Большой круговорот воды в биосфере. §47

Образование живого вещества и ее расписание - это две стороны единого процесса, который называется биологическим круговоротом химических элементов. Жизнь - это круговорот элементов между организмом и средой. Причина биологического круговорота - ограниченность ресурсов элементов, из которых строятся тела организмов.

Процессы круговорота веществ в биосфере принято разделять на большой (геологический) и малый (биологический) круговорот.

Движущей силой большого (геологического) круговорота являются тектонические процессы и солнечная энергия. Его мощность - 2 o 1016 т в год, а продолжительность существования - более 4 млрд. лет. Малый (биологический) круговорот веществ связан с деятельностью живого вещества. Его совокупная мощность превышает 5 o 10й т в год. Оба круговороты протекают одновременно и связаны между собой. Они образуют единый биогеохимический цикл - постоянное циклическое преобразование веществ и изменение потоков энергии с пространственным масоперенесенням за счет совокупного действия биотических и абиотических трансформаций вещества. В рамках единого биогеохимического цикла биосферы наибольшее значение имеют круговороты 6 элементов: водорода, кислорода, углерода, азота, фосфора и серы (рис. 1.1).

Круговорот углерода. Масса углерода в биосфере превышает 12000 млрд. т. Круговорот углерода происходит фактически между живой

Рис. 1.1. Биогеохимические циклы в биосфере (А - Г)

веществом и двуокисью углерода (С02). В процессе фотосинтеза, осуществляемого растениями, двуокись углерода (углекислый газ) и вода с помощью энергии солнечного света превращаются в сложные органические соединения. Ежегодно зеленые растения поглощают 200 млрд. т углерода. Большая его часть возвращается в атмосферу благодаря процессам дыхания. Отмершие растительные и животные организмы разлагаются грибами и микроорганизмами, сопровождается выделением С02, который тоже возвращается в атмосферу. Общий запас углерода в атмосфере составляет 711 млрд.т. Еще больше его содержит так называемая "карбонатная система" Мирового океана - 390 трлн. т. Карбонатную систему океанов составляют разнообразные живые организмы - простейшие, водоросли, кораллы, моллюски и т.д., которые накапливают углекислый кальций в своих телах. Полный цикл обмена биосферного углерода осуществляется в течение 300 - 1000 лет.

Круговорот воды

Вода покрывает поверхности Земли. За одну минуту под действием солнечного тепла с поверхности водоемов Земли испаряется 1 млрд. т воды. В результате конденсации водяного пара образуются облака, выпадают атмосферные осадки. Осадки проникают в почву, грунтовые воды возвращаются на поверхность земли через источники. Общий запас воды в гидросфере составляет 138 -1016 т. Масса водного пара в атмосфере - 130 o 10м т. Скорость циркуляции воды очень велика: вода океанов возобновляется за 2 млн. лет, грунтовые воды - за год, речные - за 12 суток, водная пара в атмосфере - за 10 суток. Ежегодно для создания первичной продукции биосферы в процессах фотосинтеза используется около 1% воды, что попадает в виде осадков. Человек для бытовых и промышленных нужд использует уже около 2,5% общего количества осадков за год.

Круговорот кислорода

Природными продуцентами свободного молекулярного кислорода на Земле являются зеленые растения, образующие его в процессе фотосинтеза. Атмосфера содержит 1,2 - 2,0 o 1015 т кислорода. Ежегодно этот запас пополняется на 70 - 100 млрд. т за счет фотосинтеза зеленых растений, при этом 55 млрд. т кислорода производят лесные массивы. Для абсолютного большинства живых организмов кислород является жизненно необходимым. Он обеспечивает осуществления окислительных реакций, во время которых высвобождается необходимая для жизнедеятельности организмов энергия. В природе происходит постоянный круговорот этого газа в результате сбалансированных процессов использования атмосферного кислорода для дыхания, окислительных процессов и выделение его в свободном виде при фотосинтезе. По расчетам, полный круговорот кислорода в биосфере осуществляется за 2000 лет.

