Что значит порядок матрицы. Матрицы

Заметим, что элементами матрицы могут быть не только числа. Представим себе, что вы описываете книги, которые стоят на вашей книжной полке. Пусть у вас на полке порядок и все книги стоят на строго определенных местах. Таблица , которая будет содержать описание вашей библиотеки (по полкам и следованию книг на полке), тоже будет матрицей. Но такая матрица будет не числовой. Другой пример. Вместо чисел стоят разные функции, объединенные между собой некоторой зависимостью. Полученная таблица также будет называться матрицей. Иными словами, Матрица , это любая прямоугольная таблица , составленная из однородных элементов. Здесь и далее мы будем говорить о матрицах, составленных из чисел.

Вместо круглых скобок для записи матриц применяют квадратные скобки или прямые двойные вертикальные линии


(2.1*)

Определение 2 . Если в выражении (1) m = n , то говорят о квадратной матрице , а если , то о прямоугольной .

В зависимости от значений m и n различают некоторые специальные виды матриц:

Важнейшей характеристикой квадратной матрицы является ее определитель или детерминант , который составляется из элементов матрицы и обозначается

Очевидно, что D E =1 ; .

Определение 3 . Если , то матрица A называется невырожденной или не особенной .

Определение 4 . Если detA = 0 , то матрица A называется вырожденной или особенной .

Определение 5 . Две матрицы A и B называются равными и пишут A = B , если они имеют одинаковые размеры и их соответствующие элементы равны, т.е .

Например, матрицы и равны, т.к. они равны по размеру и каждый элемент одной матрицы равен соответствующему элементу другой матрицы. А вот матрицы и нельзя назвать равными, хотя детерминанты обеих матриц равны, и размеры матриц одинаковые, но не все элементы, стоящие на одних и тех же местах равны. Матрицы и разные, так как имеют разный размер. Первая матрица имеет размер 2х3, а вторая 3х2. Хотя количество элементов одинаковое – 6 и сами элементы одинаковые 1, 2, 3, 4, 5, 6, но они стоят на разных местах в каждой матрице. А вот матрицы и равны, согласно определению 5.

Определение 6 . Если зафиксировать некоторое количество столбцов матрицы A и такое же количество ee строк, тогда элементы, стоящие на пересечении указанных столбцов и строк образуют квадратную матрицу n - го порядка, определитель которой называется минором k – го порядка матрицы A .

Пример . Выписать три минора второго порядка матрицы

Матрицы. Виды матриц. Операции над матрицами и их свойства.

Определитель матрицы n-го порядка. N, Z,Q, R,C,

Матрицей порядка m*n называется прямоугольная таблица из чисел, содержащая m-строк и n - столбцов.

Равенство матриц:

Две матрицы называются равными, если число строк и столбцов одной из них равно соответственно числу строк и столбцов другой и соответст. эл-ты этих матриц равны.

Замечание: Эл-ты имеющие одинаковые индексы являются соответствующими.

Виды матриц:

Квадратная матрица: матрица называется квадратной, если число её строк равно числу столбцов.

Прямоугольная: матрица называется прямоугольной, если число строк не равно числу столбцов.

Матрица строка: матрица порядка 1*n (m=1) имеет вид a11,a12,a13 и называется матрицей строки.

Матрица столбец:………….

Диагональная: диагональ квадратной матрицы, идущая от верхнего левого угла к правому нижнему углу, то есть состоящая из элементов а11,а22……-называется главной диагональю. (опред: квадратная матрица все элементы которой равны нулю, кроме тех, что расположены на главной диагонали, называется диагональной матрицей.

Единичная: диагональная матрица называется единичной, если все элементы расположены на главной диагонали и равны 1.

Верхняя треугольная: А=||aij|| называется верхней треугольной матрицей, если aij=0. При условии i>j.

Нижняя треугольная: aij=0. i

Нулевая: это матрица Эл-ты которой равны 0.

Операции над матрицами.

1.Транспонирование.

2.Умножение матрицы на число.

3.Сложение матриц.

4.Умножение матриц.

Основные св-ва действия над матрицами.

1.A+B=B+A (коммутативность)

2.A+(B+C)=(A+B)+C (ассоциативность)

3.a(A+B)=aA+aB (дистрибутивность)

4.(a+b)A=aA+bA (дистриб.)

5.(ab)A=a(bA)=b(aA) (асооц.)

6.AB≠BA (отсутствует комму.)

7.A(BC)=(AB)C (ассоц.) –выполняется, если опред. Произведений матриц выполняется.

8.A(B+C)=AB+AC (дистриб.)

(B+C)A=BA+CA (дистриб.)

9.a(AB)=(aA)B=(aB)A

Определитель квадратной матрицы – определение и его свойства. Разложение определителя по строкам и столбцам. Способы вычисления определителей.

Если матрица А имеет порядок m>1, то определитель этой матрицы – число.

Алгебраическим дополнением Aij эл-та aij матрицы А называется минор Mij, умноженный на число

ТЕОРЕМА1: Определитель матрицы А равен сумме произведений всех элементов произвольной строки (столбца) на их алгебраические дополнения.

Основные свойства определителей.

