Мейоз. Гаметогенез

Рассмотрите рисунки 84, 85, 86. Чем мужские половые клетки отличаются от женских? Вспомните, как происходит деление клеток. Что такое митоз? Какие процессы происходят в каждую из стадий митоза?

В основе полового размножения лежит процесс слияния половых клеток - гамет. В отличие от неполовых клеток, половые всегда имеют одинарный набор хромосом, что предотвращает увеличение числа хромосом у нового организма. Образование клеток с одинарным набором хромосом происходит в процессе особого типа деления - мейоза.

Мейоз. Мейоз (от греч. мейозис - уменьшение, убывание) - такое деление клетки, при котором хромосомный набор во вновь образующихся дочерних клетках уменьшается вдвое.

Как митозу, так и мейозу предшествует интерфаза, в которую происходит редупликация ДНК. Перед началом деления каждая хромосома состоит из двух молекул ДНК, которые образуют две сестринские хромати-ды, сцепленные центромерами. Таким образом, перед началом деления хромосомный набор клетки составляет 2л, а количество ДНК - увеличено вдвое.

Процесс мейоза состоит из двух последовательных делений - мейоз I и мейоз II, которые подразделяются на те же стадии, что и митоз. В результате образуются не две, а четыре клетки (рис. 82).

Рис. 82. Стадии мейоза: 1 - профаза I; 2 - метафаза I; 3 - анафаза I; 4 - телофаза I; 5 - метафаза II; 6 - апафаза II; 7 - телофаза II

Профаза I. Эта стадия значительно длиннее, чем в митозе. Хромосомы спирализуются и утолщаются. Гомологичные хромосомы попарно соединяются друг с другом, т. е. происходит их конъюгация (от лат. конъюгацио - соединение). В результате этого в клетке образуется комплекс из двойных хромосом (рис. 83). Затем между участками гомологичных хромосом осуществляется обмен генами - кроссинговер (от англ. кроссинговер - пересечение, скрещивание). Это приводит к новым сочетаниям генов в хромосомах (рис. 83). После этого ядерная оболочка в клетке исчезает, центриоли расходятся к полюсам, и образуется веретено деления.

Рис. 83. Конъюгация и кроссинговер между гомологичными хромосомами (буквами обозначены находящиеся в хромосомах гены)

Метафаза I. Гомологичные хромосомы попарно располагаются в экваториальной зоне клетки над и под плоскостью экватора. Центромеры хромосом соединяются с нитями веретена деления.

Анафаза I. К полюсам клетки расходятся гомологичные хромосомы. Это основное отличие мейоза от митоза, где идет расхождение сестринских хроматид. Таким образом, у каждого из полюсов оказывается только одна хромосома из гомологичной пары. Число хромосом у полюсов уменьшается вдвое - происходит его редукция.

Телофаза I. Делится все остальное содержимое клетки, образуется перетяжка и возникают две клетки с одинарным набором хромосом (л). Каждая хромосома при этом состоит из двух сестринских хроматид - двух молекул ДНК. Образование двух клеток наступает не всегда. Иногда телофаза сопровождается только образованием двух ядер.

Перед вторым делением мейоза интерфаза отсутствует. Обе образовавшиеся клетки после периода покоя или сразу приступают ко второму делению мейоза. Мейоз II полностью идентичен митозу и происходит в двух клетках (ядрах) синхронно.

Профаза II значительно короче профазы I. Ядерная оболочка вновь исчезает, образуется веретено деления.

В метафазе II хромосомы выстраиваются в плоскости экватора. Нити веретена деления соединяются с центромерами хромосом. В анафазе II, как и в митозе, к полюсам клетки расходятся сестринские хроматиды - хромосомы. У каждого полюса образуется одинарный набор хромосом (п.), при этом каждая хромосома состоит из одной молекулы ДНК. Телофаза II заканчивается образованием четырех клеток (ядер) с одинарным набором хромосом и одной молекулой ДНК в каждой.

Биологическое значение мейоза заключается в образовании клеток с одинарным набором хромосом. Развивающиеся затем из них гаметы при половом размножении сливаются и двойной набор хромосом в результате этого восстанавливается. Кроме того, кроссинговер приводит к новым сочетаниям генов в хромосомах клеток, что служит основой для комбинативной изменчивости организмов.

Образование половых клеток у животных. Процесс образования половых клеток называют гаметогенезом (от гамета и греч. генезис - рождение). У животных гаметы образуются в половых органах: в семенниках у самцов и яичниках у самок.

Гаметогенез протекает последовательно, в три стадии в соответствующих зонах и заканчивается формированием сперматозоидов и яйцеклеток. На стадии размножения первичные половые клетки интенсивно делятся митозом, что значительно увеличивает их число. На следующей стадии роста клетки растут, запасают питательные вещества. Этот период соответствует интерфазе перед мейозом. Далее клетка переходит в стадию созревания, где происходит мейоз, образуются клетки с одинарным набором хромосом, окончательно формируются и созревают гаметы.