Круговорот азота

Атмосфера является крупнейшим резервуаром газообразного азота (3,9 o 1019т, или 78 % по объему). Для большинства организмов он является нейтральным газом. Только для большой группы микроорганизмов азот является фактором жизнедеятельности. Усваивая молекулярный азот, такие микроорганизмы после отмирания обеспечивают корни высших растений доступными формами этого элемента, который включается в состав аминокислот, белков и пигментов. Круговорот азота осуществляется с помощью двух взаимно сбалансированных процессов нитрификации (последовательное окисление свободного азота до нитратов, которые поглощаются корнями растений) и денитрификации (восстановление азотсодержащих соединений в свободной форме). Оба процесса осуществляются бактериями. Биологическая фиксация азота составляет примерно 126 млн. т в год. За счет абіогенної фиксации (например, при разрядах молний или извержениях вулканов) в биосферу дополнительно поступает 26 млн. т азота в нитратной форме.

Круговорот фосфора

Этот важный и необходимый для живых организмов элемент циркулирует, постепенно переходя из органических соединений в фосфаты, которые снова могут использоваться растениями. В отличие от азота, резервуаром фосфора служит не атмосфера, а горные породы и другие отложения, образовавшиеся в прошлые геологические эпохи. Эти породы постепенно подвергаются эрозии, освобождая фосфаты в экосистемы, но большое количество фосфатов попадает в море, где частично откладывается в мелководных осадках, а частично теряется в глубоководных. Механизмы возвращения фосфора в круговорот вероятно недостаточно эффективны и не пополняют потерь. Деятельность человека приводит к усиленной потере фосфора за счет эрозии почв. С другой стороны, активное использование фосфора в удобрениях приводит к эвтрофикации ("надудобрення") вод, что сопровождается бурным размножением водорослей ("цветение воды"), которые поглощают растворенный в воде кислород и выделяют токсичные продукты обмена. Сложившиеся природные экосистемы при этом разрушаются.

Круговорот серы

Охватывает воздуха, воды и почвы, где происходят процессы окисления и восстановления, благодаря которым происходит обмен серы между фондом доступного для растений сульфата (SO4) и фондом сульфидов железа, находящиеся глубоко в почве и в осадках. Эти химические реакции выполняют специализированные микроорганизмы - сіркобактерії.

Круговороты азота и серы все больше подпадают под влияние промышленного загрязнения воздуха. Окиси азота (N2O и NO2) и серы (SO2) в отличие от нитратов и сульфатов токсичны. Основной источник SO2 - сжигание угля, а NO2 - выхлопные газы и другие промышленные выбросы. Двуокись серы реагирует с водной парой воздуха, образуя капельки серной кислоты, которые выпадают на землю с кислым дождем. Кислые дожди стали серьезной проблемой, поскольку вызывают усыхание деревьев и закисления озер на огромных территориях Европы и Северной Америки.

Промышленные выбросы в атмосферу углекислого газа и параллельное увеличение потребления кислорода, которое к тому же сопровождается возведением лесных массивов, грозит разрушением баланса O2 - СО2 в атмосфере, что может стать причиной глобальных климатических катаклизмов.

Неосторожное вмешательство человека в естественный ход биогеохимических циклов, которые формировались в течение десятков и сотен миллионов лет эволюции биосферы, может иметь катастрофические последствия.

Трансформация энергии в биосфере

Живые организмы постоянно потребляют энергию. Первичный источник энергии в биосфере - Солнце. Живой мир Земли состоит из организмов трех основных типов: автотрофів (продуцентов), гетеротрофів-консументів и гетеротрофів-редуцентів. Поток энергий в биосфере имеет одно направление - от Солнца через растения (автотрофи) к животным (гетеротрофів), или от продуцентов к консументів и редуцентів.

Автотрофи - это организмы, которые создают органические вещества из неорганических в процессе фотосинтеза (используя солнечную энергию) или хемосинтеза (используя энергию химических реакций). Автотрофів называют также продуцентами (от лат. - тот, кто производит). Большинство продуцентов образуют органическое вещество за счет утилизации солнечной энергии, воды, углекислого газа и минеральных солей. Это высшие зеленые растения, лишайники, водоросли и фотосинтезуючі бактерии. На Земле есть около 350000 видов зеленых растений, а их совокупная биомасса составляет 98 - 99 % всей массы живого вещества биосферы. В химических связях сложных органических соединений, которые образуются продуцентами, сосредоточена энергия, которая высвобождается при разложении их в процессе пищеварения у животных и других гетеротрофів.