1. Определитель матрицы не изменится при её транспонировании.

2. При перестановки двух строк (столбцов) определитель меняет знак, а абсолютная величина его не меняется.

3. Определитель матрицы, имеющий две одинаковые строки (столбцы) равен 0.

4.При умножении строки (столбца) матрицы на число её определитель умножается на это число.

5. Если одна из строк (столбцов) матрицы состоит из 0, то определитель этой матрицы равен 0.

6. Если все элементы i-ой строки (столбца) матрицы представлены в виде суммы двух слагаемых, то её определитель можно представить в виде суммы определителей двух матриц.

7. Определитель не изменится, если к элементам одного столбца (строки) прибавить соответственно эл-ты другого столбца (строки) предварительно умнож. на одно и того же число.

8.Сумма произвольных элементов какого либо столбца (строки) определителя на соответствующее алгебраическое дополнение элементов другого столбца (строки) равна 0.

https://pandia.ru/text/78/365/images/image004_81.gif" width="46" height="27">

Способы вычисления определителя:

1. По определению или теореме 1.

2. Приведение к треугольному виду.

Определение и свойства обратной матрицы. Вычисление обратной матрицы. Матричные уравнения.

Определение: Квадратная матрица порядка n, называется обратной к матрице А того же порядка и обозначается

Для того чтобы для матрицы А существовала обратная матрица необходимо и достаточно, чтобы определитель матрицы А был отличен от 0.

Свойства обратной матрицы:

1. Единственность: для данной матрицы А её обратная – единственная.

2. определитель матрицы

3. Операция взятия транспонирования и взятие матрицы обратной.

Матричные уравнения:

Пусть А и В две квадратные матрицы того же порядка.

https://pandia.ru/text/78/365/images/image008_56.gif" width="163" height="11 src=">

Понятие линейной зависимости и независимости столбцов матрицы. Свойства линейной зависимости и линейной независимости системы столбцов.

Столбцы А1,А2…Аn называются линейно зависимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Столбцы А1,А2…Аn называются линейно независимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Линейная комбинация называется тривиальной, если все коэффициенты С(l) равны 0 и не тривиальной в противном случае.

https://pandia.ru/text/78/365/images/image010_52.gif" width="88" height="24">

2.для того чтобы столбцы были линейно зависимы необходимо и достаточно, чтобы какой-нибудь столбец являлся линейной комбинацией других столбцов.

Пусть 1 из столбцов https://pandia.ru/text/78/365/images/image014_42.gif" width="13" height="23 src=">является линейной комбинацией других столбцов.

https://pandia.ru/text/78/365/images/image016_38.gif" width="79" height="24"> линейно зависимы, то и все столбцы линейно зависимы.

4. Если система столбцов линейно независима, то любая её подсистема так же линейно независима.

(Всё что сказано относительно столбцов, справедливо и для строк).

Миноры матрицы. Базисные миноры. Ранг матрицы. Метод окаймляющих миноров вычисления ранга матрицы.

Минором порядка к матрицы А называется определитель элементы которого расположены на пересечении к-строк и к-стролбцов матрицы А.

Если все миноры к-го порядка матрицы А =0, то любой минор порядка к+1 тоже равен 0.

Базисный минор.

Рангом матрицы А называется порядок её базисного минора.

Метод окаймляющих миноров: - Выбираем не нулевой элемент матрицы А (Если такого элемента не существует, то ранг А =0)

Окаймляем минор предыдущий 1-го порядка минором 2-го порядка. (Если этот минор не равен 0, то ранг >=2) Если ранг этого минора =0, то окаймляем выбранный минор 1-го порядка другими минорами 2-го порядка. (Если все миноры 2-го порядка =0, то ранг матрицы = 1).

Ранг матрицы. Способы нахождения ранга матрицы.

Рангом матрицы А называется порядок его базисного минора.

Способы вычисления:

1) Метод окаймляющих миноров: -Выбираем ненулевой элемент матрицы А (если такого элемента нет, то ранг =0) – Окаймляем минор предыдущий 1-го порядка минором 2-го порядка..gif" width="40" height="22">r+1 Mr+1=0.

2)Приведение матрицы к ступенчатому виду: этот метод основан на элементарных преобразованиях. При элементарных преобразованиях ранг матрицы не меняется.

Элементарными преобразованиями называются следующие преобразования:

Перестановка двух строк (столбцов).

Умножение всех элементов некоторого столбца (строки) на число не =0.

Прибавление ко всем элементам некоторого столбцы (строки) элементов другого столбца (строки), предварительно умноженных на одно и тоже число.

Теорема о базисном миноре. Необходимое и достаточное условие равенства нулю определителя.

Базисным минором матрицы А называется минор наибольшего к-го порядка отличного от 0.

Теорема о базисном миноре:

Базисные строки (столбцы) линейно независимы. Любая строка (столбец) матрицы А являются линейной комбинацией базисных строк (столбцов).