Рис. 85. Сперматозоиды млекопитающего: А - схема строения: 1 - головка; 2 - пузырек с ферментами: 3 - ядро: 4 - шейка; 5 - митохондрии; 6 - центриоли; 7 - хвостик. Б - фото в световой микроскоп

Сперматогенез характеризуется образованием мужских половых клеток - сперматозоидов. Из одной первичной половой клетки образуются четыре одинаковые по величине гаметы - сперматозоиды.

Оогенез (от греч. оон - яйцо и генезис) характеризуется образованием женских половых клеток - яйцеклеток. Процесс образования яйцеклетки значительно продолжительнее, чем сперматозоиных. Митохондрии, сосредоточенные в шейке, обеспечивают движущийся сперматозоид энергией.

Яйцеклетка - округлая, крупная неподвижная клетка, содержащая ядро, все органоиды и много питательного вещества в виде желтка (рис.86). Яйцеклетка у любого вида животных всегда значительно крупнее его сперматозоидов. Благодаря ее питательным веществам обеспечивается развитие зародыша на начальной стадии (у рыб, земноводных и млекопитающих) или на всем протяжении зародышевого развития (у пресмыкающихся и птиц).

Рис. 86. Строение яйцеклетки млекопитающего: 1 - ядро; 2 - желточные зерна

Размеры яйцеклеток у разных видов животных существенно варьируют. У млекопитающих они в среднем составляют 0,2 мм. У амфибий и рыб 2-10 мм, а у рептилий и птиц достигают нескольких сантиметров.

Упражнения по пройденному материалу

  1. Какой тип деления клетки лежит в основе полового размножения животных? Какие клетки образуются в результате такого деления?
  2. В чем основное, отличие мейоза от митоза? 3. Объясните, почему деление мейоза всегда предшествует половому размножению животных. 4. В чем заключается биологическое значение мейоза? 5. Каковы раз личия в процессах сперматогенеза и оогенеза?
  3. Рассмотрите с помощью микроскопа готовые микропрепараты сперматозоидов и яйцеклеток млекопитающих. Сравните между собой строение сперматозоида и яйцеклетки. В чем причина различии?

Каждая клетка в организме человека имеет двойной набор хромосом - один от отца и один от матери. Его обозначают «2N» и называют диплоидным. В сперматозоиде и яйцеклетке содержится одинарный набор хромосом, обозначаемый «1N» и называемый гаплоидным.

Процесс образования гаплоидного набора из диплоидного, происходящий при формировании половых клеток, называют мейозом. В пересчёте на количество центромер происходит сначала редукционное деление (мейоз I), а затем эквационное деление (мейоз II). У мужчин мейоз проходит так же, как и у большинства диплоидных видов, а у женщин данный процесс имеет некоторые отличия.

Кроссинговер между хромосомами отца и матери обеспечивает перегруппировку генетической информации между поколениями. Во время оплодотворения происходит слияние гаплоидных наборов хромосом сперматозоида и яйцеклетки, таким образом в зиготе восстанавливается диплоидный набор.

Мейоз I

Мейоз I имеет много общего с митозом, однако это более сложный и продолжительный процесс.
первичных сперматоцитов и овоцитов начинается после фазы G2 митоза , а потому они имеют диплоидный набор хромосом (2N), содержащих реплицированную ДНК в составе сестринских хроматид (4С). Профаза I включает обоюдный обмен между хроматидами матери и отца при помощи крос-синговера.

Профаза I

Лептотена . Хромосомы представлены в виде длинных нитей, прикреплённых концами к ядерной оболочке.

Зиготена . Хромосомы сокращаются, образуют пары и гомологи слипаются друг с другом (синапсис). Данный процесс характеризует точное совмещение хромосом (ген к гену на протяжении всего генома). При этом у первичных сперматоцитов хромосомы X и Y образуют синапсис только концами своих коротких плечей.

Пахитена . Сестринские хроматиды начинают разделяться. Пары гомологичных хромосом, называемые бивалентами, имеют по четыре двойных спирали ДНК (тетрада). Одна или обе хроматиды каждой из отцовских хромосом скрещиваются с материнскими и образуют синаптонемальный комплекс. Каждая пара хромосом претерпевает хотя бы один кроссинговер.

Диплотена . Происходит разделение хроматид, за исключением участков кроссинговера, или хиазм. Хромосомы всех первичных овоцитов находятся в таком состоянии вплоть до овуляции.

Диакинез . Реорганизованные хромосомы начинают расходиться. В этот момент каждый бивалент содержит четыре хроматиды, соединённые обыкновенными центромерами, и несестринские хроматиды, соединённые хиазмами.

