояние междутремя, идущими друг за другом зубцами R (интервал R–R–R) и определите среднюю величину показателя (разделите количество миллиметров на 2). Это необходимо для подсчета частоты сердечных сокращений в одну минуту. Помните, что такое и другие измерения можно выполнить линейкой с миллиметровой шкалой или подсчитывать расстояние по ленте ЭКГ. Каждая большая клеточка на бумаге соответствует 5 мм, а каждая точка или маленькая клеточка внутри нее – 1мм.
    • Оцените промежутки между зубцами R:одинаковые они или разные. Это нужно для того, чтобы определить регулярность сердечного ритма.
    • Последовательно оцените и измеряйте каждый зубец и интервал на ЭКГ. Определите их соответствие нормальным показателям (таблица, приведенная ниже).

    Важно помнить! Всегда обращайте внимание на скорость протяжности ленты – 25 или 50 мм в секунду. Это принципиально важно для подсчета частоты сокращений сердца (ЧСС). Современные аппараты указывают ЧСС на ленте, и подсчет проводить не нужно.

    Как подсчитать частоту сокращений сердца

    Существует несколько способов подсчета количества сердцебиений за минуту:

    1. Обычно ЭКГ записывается на скорости 50 мм/сек. В таком случае подсчитать ЧСС (частоту сердечных сокращений) можно по таким формулам:

      ЧСС=60/((R-R (в мм)*0,02))

      При записи кардиограммы на скорости 25мм/сек:

      ЧСС=60/((R-R (в мм)*0,04)

    2. Подсчитать частоту сердцебиений на кардиограмме можно также по таким формулам:
    • При записи 50 мм/сек: ЧСС = 600/усредненный показатель количества больших клеточек между зубцами R.
    • При записи 25 мм/сек: ЧСС = 300/усредненный показатель количества больших клеточек между зубцами R.

    Как выглядит ЭКГ в норме и при патологии

    Как должна выглядеть нормальная ЭКГ и комплексы зубцов, какие отклонения бывают чаще всего и о чем они свидетельствуют, описано в таблице.

    Важно помнить!

    1. Одна маленькая клеточка (1 мм) на ЭКГ-пленке соответствует 0,02 секундам при записи 50 мм/сек и 0,04 секундам при записи 25 мм/сек (например 5 клеточек – 5 мм – одна большая клетка соответствует 1 секунде).
    2. Отведение AVR для оценки не используется. В норме оно является зеркальным отражением стандартных отведений.
    3. Первое отведение (I) дублирует AVL, а третье (III) дублирует AVF, поэтому на ЭКГ они выглядят почти идентично.

    Параметры ЭКГ Показатели нормы Как расшифровать отклонения от нормы на кардиограмме, и о чем они свидетельствуют
    Расстояние R–R–R Все промежутки между зубцами R одинаковые Разные промежутки могут говорить о мерцательной аритмии, сердечной блокаде
    Частота сокращений сердца В диапазоне от 60 до 90 уд./мин Тахикардия – когда ЧСС больше 90/мин
    Брадикардия – показатель менее 60/мин
    Зубец Р (сокращение предсердий) Обращен вверх по типу дуги, высотой около 2 мм, предшествует каждому зубцу R. Может отсутствовать в III, V1 и AVL Высокий (более 3 мм), широкий (более 5 мм), в виде двух половинок (двугорбый) – утолщение миокарда предсердий
    Вообще отсутствует в отведениях I, II, FVF, V2 – V6 – ритм исходит не из синусового узла
    Несколько мелких зубцов в виде ˮпилыˮ между зубцами R – мерцание предсердий
    Интервал Р–Q Горизонтальная линия между зубцами Р и Q 0,1–0,2 секунды Если он удлинен (более 1 см при записи 50 мм/сек) – сердца
    Укорочение (менее 3 мм) –
    Комплекс QRS Продолжительность около 0,1 сек (5 мм), после каждого комплекса идет зубец Т и есть промежуток горизонтальной линии Расширение желудочкового комплекса говорит о гипертрофии миокарда желудочков, блокаде ножек пучка Гиса
    Если между высокими комплексами, обращенными вверх, нет промежутков (идут непрерывно), это говорит о или фибрилляции желудочков
    Имеет вид ˮфлажкаˮ – инфаркт миокарда
    Зубец Q Обращен вниз, глубиной менее ¼ R, может отсутствовать Глубокий и широкий зубец Q в стандартных или грудных отведениях говорит об остром или перенесенном инфаркте миокарда
    Зубец R Самый высокий, обращен вверх (около 10–15 мм), остроконечный, есть во всех отведениях Может иметь разную высоту в разных отведениях, но если он более 15–20 мм в отведениях I, AVL, V5, V6, это может говорить о . Зазубренный на вершине R в виде буквы М говорит о блокаде ножек пучка Гиса.
    Зубец S Есть во всех отведениях, обращен вниз, остроконечный, может иметь разную глубину: 2–5 мм в стандартных отведениях В норме в грудных отведениях его глубина может быть столько же миллиметров как и высота R, но не должна превышать 20 мм, а в отведениях V2–V4 глубина S такая же, как высота R. Глубокий или зазубренный S в III, AVF, V1, V2 – гипертрофия левого желудочка.
    Сегмент S–T Соответствует горизонтальной линии между зубцами S и T Отклонение электрокардиографической линии вверх или вниз от горизонтальной плоскости более чем на 2 мм говорит об ишемической болезни, стенокардии или инфаркте миокарда
    Зубец Т Обращен вверх в виде дуги высотой менее ½ R, в V1 может иметь такую же высоту, но не должен быть выше Высокий, остроконечный, двугорбый Т в стандартных и грудных отведениях говорит об ишемической болезни и перегрузке сердца
    Зубец Т, сливающийся с интервалом S–T и зубцом R в виде дугообразного ˮфлажкаˮ говорит об остром периоде инфаркта

    Еще кое-что важное

    Описанные в таблице характеристики ЭКГ в норме и при патологии – лишь упрощенный вариант расшифровки. Полноценную оценку результатов и правильное заключение может сделать лишь специалист (кардиолог), знающий расширенную схему и все тонкости метода. Особенно это актуально, когда нужно расшифровать ЭКГ у детей. Общие принципы и элементы кардиограммы такие же, как и у взрослых. Но для детей разных возрастов предусмотрены разные нормы. Поэтому профессиональную оценку в спорных и сомнительных случаях могут сделать лишь детские кардиологи.