Замечания: Строки и столбцы на пересечении которых стоит базисный минор называются соответственно базисными строками и столбцами.

a11 a12… a1r a1j

a21 a22….a2r a2j

a31 a32….a3r a3j

ar1 ar2 ….arr arj

ak1 ak2…..akr akj

Необходимые и достаточные условия равенства нулю определителя:

Для того чтобы определитель n-го порядка =0, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Системы линейных уравнений, их классификация и формы записи. Правило Крамера.

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

https://pandia.ru/text/78/365/images/image020_29.gif" alt="l14image048" width="64" height="38 id=">

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

https://pandia.ru/text/78/365/images/image022_23.gif" alt="l14image052" width="93" height="22 id=">

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

https://pandia.ru/text/78/365/images/image024_24.gif" alt="l14image056" width="247" height="31 id=">

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

https://pandia.ru/text/78/365/images/image026_23.gif" alt="l14image060" width="324" height="42 id=">

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Системы линейных уравнений. Условие совместимости линейных уравнений. Теорема Кронекера-Капелли.

Решением системы алгебраических уравнений называется такая совокупность n чисел C1,C2,C3……Cn, которая при подстановки в исходную систему на место x1,x2,x3…..xn обращает все уравнения системы в тождества.

Система линейных алгебраических уравнений называется совместной, если она имеет хотя бы одно решение.

Совместная система называется определённой, если она имеет единственное решение, и неопределённой, если она имеет бесчисленно много решений.

Условия совместности систем линейных алгебраических уравнений.

a11 a12 ……a1n x1 b1

a21 a22 ……a2n x2 b2

……………….. .. = ..

am1 am2…..amn xn bn

ТЕОРЕМА: Для того чтобы система m линейных уравнений с n неизвестными была совместной необходимо и достаточно, чтобы ранг расширенной матрицы был равен рангу матрицы А.

Замечание: Эта теорема даёт лишь критерии существования решения, но не указывает способа отыскивания решения.

10 вопрос.

Системы линейных уравнений. Метод базисного минора - общий метод отыскивания всех решений систем линейных уравнений.

A=a21 a22…..a2n

Метод базисного минора:

Пусть система совместна и RgA=RgA’=r. Пусть базисный минор расписан в верхнем левом углу матрицы А.

https://pandia.ru/text/78/365/images/image035_20.gif" width="22" height="23 src=">…...gif" width="23" height="23 src=">…...gif" width="22" height="23 src=">…...gif" width="46" height="23 src=">-…..-a

d2 b2-a(2r+1)x(r+1)-..-a(2n)x(n)

… = …………..

Dr br-a(rr+1)x(r+1)-..-a(rn)x(n)

https://pandia.ru/text/78/365/images/image050_12.gif" width="33" height="22 src=">

Замечания: Если ранг основной матрицы и рассматриваемой равен r=n, то в этом случае dj=bj и система имеет единственное решение.

Однородные системы линейных уравнений.

Система линейных алгебраических уравнений называется однородной, если все ее свободные члены равны нулю.

AX=0 – однородная система.

АХ =В – неоднородная система.

Однородные системы всегда совместны.

Х1 =х2 =..=хn =0

Теорема 1.

Однородные системы имеют неоднородные решения, когда ранг матрицы системы меньше числа неизвестных.

Теорема 2.

Однородная система n-линейных уравнений с n-неизвестными имеет не нулевое решение, когда определитель матрицы А равен нулю. (detA=0)

Свойства решений однородных систем.

Любая линейная комбинация решения однородной системы сама является решением этой системы.

α1C1 +α2C2 ; α1 и α2– некоторые числа.

А(α1C1 +α2C2) = А(α1C1) +А(α2C2) = α1(А C1) + α2(АC2) = 0,т. к. (А C1) = 0; (АC2) = 0

Для неоднородной системы это свойство не имеет места.

Фундаментальная система решений.

Теорема 3.

Если ранг матричной системы уравнения с n-неизвестными равен r, то эта система имеет n-r линейно-независимых решений.

Пусть базисный минор в левом верхнем углу. Если r< n, то неизвестные х r+1;хr+2;..хn называются свободными переменными, а систему уравнений АХ=В запишем, как Аr Хr =Вr

C1 = (C11 C21 .. Cr1 , 1,0..0)

C2 = (C21 C22 .. C2r,0, 1..0) <= Линейно-независимы.

……………………..

Cn-r = (Cn-r1 Cn-r2 .. Cn-rr ,0, 0..1)

Система n-r линейно-независимых решений однородной системы линейных уравнений с n-неизвестными ранга r называется фундаментальной системой решений.

Теорема 4.

Любое решение системы линейных уравнений есть линейная комбинация решения фундаментальной системы.

С = α1C1 +α2C2 +.. + αn-r Cn-r

Если r

12 вопрос.

Общее решение неоднородной системы.

Сон (общ. неоднор.) = Соо +Сч (частное)

АХ=В (неоднородная система) ; АХ= 0

(АСоо) +АСч = АСч = В, т. к. (АСоо) = 0

Сон= α1C1 +α2C2 +.. + αn-r Cn-r + Сч

Метод Гаусса.

Это метод последовательных исключений неизвестных (переменных) – заключается в том, что с помощью элементарных преобразований, исходная система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находят все остальные переменные.

Пусть а≠0 (если это не так, то перестановкой уравнений добиваются этого).