Метафаза I, анафаза 1, тепофаза 1, цитокинез I

Данные стадии мейоза подобны фазам митоза. Основное отличие: вместо разъединения несестринских хроматид происходит распределение по дочерним клеткам парных кроссоверных сестринских хроматид, соединённых центромерами.

В конце I вторичные сперматоциты и овоциты имеют 23 хромосомы (1N), каждая из которых состоит из двух хроматид (2С).

Мейоз II

При мейозе II возникает кратковременная интерфаза, во время которой не происходит репликации хромосом. Затем следуют профаза, метафаза, анафаза, телофаза и цитокинез. Схожесть каждой фазы мейоза II с подобной ей при митозе заключается в том, что пары хроматид (биваленты), соединённые в области центромер, выстраиваются в линию и образуют метафазную пластинку, а затем расходятся по дочерним клеткам, после чего следует репликация ДНК центромер.

В конце мейоза II в клетках содержится 23 хромосомы (IN), каждая из которых состоит из одной хроматиды (1С).


Мейоз у мужчин

Сперматогенезом называют процесс длительностью до 64 дней, включающий все стадии, на протяжении которых сперматогоний превращается в сперматозоид. При этом цитокинез остаётся незавершённым, позволяя каждому поколению клеток быть связанным цитоплазматическими мостиками.

После того как диплоидный первичный сперматоцит проходит стадию мейоза I, возникают два гаплоидных вторичных сперматоцита. Затем следует мейоз II, в результате которого появляются четыре гаплоидные спсрматиды. Во время спермиогенеза сперматиды превращаются в сперматозоиды. Данный процесс включает:
- образование акросомы, содержащей ферменты, которые способствуют проникновению семени;
- конденсацию ядра;
- удаление большей части цитоплазмы;
- формирование шейки, средней части и хвоста.

Мейоз у женщин

Овогенез начинается у плода в возрасте 12 недель и внезапно прекращается к 20-й неделе. Первичные овоциты остаются в форме диплотены профазы I вплоть до овуляции. Данную стадию называют диктиотеной.

Обычно созревает не более одного овоцита в месяц. Под влиянием гормонов первичный овоцит набухает, накапливая цитоплазматический материал. По завершению мейоза I он наследуется одной дочерней клеткой - вторичным овоцитом. Второе ядро переходит в первое направительное тельце, которое обычно не делится и со временем дегенерирует. После окончания мейоза I вторичный овоцит попадает в матку или фаллопиевы трубы.

Мейоз II вторичного овоцита останавливается на стадии метафазы до попадания в него сперматозоида. После этого процесс деления завершается, и образуется большой гаплоидный пронуклеус яйцеклетки, который сливается с пронуклеусом сперматозоида, а также второе направительное тельце, которое дегенерирует.

В зависимости от того, когда произойдёт оплодотворение, продолжительность данного процесса составляет 12-50 лет.

Медицинское значение понимания мейоза

Диплоидный набор хромосом соматических клеток снижается до гаплоидного в половых клетках.
Отцовские и материнские хромосомы подвергаются пересортировке, в результате чего количество возможных комбинаций (за исключением рекомбинаций внутри самих хромосом) возрастает до 223 (8 388 608).

Пересортировка отцовских и материнских аллелей внутри хромосом создаёт между гаметами бесконечное количество генетических вариаций.
Случайность процесса пересортировки отцовских и материнских аллелей во время мейоза (и оплодотворения) позволяет применять теорию вероятностей к генетическим пропорциям и генетической изменчивости согласно законам Менделя.

Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

Что такое мейоз?

Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз обозначает уменьшение.

Данный процесс происходит в два этапа:

  • Редукционный ;

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

  • Эквационный ;

В ходе второго деления гаплоидность клеток сохраняется.

ТОП-4 статьи которые читают вместе с этой

Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

Фазы мейоза

В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

Первое деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Лептотена

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Зиготена

Гомологичные хромосомы соединяются в пары.

Пахитена

По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

Диплотена

Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

Диакинез

Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

Рис. 1. Схема мейоза первого этапа деления

Второе деление имеет такие признаки:

  • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
  • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
  • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

Рис. 2. Схема мейоза второго этапа деления

В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

Значение мейоза

В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза;

Рис. 3. Схема гаметогенеза

  • Осуществляет передачу генетического кода при размножении;
  • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

Что мы узнали?

Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 967.