Процессы круговорота веществ и превращения энергии является основой динамического равновесия и устойчивости биосферы. Упрощенная схема течения этих процессов приведена на рис. 1.2.

Рис. 1.2. в (А - автотрофи, Н - гетеротрофы, S - запасы органики в экосистемах, Е - поток солнечной энергии, е - энергия органических соединений, толстой сплошной стрелкой показано круговорот веществ).

Все функции живых организмов в биосфере (энергетические, биогеохимические, организационные, водотрансформаційні, средовые и т.п.) не могут выполняться организмами какого-то одного вида, а лишь их сложным комплексом. За В.І.Вернадським, биосфера Земли сформировалась с самого начала как сложная система, с большим количеством видов организмов, каждый из которых выполняет свою роль в общей системе. Поэтому в следующем разделе мы перейдем к рассмотрению основных компонентов этой системы - организмов, популяций и экосистем.

Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.

Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.

Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.

И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.

Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.

Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.

Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.

Кислород

Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.

Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.

И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.

Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.

Если результатом фотосинтеза является кислород, то его сырьем – углерод.

Азот

Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.

Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.

Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.

Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.

И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Фосфор

Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.

В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.

Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.

Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.

Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.

Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.

Сера

В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.

Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.

Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Видео — Круговорот веществ в биосфере

Вода - это необходимое вещество в составе любых живых организмов. Основная масса воды на планете сосредоточена в гидросфере. Испарение с поверхности водоёмов представляет источник атмосферной влаги; конденсация её вызывает осадки, с которыми в конце концов вода возвращается в океан. Этот процесс составляет большой круговорот воды. На поверхности Земного шара.

В пределах экосистем осуществляются процессы, усложняющие большой круговорот и обеспечивающие его биологически важную часть. В процессе перехвата растительность способствует испарению в атмосферу части осадков раньше, чем они достигнут поверхности земли.Вода осадков, достигшая почвы, просачивается в неё и либо образует одну из форм почвенной влаги, либо присоединяется к поверхностному стоку; частично почвенная влага может по капиллярам подняться на поверхность и испариться. Из более глубоких слоёв почвы влага всасывается корнями растений; часть её достигает листьев и транспирируется в атмосферу.

Эвапотранспирация - это суммарная отдача воды из экосистемы в атмосферу. Она включает как физически испаряемую воду, так и влагу, транспирируемую растениями. Уровень транспирации различен для разных видов и в разных ландшафтно-климатических зонах.

Если количество воды, просочившейся в почву, превышает её влагоёмкость, то она достигает уровня грунтовых вод и входит в их состав. Подземный сток связывает почвенную влагу с гидросферой.

Таким образом, для круговорота воды в пределах экосистем наиболее важны процессы перехвата, эвапотранспирации, инфильтрации и стока.

В целом круговорот воды характеризуется тем, что в отличие от углерода, азота и других элементов вода не накапливается и не связывается в живых организмах, а проходит через экосистемы почти без потерь; на формирование биомассы экосистемы используется лишь около 1 % воды, выпадающей с осадками.

И так, Малый круговорот имеет следующую структуру: испарение влаги с поверхности океана (водоема) - конденсация водяного пара - выпадение осадков на эту же водную поверхность океана (водоёма).

Большой круговорот - это круговорот воды между сушей и океаном (водоемом). Влага, испарившаяся с поверхности Мирового океана (на что затрачивается почти половина поступающей к поверхности Земли солнечной энергии), переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока. Подсчитано, что в круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды.

Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения её в биохимическом цикле, весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Круговорот кислорода

Круговорот кислорода. Кислород (О2) играет важную роль в жизни большинства живых организмов на нашей планете. В количественном отношении это главная составляющая живой материи. 349