1)исключаем переменную х1 из второго, третьего…n-ого уравнения, умножая первое уравнение на подходящие числа и прибавляя полученные результаты ко 2-ому, 3-ему…n-ому уравнению, тогда получаем:

Получаем систему равносильную исходной.

2)исключаем переменную х2

3) исключаем переменную х3 и т. д.

Продолжая процесс последовательного исключения переменных х4;х5...хr-1 получим для (r-1)-ого шага.

Число ноль последних n-r в уравнениях означают, что их левая часть имеет вид: 0х1 +0х2+..+0хn

Если хотя бы одно из чисел вr+1, вr+2… не равны нулю, то соответственное равенство противоречиво и система (1) не совместна. Таким образом, для всякой совместной системы эта вr+1 … вm равна нулю.

Последнее n-r уравнение в системе (1;r-1) являются тождествами и их можно не принимать во внимание.

Возможны два случая:

а)число уравнений системы (1;r-1) равно числу неизвестных, т. е. r=n (в этом случае система имеет треугольный вид).

б)r

Переход от системы (1) к равносильной ей системе (1;r-1) называется прямым ходом метода Гаусса.

О нахождение переменной из системы (1;r-1) – обратным ходом метода Гаусса.

Преобразования Гаусса удобно проводить, осуществляя их не с уравнениями, а с расширенной матрицей их коэффициентов.

13 вопрос.

Подобные матрицы.

Будем рассматривать только квадратные матрицы порядка n/

Матрица А называется подобной матрице В (А~В), если существует такая неособенная матрица S, что А=S-1BS.

Свойства подобных матриц.

1)Матрица А подобна сама себе. (А~А)

Если S=Е, тогда ЕАЕ=Е-1АЕ=А

2)Если А~В, то В~А

Если А=S-1ВS => SAS-1= (SS-1)B(SS-1)=B

3)Если А~В и одновременно В~С, то А~С

Дано, что А=S1-1BS1, и В=S2-1CS2 => A= (S1-1 S2-1) C(S2 S1) = (S2 S1)-1C(S2 S1) = S3-1CS3, где S3 = S2S1

4)Определители подобных матриц равны.

Дано, что А~В, надо доказать, что detA=detB.

A=S-1 BS, detA=det(S-1 BS)= detS-1* detB* detS = 1/detS *detB*detS (сокращаем) = detB.

5)Ранги подобных матриц совпадают.

Собственные векторы и собственные значения матриц.

Число λ называется собственным значением матрицы А, если существует ненулевой вектор Х(матр. столбец) такой, что АХ= λ Х, вектор Х называется собственным вектором матрицы А, а совокупность всех собственных значений называется спектром матрицы А.

Свойства собственных векторов.

1)При умножении собственного вектора на число получим собственный вектор с тем же собственным значением.

АХ= λ Х; Х≠0

α Х => А(α Х) = α (АХ) = α(λ Х) = = λ (αХ)

2) Собственные векторы с попарно-различными собственными значениями линейно независимы λ1, λ2,.. λк.

Пусть система состоит из 1-ого вектора, сделаем индуктивный шаг:

С1 Х1 +С2 Х2 + .. +Сn Хn = 0 (1) – умножаем на А.

С1 АХ1 +С2 АХ2 + .. +Сn АХn = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn = 0

Умножаем на λn+1 и вычтем

С1 Х1 +С2 Х2 + .. +Сn Хn+ Сn+1 Хn+1 = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn+ Сn+1 λn+1 Хn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn + Cn+1 (λn+1 –λn+1)Xn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn = 0

Надо чтобы С1 =С2 =… = Сn = 0

Сn+1 Хn+1 λn+1 =0

Характеристическое уравнение.

А-λЕ называется характеристической матрицей для матрицы А.

Для того, чтобы ненулевой вектор Х был собственным вектором матрицы А, соответствующий собственному значению λ необходимо чтобы он являлся решением однородной системы линейно-алгебраических уравнений (А - λЕ)Х = 0

Нетривиальное решение система имеет тогда, когда det (А - XЕ) = 0 - это характеристическое уравнение.

Утверждение!

Характеристические уравнения подобных матриц совпадают.

det(S-1AS – λЕ) = det(S-1AS – λ S-1ЕS) =det(S-1 (A – λЕ)S) = det S-1 det(A – λЕ) detS= det(A – λЕ)

Характеристический многочлен.

det(A – λЕ)- функция относительно параметра λ

det(A – λЕ) = (-1)n Xn +(-1)n-1(a11+a22+..+ann)λn-1+..+detA

Этот многочлен и называется характеристическим многочленом матрицы А.

Следствие:

1)Если матрицы А~В, то сумма их диагональных элементов совпадает.

a11+a22+..+ann = в11+в22+..+вnn

2)Множество собственных значений подобных матриц совпадают.

Если характеристические уравнения матриц совпадают, то они необязательно подобны.

Для матрицы А

Для матрицы В

https://pandia.ru/text/78/365/images/image062_10.gif" width="92" height="38">

Det(Ag-λE) = (λ11 – λ)(λ22 – λ)…(λnn – λ)= 0

Для того чтобы матрица А порядка n была диагонализируема, необходимо, чтобы существовали линейно-независимые собственные вектора матрицы А.