  • 4. Фенотипические классы кроликов, полученные при анализе на сцепление трех генов
  • Глава 5 генетика пола
  • Нарушения в развитии пола
  • 5. Зависимость пола дрозофилы от отношения числа х-хромосом к числу наборов аутосом (Бриджес, 1932)
  • 6. Нарушения в системе половых хромосом и их фенотипическое проявление
  • Проблема регуляции пола
  • Молекулярные основы наследственности
  • Строение и типы рнк
  • Генетический код
  • Синтез белка в клетке
  • Глава 7 генетика микроорганизмов
  • 700Ахвост
  • Конъюгация
  • Трансдукция
  • Трансформация
  • Глава 8 биотехнология
  • Генная инженерия
  • (По с. М. Гершензону)
  • I Химический синтез днк
  • Xj обработанные рестриктазой
  • 1 Действие днк-лигазы
  • Трансформированные дочерние клетки
  • Клеточная инженерия
  • Химерные животные
  • Трансгенные животные
  • Виды изменчивости
  • 9. Распределение сухостойных коров черно-пестрой породы
  • 3,0 44 5,0 6Д 7.0 8,0 9,0 10,0 11,0 12.0 классы по количеству лейкоцитов (тыс.)
  • 10. Определение основных статистических величин способом произведений для содержания количества лейкоцитов
  • В крови сухостойных коров (тыс. В 1 им)
  • 11. Значение нормального интеграла вероятностей
  • Оценка достоверности разности между средними арифметическими двух выборочных совокупностей
  • Типы распределения
  • 14. Распределение семейств по количеству больных туберкулезом коров
  • 15. Значение вероятности появления редких событий при распределении Пуассона
  • 3,4 3,6 4,0 4,6 5,0 5,4 5,8 Жирность молока, %
  • Критерий хи-квадрат (у2)
  • 16. Соответствие фактического распределения семейств теоретически ожидаемому (биномиальному)
  • II квадрант
  • IV квадрант
  • I квадрант
  • III квадрант
  • 20. Определение г для малых выборок
  • 21. Корреляция частоты заболеваемости лейкозом матерей и дочерей
  • Дисперсионный анализ
  • 23. Сводная таблица однофакториого дисперсионного анализа
  • Классификация мутаций
  • Хромосомные мутации
  • (По Харе, 1978)
  • Кариотипа
  • Генные мутации
  • Индуцированный мутагенез
  • Антимутагены
  • Глава 11 генетические основы онтогенеза
  • Тироксин
  • 27. Продуктивность коров - дочерей и внучек разных быков-производителей в зависимости от условий кормления и выращивания (по о. А. Ивановой) Быки-произво­дители- отцы и деды коров
  • Глава 12 генетика популяций"
  • Популяция и «чистая линия»
  • 29. Снижение частоты рецессивного аллеля а при полной элиминации гомозигот aa (no Визнеру и Виллеру, 1979)
  • 30. Уровень возрастания roi
  • 31. Формы уродств в потомстве быка Бурхана 6083
  • Глава 13
  • 32. Системы генетических групп крови
  • Наследование групп крови
  • 33. Уточнение отцовства по группам крови
  • T t t гены
  • 34. Некоторые биохимические полиморфные системы
  • V " j с j Гены легкой н- цепи
  • Генетика иммуноглобулинов
  • 35. Аллотипы иммуноглобулинов кролика (по Кульбергу, 1985)
  • I клеткой тяжелых и легких I - -n/bJk I фенотип клетки - I а, d , d ,b,b - аллотипы иммуноглобулина кролика
  • 36. Средние титры антител (1дг) поросят разных пород после вакцинации против псевдобешенства (по Rothschild и др.)
  • Ig2 титра антител
  • Клон клеток, возникший в результате мутации (2)
  • 37. Мнс у домашних животных, в том числе птицы
  • 38. Взаимосвязь аллелей комплекса в с заболеваемостью кур md, % (по Hansen и др.)
  • Генетические аномалии
  • Экзогенные аномалии
  • 39. Частота пупочных грыж в потомстве разных быков (по а. И. Жигачеву)
  • 40. Аутосомный доминантный тип наследования
  • 41. Сводка доминантных признаков с летальным эффектом в гомозиготном состоянии (по Мейеру и Вегнеру, 1973)
  • 42. Сцепленный с х-хромосомой тип наследования
  • 43. Список генетически обусловленных аномалий у крупного рогатого скота
  • 44. Частота отдельных форм врожденных аномалий у телят костромской породы (по данным племенного хозяйства за 1969-1982 гг.)
  • 45. Список генетически обусловленных аномалий у свиней
  • 46. Список генетически обусловленных аномалий у овец
  • I Тип наследования