Например, если учитывать воду, которая содержится в тканях, то тело человека содержит 62,8% кислорода и 19,4% углерода. В целом в биосфере этот элемент по сравнению с углеродом и водородом является основным среди простых веществ. В пределах биосферы происходит быстрый обмен кислорода с живыми организмами или их остатками после гибели. Растения, как правило, производят свободный кислород, а животные являются его потребителями путем дыхания. Будучи самым распространенным и подвижным элементом на Земле, кислород не лимитирует существование и функции экосферы, хотя доступность кислорода для водных организмов может временно и ограничиться. Круговорот кислорода в биосфере необычайно сложен, так как с ним в реакцию вступает большое количество органических и неорганических веществ. В результате возникает множество эпициклов, происходящих между литосферой и атмосферой или между гидросферой и двумя этими средами. Круговорот кислорода в некотором отношении напоминает обратный круговорот углекислого газа. Движение одного происходит в направлении, противоположном движению другого

Потребление атмосферного кислорода и его возмещение первичными продуцентами происходит сравнительно быстро. Так, для полного обновления всего атмосферного кислорода требуется 2000 лет. В наше время фотосинтез и дыхание в природных условиях, без учета деятельности человека, с большой точностью уравновешивают друг друга. В связи с этим накопления кислорода в атмосфере не происходит, и его содержание (20,946%) остается постоянным.

Первоисточник воды, главное водохранилище нашей планеты - Мировой океан. Его можно сравнить с гигантским паровым котлом, который нагревается солнцем. Это первоисточник мирового круговорота воды в природе. Каждый час с квадратного километра водной поверхности этого котла в атмосферу Земли поступает в среднем, около 1000 тонн пара, а в тропиках под палящими лучами полуденного солнца испаряется в 2-3 раза больше. Здесь, над безбрежными просторами океана, собирается в воздухе огромное количество водяных паров, образуются мощные облака. Здесь зарождаются грозные тропические ураганы и начинаются могучие воздушные течения. Они, как конвейер, переносят влагу по всему земному шару.

Большой круговорот

Большой круговорот наиболее четко проявляется в циркуляции воздушных масс и воды. В основе большого (геологического) круговорота лежит процесс переноса веществ, в основном минеральных соединений, из одного места в другое в масштабе планеты.



Около 30% падающей на Землю солнечной энергии расходуется на перемещение воздуха, испарение воды, выветривание горных пород, растворение минералов и т.п. Движение воды и ветра, в свою очередь, приводит к эрозии почв и горных пород, транспорту, перераспределению, осаждению и накоплению механических и химических осадков на суше и в океане. В течение длительного времени образующиеся морские отложения могут возвращаться на поверхность суши, и процессы возобновляются. К этим циклам подключаются вулканическая деятельность, землетрясения и движение океанических плит в земной коре.

Круговорот воды, включающий ее переход из жидкого в газообразное и твердое состояния и обратно, - один из главных компонентов абиотической циркуляции веществ. В процессе гидрологического цикла происходят значительное перераспределение и существенная очистка планетарных запасов воды. При этом следует отметить, что наибольшей скоростью обновления обладают наиболее важные для существования живой среды суши – пресные воды. Период их оборота составляет в среднем около 11 суток.

Малый круговорот.

На базе большого геологического круговорота возникает круговорот органических веществ, или малый, биологический (биотический) круговорот.

В основе малого круговорота веществ лежат процессы синтеза и разрушения органических соединений. Эти два процесса обеспечивают жизнь и составляют одну из главных ее особенностей.

В отличие от геологического, биологический круговорот характеризуется ничтожным количеством энергии. На создание органического вещества, как уже упоминалось, затрачивается всего около 1% падающей на Землю лучистой энергии. Однако эта энергия, вовлеченная в биологический круговорот, совершает огромную работу по созиданию живого вещества. Чтобы жизнь продолжала существовать, химические элементы должны постоянно циркулировать из внешней среды в живые организмы и обратно, переходя из протоплазмы одних организмов в усвояемую форму для других.

Все абиотические и биотические планетарные циркуляции веществ тесно переплетены и образуют глобальный системно существующий круговорот, с перераспределением энергии Солнца, с отсутствием противоречий между его отдельными ветвями и практически с нулевым вещественным балансом.

Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.

Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.

Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.

И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.

Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.

Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.

Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.

Кислород

Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.

Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.

И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.

Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.

Если результатом фотосинтеза является кислород, то его сырьем – углерод.

Азот

Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.

Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.

Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.

Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.

И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Фосфор

Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.

В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.

Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.

Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.

Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.

Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.

Сера

В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.

Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.

Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Видео — Круговорот веществ в биосфере