Следствие.

Если все собственные значения матрица А различны, то она диагонализируема.

Алгоритм нахождения собственных векторов и собственных значений.

1)составляем характеристическое уравнение

2)находим корни уравнений

3)составляем систему уравнений для определения собственного вектора.

λi (A-λi E)X = 0

4)находим фундаментальную систему решений

x1,x2..xn-r, где r - ранг характеристической матрицы.

r =Rg(A - λi E)

5)собственный вектор, собственные значения λi записываются в виде:

X = С1 Х1 +С2 Х2 + .. +Сn-r Хn-r, где С12 +С22 +… С2n ≠0

6)проверяем, может ли матрица быть приведена к диагональному виду.

7)находим Ag

Ag = S-1AS S=

15 вопрос.

Базис прямой, плоскости, пространства.

DIV_ADBLOCK371">

Модулем вектора называется его длина, то есть расстояние между А и В (││, ││). Модуль вектора равен нулю, тогда, когда этот вектор нулевой (│ō│=0)

4.Орт вектора.

Ортом данного вектора называется вектор, который направлен одинаково с данным вектором и имеет модуль, равный единице.

Равные вектора имеют равные орты.

5.Угол между двумя векторами.

Это меньшая часть площади, ограниченная двумя лучами, исходящими из одной точки и направленные одинаково с данными векторами.

Сложение векторов. Умножение вектора на число.

1)Сложение двух векторов

https://pandia.ru/text/78/365/images/image065_9.gif" height="11">+ │≤│ │+│ │

2)Умножение вектора на скаляр.

Произведением вектора и скаляра называют новый вектор, который имеет:

а) = произведения модуля умножаемого вектора на абсолютную величину скаляра.

б) направление одинаковое с умножаемым вектором, если скаляр положителен, и противоположное, если скаляр отрицателен.

λ а(вектор)=>│ λ │= │ λ │=│ λ ││ │

Свойства линейных операций над векторами.

1.Закон коммунитативности.

2. Закон ассоциативности.

3. Сложение с нулем.

а(вектор)+ō= а(вектор)

4.Сложение с противоположным.

5. (αβ) = α(β) = β(α)

6;7.Закон дистрибутивности.

Выражение вектора через его модуль и орт.

Максимальное число линейно-независимых векторов называются базисом.

Базисом на прямой является любой ненулевой вектор.

Базисом на плоскости являются любые два некаллениарных вектора.

Базисом в пространстве является система любых трех некомпланарных векторов.

Коэффициент разложения вектора по некоторому базису называется компонентами или координатами вектора в данном базисе.

https://pandia.ru/text/78/365/images/image075_10.gif" height="11 src=">.gif" height="11 src="> выполнить действие сложения и умножения на скаляр, то в результате любого числа таких действий получим:

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-зависимыми, если существует их нетривиальная линейная комбинация, равная ō.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-НЕзависимыми, если не существует их нетривиальная линейная комбинация.

Свойства линейно-зависимых и Независимых векторов:

1)система векторов, содержащая нулевой вектор линейно-зависима.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> были линейно-зависимыми, необходимо, чтобы какой-нибудь вектор являлся линейной комбинацией других векторов.

3)если часть векторов из системы а1(вектор), а2(вектор)… ак(вектор) линейно-зависимы, то и все вектора линейно-зависимы.

4)если все вектора https://pandia.ru/text/78/365/images/image076_9.gif" height="11 src=">.gif" width="75" height="11">

https://pandia.ru/text/78/365/images/image082_10.gif" height="11 src=">.gif" height="11 src=">)

Линейные операции в координатах.

https://pandia.ru/text/78/365/images/image069_9.gif" height="12 src=">.gif" height="11 src=">.gif" height="11 src=">.gif" height="11 src=">+ (λа3)DIV_ADBLOCK374">

Скалярное произведение 2-х векторов – это число равное произведению векторов на косинус угла между ними.

https://pandia.ru/text/78/365/images/image090_8.gif" width="48" height="13">

3. (a;b)=0, тогда и только тогда, когда векторы ортоганальны или какой нибудь из векторов равен 0.

4. Дистрибутивность (αa+βb;c)=α(a;c)+β(b;c)

5. Выражение скалярного произведения a и b через их координаты

https://pandia.ru/text/78/365/images/image093_8.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image095_8.gif" width="254" height="13 src=">

При выполнении условия () , h, l=1,2,3

https://pandia.ru/text/78/365/images/image098_7.gif" width="176" height="21 src=">

https://pandia.ru/text/78/365/images/image065_9.gif" height="11"> и называется третий вектор который удовлетворяет следующим уравнениям:

3. – правая

Свойства векторного произведения:

4. Векторное произведение координатных ортов

Ортонормированый базис.

https://pandia.ru/text/78/365/images/image109_7.gif" width="41" height="11 src=">

https://pandia.ru/text/78/365/images/image111_8.gif" width="41" height="11 src=">

Часто для обозначения ортов ортонормированного базиса используются 3 символа

https://pandia.ru/text/78/365/images/image063_10.gif" width="77" height="11 src=">

https://pandia.ru/text/78/365/images/image114_5.gif" width="549" height="32 src=">

Если - это ортонормированный базис, то

DIV_ADBLOCK375">

Прямая линия на плоскости. Взаимное расположение 2-х прямых. Расстояние от точки до прямой линии. Угол между двумя прямыми. Условие параллельности и перпендикулярности 2-х прямых.