  • I дефекты, встречающиеся
  • Круп­ный рогатый скот
  • Круп­ный рогатый скот
  • 48. Типы центрических слияний (транслокаций) различными парами аутосом у крупного рогатого скота (по Густавссону, с нашими дополнениями)
  • 49. Число осеменений на зачатие (по Ценеру и др.)
  • 50. Продолжительность сервис-периода
  • 52. Сравнение снижения воспроизводительной способности хряков-носителей реципрокных транслокаций и эмбриональной смертности у их потомства
  • 53. Классификация гоносомальных аберраций у лошади
  • 64, Xy овари-
  • 54. Хромосомные аберрации в разных линиях кур (по Блому, 1974)
  • Глава 16
  • Особей из Fi
  • 55. Частота заболеваемости бруцеллезом потомства некоторых быков и семейств (по в. Л. Петухову)
  • 56. Заболеваемость туберкулезом животных разных пород (по Bate, Sidhu)
  • 57. Частота заболеваемости туберкулезом потомства некоторых быков и семейств (по в. Л. Петухову)
  • 58. Сравнение устойчивости некоторых инбредных семейств кроликов
  • По длительности жизни после стандартного введения возбудителей
  • Бычьего туберкулеза и после ингаляции человеческого туберкулеза
  • (По Lurie и Dannenberg)
  • 59. Результаты скрещивания резистентных и восприимчивых к лептоспирозу животных, % (по Przytulskl и др., 1980)
  • 60. Среднее число нематод в 1 г фекалий чистопородных и гибридных овец (по Jazwinski и др.)
  • 61. Генетическая устойчивость к нематодам овец с разными типами гемоглобина (по Aftaif и др.)
  • Выживаемость после инфекции.Дней
  • 62. Смертность от сердечной водянки телят до 30-месячного возраста, родившихся на станции Мара в Трансваале (по Bonsma)
  • К клещам
  • 63. Число клещей после двух заражений (по j. Frish)
  • 64. Устойчивость к клещам разных пород (по j. Frish)
  • 65. Заболеваемость лейкозом дочерей резистентных и восприимчивых к лейкозу быков (по в. Л. Петухову)
  • 66. Частота заболеваемости потомства лейкозом в зависимости от состояния здоровья родителей (по в. Л. Петухову)
  • 67. Частота инфицированности влкрс дочерей, полученных от инфицированных и здоровых матерей (по а. Г. Незавитину)
  • 68. Рак глаз и пигментация радужной оболочки (по Nishimura и др.)
  • 69. Резистентность к болезни Марека инбредных линий кур и их кроссов после экспериментального заражения (по Gavora, Spenser)
  • 70. Зависимость резистентное™ кур к болезни Марека от антигена в21 (по Hutt)
  • Болезни обмена веществ
  • 73. Влияние породы на заболеваемость овец энзоотической атаксией и содержание меди (по Wiener)
  • I печени, мг/кг
  • Воспалительно-инфекционные осложнения
  • 74. Частота болезней и деформация копыт у коров различного происхождения, % (по Косолапикову)
  • 76. Частота мертворожденных и трудных отелов у некоторых пород Скандинавских стран и фрг (цит. По Дехтяреву и др.)
  • К стрессу
  • Генетических аномалий и повышения наследственной устойчивости животных к болезням
  • 77. Количество нормального потомства при разных типах спаривания, необходимое для проверки гетерозиготного носительства у животных
  • Оценка генофонда пород
  • 78. Устойчивость скота разных пород к трипаносомозу, тейлериозу, анаплазмозу и нематодам (по Anosa)
  • 79. Устойчивость кур разных линий к лейкозу и моноцитозу (по Hatt)
  • 80. Коэффициент наследуемости устойчивости (%) к некоторым болезням
  • Крупный рогатый скот
  • 81. Комплексная оценка генофонда некоторых семейств (по в. Л. Петухову)
  • Селекция животных на устойчивость к болезням
  • 82. Селекция морских свинок на устойчивость и чувствительность к т. Columbrtformis (no Rothwell)
  • 83. Результаты селекции цыплят на резистентность к эймериозу (no Klimes, Orel)
  • 84. Наследуемость некоторых механизмов защиты у молодых быков
  • Глава 8. Биотехнология. Г. А. Назарова, в. Л. Лопухов 103
  • Глава 11. Гемтлеспе основы онтогенеза. Г. А. Назарова 178
  • Глава 16. Болезни с наследственной предрасположенностью.
  • Глава 17. Методы профилактики распространенна генетических аномалий н повыпкиня наследственной устойчивости животных к болезням.
  • Гаметогенез и мейоз