1. Часный случай расположения 2-х прямых на плоскости.

1)- уравнение прямой параллельной оси ОХ

2) - уравнение прямой параллельной оси ОУ

2. Взамное расположение 2-х прямых.

Теорема 1 Пусть относительно аффинной системы координат даны уравнения прямых

А) Тогда необходимое и достаточное условие когда они пересекаются имеет вид:

Б) Тогда необходимое и достаточное условие того что прямые паралельны является условие:

B) Тогда необходимым и достаточным условием того что прямые сливаются в одну является условие:

3. Расстояние от точки до прямой.

Теорема. Расстояние от точки до прямой относительно декартовой системы координат:

https://pandia.ru/text/78/365/images/image127_7.gif" width="34" height="11 src=">

4. Угол между двумя прямыми. Условие перпендикулярности.

Пусть 2 прямые заданы относительно декартовой системы координат общими уравнениями.

https://pandia.ru/text/78/365/images/image133_4.gif" width="103" height="11 src=">

Если , то прямые перпендикулярны.

24 вопрос.

Плоскость в пространстве. Условие комплонарности вектора и плоскости. Расстояние от точки до плоскости. Условие параллельности и перпендикулярности двух плоскостей.

1. Условие комплонарности вектора и плоскости.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image140.jpg" alt="Безымянный4.jpg" width="111" height="39">

https://pandia.ru/text/78/365/images/image142_6.gif" width="86" height="11 src=">

https://pandia.ru/text/78/365/images/image144_6.gif" width="148" height="11 src=">

https://pandia.ru/text/78/365/images/image145.jpg" alt="Безымянный5.jpg" width="88" height="57">

https://pandia.ru/text/78/365/images/image147_6.gif" width="31" height="11 src=">

https://pandia.ru/text/78/365/images/image148_4.gif" width="328" height="24 src=">

3. Угол между 2-я плоскостями. Условие перпендикулярности.

https://pandia.ru/text/78/365/images/image150_6.gif" width="132" height="11 src=">

Если , то плоскости перпендикулярны.

25 вопрос.

Прямая линя в пространстве. Различные виды уравнения прямой линии в пространстве.

https://pandia.ru/text/78/365/images/image156_6.gif" width="111" height="19">

2. Векторное уравнение прямой в пространстве.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image162_5.gif" width="44" height="29 src=">

4. Каноническое уравнение прямое.

https://pandia.ru/text/78/365/images/image164_4.gif" width="34" height="18 src=">

https://pandia.ru/text/78/365/images/image166_0.jpg" alt="Безымянный3.jpg" width="56" height="51">

28 вопрос.

Эллипс. Вывод Канонического уравнения эллипса. Форма. Свойства

Эллипс – геометрическое место точек, для которых сумма расстояний от двух фиксированных расстояний, называемых фокусами есть данное число 2a, большее чем расстояние 2c между фокусами.

https://pandia.ru/text/78/365/images/image195_4.gif" alt="image002" width="17" height="23 id=">.gif" alt="image043" width="81 height=44" height="44"> 0=

на рис.2 r1=a+ex r2=a-ex

Ур-е касательной к эллипсу

DIV_ADBLOCK378">

Каноническое уравнение гиперболы

Форма и св-ва

y=±b/a умножить на корень из (x2-a2)

Ось симметрии гиперболы - её оси

Отрезок 2a - действительная ось гиперболы

Эксентриситет e=2c/2a=c/a

Если b=a получается равнобокая гипербола

Ассимтотой - называется прямая, если при неограниченном удалении точки M1 по кривой расстояние от точки до прямой стремится к нулю.

lim d=0 при x-> ∞

d=ba2/(x1+(x21-a2)1/2/c)

касательная гиперболы

xx0/a2 - yy0/b2 = 1

парабола - геометрическое место точек, равноудаленное от точки, названной фокусом и данной прямой, названной директриссой

Каноническое уравнение параболы

свойства

ось симметрии параболы проходит через её фокус и перпендиукулярна директрисе

если вращать параболу получится эллиптический параболоид

все параболы подобны

вопрос 30. Исследование уравнения общего вида кривой второго порядка.

Тип кривой опр. при старших членах A1, B1, C1

A1x12+2Bx1y1+C1y12+2D1x1+2E1y1+F1=0

1. AC=0 ->кривая параболического типа

A=C=0 => 2Dx+2Ey+F=0

A≠0 C=0 => Ax2+2Dx+2Ey+F=0

Если Е=0 => Ax2+2Dx+F=0

то x1=x2 - сливается в одну

x1≠x2 - прямые параллельны Оу

x1≠x2 и корни мнимые, не имеет геометричекого образа

С≠0 А=0 =>C1y12+2D1x1+2E1y1+F1=0

Вывод: кривая параболического типа это либо парабола, либо 2 параллельные прямые, или мнимые, или в одну сливаются.

2.AC>0 -> кривая эллиптического типа

Дополняя до полного квадрата исходное уравнение преобразуем к каноническому, тогда получим случаи

(x-x0)2/a2+(y-y0)2/b2=1 - эллипс

(x-x0)2/a2+(y-y0)2/b2=-1 - мнимый эллипс

(x-x0)2/a2-(y-y0)2/b2=0 - точка с координатой x0 y0

Вывод: кривая эл. типа ето либо эллипс, либо мнимый, либо точка

3. АС<0 - кривая гиперболического типа

(x-x0)2/a2-(y-y0)2/b2=1 гипербола, действительная ось параллельна Ох

(x-x0)2/a2-(y-y0)2/b2=-1 гипербола, действительная ось параллельна Oy

(x-x0)2/a2-(y-y0)2/b2=0 ур-е двух прямых

Вывод: кривая гиперболического типа это либо гипербола, либо две прямые

Определение Матрицей – называется таблица чисел содержащая определенное количество строк и столбцов

Элементами матрицы являются числа вида a ij , где i- номер строки j- номер столбца

Пример 1 i = 2 j = 3

Обозначение: А=

Виды матриц:

1. Если число строк не равно числу столбцов , то матрица называется прямоугольной:

2. Если число строк равно числу столбцов , то матрица называется квадратной:

Число строк или столбцов квадратной матрицы называется ее порядком . В примере n = 2

Рассмотрим квадратную матрицу порядка n:

Диагональ, содержащая элементы a 11 , a 22 ……., a nn , называетсяглавной, а диагональ, содержащая элементы а 12 , а 2 n -1 , …….a n 1 – вспомогательная.

Матрица, у которой отличны от нуля только элементы, находящиеся на главной диагонали, называется диагональной :

Пример 4 n = 3

3. Если у диагональной матрицы элементы равны 1, то матрица называется единичной и обозначается буквой Е:

Пример 6 n = 3

4. Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается буквой О

Пример 7

5. Треугольной матрицей n-ого порядка называется квадратная матрица, все элементы которой, расположенные ниже главной диагонали, равны нулю:

Пример 8 n = 3

Действия над матрицами:

Суммой матрицы А и В называется такая матрица С, элементы которой равны сумме соответствующих элементов матриц А и В.

Складывать можно только матрицы, имеющие одинаковые число строк и столбцов.

Произведением матрицы А на число k называется такая матрица kA, каждый элемент которой равен ka ij

Пример10

Умножение матрицы на число сводится к умножению на это число всех элементов матрицы.

Произведение матриц Что бы умножить матрицу на матрицу, необходимо выбрать первую строку первой матрицы и умножить на соответствующие элементы первого столбца второй матрицы, результат сложить. Этот результат расположить в результатирующей матрице в 1-ой строке и 10ом столбце. Аналогично выполняем действия со всеми остальными элементами: 1-ую строку на второй столбец, на 3-ий и т.д., затем со следующими строками.

Пример 11

Умножение матрицы А на матрицу В возможно только в том случае, если число столбцов первой матрицы равно числу строе второй матрицы.

- произведение существует;

- произведение не существует

Примеры 12 последнюю строчку во II матрицы умножать не с чем, т.е. произведение не существует

Транспонирование матрицы называется операция замены элементов строки на элементы столбца:

Пример13

Возведением в степень называется последовательное перемножение матрицы саму на себя.


Матрицей размера m ? n называется прямоугольная таблица чисел, содержащих m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными буквами латинского алфавита (A,B,C…) , а для обозначения элементов матрицы используются строчные буквы с двойной индексацией:

Где i - номер строки, j - номер столбца.

Например, матрица

Или в сокращённой записи, A=(); i =1,2…, m ; j=1,2, …, n.

Используются другие обозначения матрицы например: , ? ?.

Две матрицы А и В одного размера называются равными , если они совпадают поэлементно,т.е. = , где i= 1, 2, 3, …, m , а j = 1, 2, 3, …, n.

Рассмотрим основные типы матриц:

1. Пусть m = n, тогда матрица А - квадратная матрица, которая имеет порядок n:

Элементы образуют главную диагональ, элементы образуют побочную диагональ.

Квадратная матрица называется диагональной , если все ее элементы, кроме, возможно, элементов главной диагонали, равны нулю:

Диагональная, а значит квадратная, матрица называется единичной , если все элементы главной диагонали равны 1:

Заметим, что единичная матрица является матричным аналогом единицы во множестве действительных чисел, а также подчеркнем, что единичная матрица определяется только для квадратных матриц.

Приведем примеры единичных матриц:

Квадратные матрицы


называются верхней и нижней треугольными соответственно.

  • 2. Пусть m = 1, тогда матрица А - матрица-строка, которая имеет вид:
  • 3. Пусть n =1, тогда матрица А - матрица-столбец, которая имеет вид:

4. Нулевой матрицей называется матрица порядка mn, все элементы которой равны 0:

Заметим, что нулевая матрица может быть квадратной, матрицей-строкой или матрицей-столбцом. Нулевая матрица есть матричный аналог нуля во множестве действительных чисел.