    Процесс развития половых клеток носит название гаметогене- за. У самцов этот процесс называется спермиогенезом, а у самок - овогенезом (рис. 6). Половые клетки в развитии после­довательно проходят следующие стадии: размножения, роста, со­зревания и формирования. В стадии размножения клетки интен­сивно делятся митотическим путем. В стадии роста клетки на­капливают питательные вещества, особенно при овогенезе.

    Наиболее ответственный момент с точки зрения генетики при образовании половых клеток - мейоз - процесс редукционного и эквационного деления ооцитов и сперматоцитов, в результате которого образуются половые клетки с гаплоидным набором хромосом. Рассмотрим наиболее важные моменты поведения хОомосом в мейозе. В этом процессе выделяют две стадии деле­ния (см. схему): 1) редукционную и 2) эквационную.

    Схема мейоза

    Второе эквационное деление фазы:

    профаза II

    метафаза II

    анафаза II

    телофаза II

    Деление хромосом на хроматиды и образование из двух дочерних еще двух новых клеток с гаплоидным набором хромосом


    редукционное деление

    профаза I - лептонема

    зигонема

    пахинема

    диплонема

    диакинез метафаза I анафаза I телофаза I

    Образование из одной материнской RXB с диплоидным набором хромо- ДЧ« дочерних с гаплоидным набо- удвоенных хромосом

    ОВОГЕНЕЗ

    СПЕРМАТОГЕНЕЗ

    СПЕРМАТОГОНИИ В СЕМЕННИКЕ И ОВОГОНИИ В ЯИЧ­ НИКЕ MHOFOKPAT НО ДЕЛЯТСЯ МИТОТИЧЕСКИ

    ОВОГОНИИ ДАЕТ,

    СПЕРМАТОГОНИИ ДАЕТ

    сперматоцит /ии первого порядка!

    ПЕРВОЕ

    МЕЙОТИЧЕСКОЕ

    ДЕЛЕНИЕ

    ОВОЦИТ ВТОРОГО ПОРЯДКА ВТОРОЕ МЕЙОТИЧЕСК1 ДЕЛЕНИЕ

    СПЕРМАТОЦИТ ВТОРОГО* Г« ПОРЯД1

    СПЕРМАТИДЫ,

    ЗИГОТА

    Рис. 6. Сравнение процессов сперматогенеза и овогенеза у животных с гаплоид­ ным числом хромосом, равным 2 (по К. Вилли и В. Детье, 1975)

    Непосредственно перед мейозом клетки половых желез нахо­дятся в интерфазе.

    Редукционное деление начинается с профазы I, ко­торая, как видно из схемы, подразделяется на пять фаз. На первой стадии профазы I - лептонемы хромосомы деспирализо-ваны, они в 2-5 раз длиннее метафазных. Под электронным микроскопом можно видеть, что они состоят из двух хроматид, соединенных центромерой. На следующей стадии - зигонемы на­блюдаются притяжение и слияние (конъюгация) гомологичных хромосом. Каждая пара конъюгирующих хромосом образует би­валент, а по числу хроматид - тетраду. На этой стадии происхо­дит образование синаптонемного комплекса (СК), входящего в состав бивалента. Нарушение формирования СК между гомоло­гичными хромосомами наблюдают у гетерозиготных носителей хромосомных аберраций. Далее, на стадии пахинемы, происходят

    утолщение и укорочение хромосом, так что сестринские хрома­тиды становятся хорошо различимыми; на отдельных из них можно видеть и ядрышки.

    Следующая фаза - диплонема характеризуется тем, что конъ-югярующие хромосомы начинают отталкиваться и постепенно расходятся от центромеры к концам. При этом образуются ха­рактерные фигуры, напоминающие греческую букву «хи» (х) и получившие вследствие этого название хиазмы. В точках сопри­косновения гомологичных хромосом возникают разрывы. Они могут быть одинарными, двойными и более сложными. В резуль­тате разрывов образуются фрагменты хроматид, которые затем могут воссоединяться на другой хромосоме, изменяя тем самым комбинацию генетического материала в клетке.

    Обмен участками между гомологичными хромосомами полу­чил название кроссинговера.

    На последней стадии профазы I - диакинезе происходит резкое укорочение хромосом, так что к концу этой стадии хроматиды остаются связанными только на концевых участках. Этим и за­канчивается профаза I. Необходимо отметить, что при более дета­лизированном изучении мейоза в профазе выделяют и другие про­межуточные стадии, например пролептонему, диктионему и т. д.

    На стадии метафазы I биваленты располагаются в плоскости экватора центромерами к противоположным полюсам. Силы от­талкивания здесь увеличиваются.

    В анафазе I начинается расхождение гомологичных хромосом к противоположным полюсам, которое носит случайный харак­тер. Каждая из пар гомологичных хромосом имеет одинаковую вероятность распределения в одну из двух дочерних клеток.

    В телофазе I хромосомы достигают полюсов клетки. Затем вос­станавливаются ядерная оболочка и ядрышко, хромосомы декон-денсируются. В конце телофазы делится цитоплазма {цитокинез) и образуются две дочерние клетки с гаплоидным набором хромосом.

    Отличительной особенностью первой стадии мейоза является то, что в период анафазы сами хромосомы не делятся на хрома­тиды, как при митозе, а лишь расходятся гомологичные пары хромосом к разным полюсам клетки и формируются две дочер­ние клетки с редуцированным наполовину набором хромосом, состоящим, однако, из двух хроматид.