5. Матрица называется транспонированной к матрице и обозначается, если ее столбцы являются соответствующими по номеру строками матрицы.

Пример . Пусть

Заметим, если матрица А имеет порядок mn , то транспонированная матрица имеет порядок nm .

6. Матрица А называется симметричной, если А=, и кососимметричной, если А = .

Пример . Исследовать на симметричность матрицы А и В .

следовательно, матрица А - симметричная, так как А = .

следовательно, матрица В - кососимметричная, так как В = - .

Заметим, что симметричная и кососимметричная матрицы всегда квадратные. На главной диагонали симметричной матрицы могут стоять любые элементы, а симметрично относительно главной диагонали должны стоять одинаковые элементы, то есть На главной диагонали кососимметричной матрицы всегда стоят нули, а симметрично относительно главной диагонали

матрица квадратный лаплас аннулирование

Определение 1. Матрицей А размера m n называется прямоугольная таблица из m строк и n столбцов, состоящая из чисел или иных математических выражений (называемых элементами матрицы),i = 1,2,3,…,m, j = 1,2,3,…,n.

, или

Определение 2. Две матрицы
и
одного размера называютсяравными , если они совпадают поэлементно, т.е. =,i = 1,2,3,…,m, j = 1,2,3,…,n.

С помощью матриц легко записывать некоторые экономические зависимости, например таблицы распределения ресурсов по некоторым отраслям экономики.

Определение 3. Если число строк матрицы совпадает с числом ее столбцов, т.е. m = n, то матрица называется квадратной порядка n , а в противном случае прямоугольной.

Определение 4. Переход от матрицы А к матрице А т, в которой строки и столбцы поменялись местами с сохранением порядка, называется транспонированием матрицы.

Виды матриц: квадратная (размера 33) -
,

прямоугольная (размера 25) -
,

диагональная -
, единичная -
, нулевая -
,

матрица-строка -
, матрица-столбец -.

Определение 5. Элементы квадратной матрицы порядка n с одинаковыми индексами называются элементами главной диагонали, т.е. это элементы:
.

Определение 6. Элементы квадратной матрицы порядка n называются элементами побочной диагонали, если сумма их индексов равна n + 1, т.е. это элементы: .

1.2. Операции над матрицами.

1 0 . Суммой двух матриц
и
одинакового размера называется матрица С = (с ij), элементы которой определяются равенством с ij = a ij + b ij , (i = 1,2,3,…,m, j = 1,2,3,…,n).

Свойства операции сложения матриц.

Для любых матриц А,В,С одного размера выполняются равенства:

1) А + В = В + А (коммутативность),

2) (А + В) + С = А + (В + С) = А + В + С (ассоциативность).

2 0 . Произведением матрицы
на число называется матрица
того же размера, что и матрица А, причемb ij = (i = 1,2,3,…,m, j = 1,2,3,…,n).

Свойства операции умножения матрицы на число.

    (А) = ()А (ассоциативность умножения);

    (А+В) = А+В (дистрибутивность умножения относительно сложения матриц);

    (+)А = А+А (дистрибутивность умножения относительно сложения чисел).

Определение 7. Линейной комбинацией матриц
и
одинакового размера называется выражение видаА+В, где  и  - произвольные числа.

3 0 . Произведением А В матриц А и В соответственно размеров mn и nk называется матрица С размера mk, такая, что элемент с ij равен сумме произведений элементов i-той строки матрицы А и j-того столбца матрицы В, т.е. с ij = a i 1 b 1 j +a i 2 b 2 j +…+a ik b kj .

Произведение АВ существует, только в том случае, если число столбцов матрицы А совпадает с числом строк матрицы В.

Свойства операции умножения матриц:

    (АВ)С = А(ВС) (ассоциативность);

    (А+В)С = АС+ВС (дистрибутивность относительно сложения матриц);

    А(В+С) = АВ+АС (дистрибутивность относительно сложения матриц);

    АВ  ВА (не коммутативность).

Определение 8. Матрицы А и В, для которых АВ = ВА, называются коммутирующими или перестановочными.

Умножение квадратной матрицы любого порядка на соответствующую единичную матрицу не меняет матрицу.

Определение 9. Элементарными преобразованиями матриц называются следующие операции:

    Перемена местами двух строк (столбцов).

    Умножение каждого элемента строки (столбца) на число, отличное от нуля.

    Прибавление к элементам одной строки (столбца) соответствующих элементов другой строки (столбца).

Определение 10. Матрица В, полученная из матрицы А с помощью элементарных преобразований называется эквивалентной (обозначается ВА).

Пример 1.1. Найти линейную комбинацию матриц 2А–3В, если

,
.

,
,


.

Пример 1.2. Найти произведение матриц
, если

.

Решение: т.к количество столбцов первой матрицы совпадает с количеством строк второй матрицы, то произведение матриц существует. В результате получаем новую матрицу
, где

В результате получим
.

Лекция 2. Определители. Вычисление определителей второго, третьего порядка. Свойства определителей n -го порядка.