    Между первой и второй стадиями мейоза имеется непродол­жительный период покоя - интеркинез, во время которого не Происходит репродукции хромосом.

    Эквационное, или уравнительное, деление ^илогично митозу, где клетки последовательно проходят четыре Фазы: профазу II, метафазу II, анафазу II, телофазу П. На стадии °*шфазы II хромосомы разделяются на две хроматиды, которые затем с помощью нитей веретена расходятся к противоположным полюсам. На стадии телофазы II заканчивается формирование

    еще двух клеток. В результате после двух последовательных ста­дий мейоза из каждой клетки образуются четыре новые с гапло­идным набором хромосом. Для более наглядного представления всех этих событий можно воспользоваться схемой мейоза, приве­денной на рисунке 7.

    Рис. 7, Схем» последомтелных стадий мейоза (по К. Свенсону и П. Уэбстеру, 1980):

    А - лептонема, предшествующая конъюгации хромосом; Б - начало конъюгации на стадии зигонемы; В- пахинема; Г- диплонема; Д- метафаза I; E- анафаза I; Ж~- телофаза I; 3 - интерфаза между двумя делениями мейоза; И- профаза II; К- метафаза II; Л- тело- фаза II

    Таким образом, в результате двух меиотических делений из одной клетки с диплоидным набором хромосом образуются че­тыре клетки с гаплоидным набором хромосом и в 2 раза мень­шим, чем в соматических клетках, содержанием ДНК. Вероят­ностный характер распределения материнских и отцовских гомо­логичных хромосом в разные клетки позволяет создать новые комбинации негомологичных хромосом в яйцеклетках и сперми-ях, чем достигается огромное число новых сочетаний наследст­венной информации.

    Новые сочетания генетической информации возникают вслед­ствие кроссинговера. Каждая из хромосом в метафазе I содержит участки, происходящие от отцовских и материнских хромосом. Рекомбинации хромосом при кроссинговере и вероятностное распределение их по клеткам - причины наследственной измен­чивости организма. Мейоз, оплодотворение и митоз обеспечива­ют поддержание постоянства числа хромосом в смежных поколе­ниях видов. В этом их биологическое значение.

    Патология мейоза. Основная патология мейоза - нерасхожде­ние хромосом- Оно может быть первичным, вторичным и тре­тичным. Первичное нерасхождение возникает у особей с нор­мальным кариотипом. При этом на стадии анафазы I нарушается разделение бивалентов и обе хромосомы из пары гомологов переходят в одну клетку, что приводит к избытку хромосом в данной клетке (и + 1) и недостатку в другой (и-1). Вторичное нерасхождение возникает в гаметах у особей с избытком (трисо-мией) одной хромосомы в кариотипе. В результате этого в про­цессе мейоза образуются и биваленты, и униваленты. Третичные нерасхождения наблюдают у особей, имеющих структурные перестройки хромосом, например транслокации. Нерасхождение хромосом отрицательно влияет на жизнеспособность организма животных. Подробно об этом будет изложено в последующих главах.

    Отличительная особенность мейоза у самок - образование в первом и втором меиотических делениях так назьгааемых поляр­ных телец, которые впоследствии дегенерируют и в размножении не участвуют. Неравные деления в овогенезе обеспечивают яйце­клетке необходимое количество цитоплазмы и запасного желтка, чтобы она могла выжить после оплодотворения. В отличие от спермиогенеза, который у самцов происходит как во внутриут­робный (пренатальный) период, так и после рождения (постна-тальный период), у самок яйцеклетка после рождения не образу­ется. Однако к концу пренатального периода у самок накаплива­ется огромное количество овоцитов (у коров, например, десятки тысяч), а созревают и дают начало развитию потомства лишь немногие из них. Этот резерв генетического материала, особенно у малоплодных животных, таких, как крупный рогатый скот, в настоящее время начинают использовать для искусственного

    стимулирования созревания многих яйцеклеток, последующего их оплодотворения и пересадки (трансплантации) специально подготовленным коровам-реципиентам. Таким образом от одной ценной коровы в год можно получить не одного, а несколько телят.

    Оплодотворение наступает после слияния гаплоидных сперма­тозоида и яйцеклетки и образования диплоидной клетки - зиго­ты, дающей начало развитию эмбриона. При делении клеток эмбриона, содержащих хромосомы матери и отца, генетическая информация поступает во все клетки нового организма.

    Морфологические и функциональные различия хромосомных наборов - основные причины эмбриональной смертности после оплодотворения при скрещивании разных видов или бесплодия гибридов. Так, при скрещивании зайца и кролика не происходит имплантации и развития оплодотворенной яйцеклетки. Эмбрио­нальная смертность наступает при скрещивании козы и овцы. Мужские гибвиды осла (2 л = 62) и лошади (2л = 64), как из­вестно, не дф.т потомства, они стерильные, или бесплодные. Стерильность гибридов-самцов наблюдается при скрещивании европейского крупного рогатого скота с бизоном, зубром, яком, а также гауром и гаялом.

    Это связано с тем, что у гибридов нарушаются процессы спермиогенеза. Однако при скрещивании европейского крупного рогатого скота с азиатским горбатым зебу, дикого кабана (2л = 36) и домашней свиньи (2л = 38) потомство рождается плодовитое. В результате сложных вариантов скрещиваний в последнее время удалось получить плодовитых гибридов крупно­го рогатого скота с зуС^ом, бизоном, яком. Гибриды отличаются такими ценными качествами, как крепкое телосложение, высо­кая жизнеспособность, хорошие мясные признаки.

    Контрольные вопросы. 1. Каковы морфологическое строение и химический состав хромосом? 2. Что такое кариотип и каковы его особенности у разных видов животных? 3. Что такое митоз и каково его биологическое значение? 4. Что такое гаметогенез и каковы его особенности у самцов и самок? 5. Что вы знаете о мейозе и его биологическом значении? 6. Каковы основные формы патологий митоза и мейоза?

    Мейоз - это деление диплоидных клеток, в результате которого образуются гаплоидные клетки. То есть из каждой пары гомологичных хромосом материнской клетки в дочерние попадает лишь одна хромосома. Мейоз лежит в основе формирования половых клеток – гамет. В результате слияния мужской и женской гамет диплоидный набор восстанавливается. Таким образом, одно из важных значений мейоза - это обеспечение постоянства числа хромосом у вида при половом размножении.

    В клетке, которая приступает к мейотическому делению, уже произошло удвоение (репликация) хромосом , также как это происходит в интерфазе митоза. Так что каждая хромосома состоит из двух хроматид, и количество хромосом диплоидное. То есть по количеству генетической информации клетки вступающие в митоз и мейоз одинаковы.

    В отличие от митоза мейоз протекает в два деления. В результате первого деления гомологичные хромосомы каждой пары расходятся в разные дочерние клетки, и образуются две клетки с гаплоидным числом хромосом, но каждая хромосома состоит из двух хроматид. Второе деление протекает также как митотическое, т. к. происходит разделение хроматид каждой хромосомы, и в дочерние клетки попадает по одной хроматиде каждой хромосомы.

    Таким образом в результате мейоза образуется четыре клетки с гаплоидным набором хромосом. У самцов все четыре становятся сперматозоидами. А вот у самок только одна становится яйцеклеткой, другие отмирают. Это связано с тем, что только в одной клетке концентрируется запас питательных веществ.

    Стадии, или фазы, первого мейотического деления:

    1. Профаза I. Спирализация хромосом. Гомологичные хромосомы располагаются параллельно друг другу и обмениваются некоторыми гомологичными участками (конъюгация хромосом и кроссинговер, в результате которого происходит перекомбинация генов). Разрушается ядерная оболочка, начинает формироваться веретено деления.
    2. Метафаза I. Пары гомологичных хромосом располагаются в экваториальной плоскости клетки. К центромере каждой хромосомы присоединяется нить веретена деления. Причем к каждой только одна таким образом, что к одной гомологичной хромосоме присоединена нить с одного полюса клетки, а к другой – с другого.
    3. Анафаза I. Каждая хромосома из пары гомологичных отходит к своему полюсу клетки. При этом каждая хромосома продолжает состоять из двух хроматид.
    4. Телофаза I. Образуются две клетки, содержащие гаплоидный набор удвоенных хромосом.

    Стадии, или фазы, второго мейотического деления:

    1. Профаза II. Разрушение ядерных оболочек, формирование веретена деления.
    2. Метафаза II. Хромосомы располагаются в экваториальной плоскости, к ним присоединяются нити веретена деления. Причем таким образом, что к каждой центромере присоединяются две нити - одна с одного полюса, другая - с другого.
    3. Анафаза II. Хроматиды каждой хромосомы разделяются в области центромер, и каждая из пары сестринских хроматид уходит к своему полюсу.
    4. Телофаза II. Формирование ядер, раскручивание хромосом, деление цитоплазмы.

    На схеме показано поведение при мейозе только одной пары гомологичных хромосом. В реальных клетках их больше. Так в клетках человека содержится 23 пары. На схеме видно, что дочерние клетки генетически отличны друг от друга. Это важное отличие мейоза от митоза.

    Следует отметить другое важное значение мейоза (первое, как уже было указано, – это обеспечение механизма полового размножения). В результате кроссинговера создаются новые комбинации генов. Они же создаются в результате независимого друг от друга расхождения хромосом при мейозе. Поэтому мейоз лежит в основе комбинативной изменчивости организмов, которая в свою очередь является одним из источников естественного отбора, т. е. эволюции.