Переваривание углеводов. Последовательность переваривания углеводов в ЖКТ

Биологическая химия Лелевич Владимир Валерьянович

Переваривание углеводов

Переваривание углеводов

В слюне содержится фермент?-амилаза, расщепляющая?-1,4-гликозидные связи внутри молекул полисахаридов.

Переваривание основной массы углеводов происходит в двенадцатиперстной кишке под действием ферментов панкреатического сока – ?-амилазы, амило-1,6-гликозидазы и олиго-1,6-гликозидаза (терминальной декстриназы).

Ферменты, расщепляющие гликозидные связи в дисахаридах (дисахаридазы), образуют ферментативные комплексы, локализованные на наружной поверхности цитоплазматической мембраны энтероцитов.

Сахаразо-изомальтазный комплекс – гидролизует сахарозу и изомальтозу, расщепляя?-1,2 – и?-1,6-гликозидные связи. Кроме того обладает мальтазной и мальтотриазной активностью, гидролизуя?-1,4-гликозидные связи в мальтозе и мальтотриозе (трисахарид, образующийся из крахмала).

Гликоамилазный комплекс – катализирует гидролиз?-1,4-связей между глюкозными остатками в олисахаридах, действуя с восстанавливающего конца. Расщепляет также связи в мальтозе, действуя как мальтаза.

Гликозидазный комплекс (лактаза) – расщепляет?-1,4-гликозидные связи в лактозе.

Трегалаза – также гликозидазный комплекс, гидролизующий связи между мономерами в трегалозе – дисахариде, содержащемся в грибах. Трегалоза состоит из двух глюкозных остатков, связанных гликозидной связью между первыми аномерными атомами углерода.

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

ОБМЕН УГЛЕВОДОВ Следует еще раз подчеркнуть, что процессы, происходящие в организме, представляют собой единое целое, и только для удобства изложения и облегчения восприятия рассматриваются в учебниках и руководствах в отдельных главах. Это относится и к разделению на

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Значение углеводов Углеводы играют особую роль среди веществ, поступающих в организм с пищей, поскольку именно они являются основным, а для нервных элементов – единственным источником энергии для клеток. Поэтому уровень углеводов в крови – один из важнейших

Из книги автора

Психотропный эффект углеводов Хлещет вверх моя глюкоза! В час последний, роковой В виде уха, в виде розы Появись передо мной. Н. Олейников Как было описано в предыдущем разделе, введение углеводов в организм улучшает состояние животных или человека со слабым

Из книги автора

Гуморальные влияния на различные этапы обмена углеводов Рассмотрим превращения углеводов, поступающих в организм с пищей (рис. 2.11). Рис. 2.11. Схема превращения углеводов в организме (Е означает «энергия»). Поступление глюкозы в кровь происходит в результате того, что в

Из книги автора

Метаболическая и гедонистическая функция углеводов Необходимость поддержания определенного уровня глюкозы в крови обеспечивается на поведенческом уровне наличием гедонистической потребности в сладком, которая имеется у всех животных. Даже если сыты, они охотно

Из книги автора

Нарушения переваривания и всасывания углеводов В основе патологии переваривания и всасывания углеводов могут быть причины двух типов:1. Дефекты ферментов, участвующих в гидролизе углеводов в кишечнике.2. Нарушения всасывания продуктов переваривания углеводов в клетки

Из книги автора

Глава 19. Липиды тканей, переваривание и транспорт липидов Липиды – неоднородная в химическом отношении группа веществ биологического происхождения, общим свойством которых является гидрофобность и способность растворяться в неполярных органических растворителях.

Из книги автора

Липиды пищи, их переваривание и всасывание. Взрослому человеку требуется от 70 до 145 г липидов в сутки в зависимости от трудовой деятельности, пола, возраста и климатических условий. При рациональном питании жиры должны обеспечивать не более 30% от общей калорийности

Из книги автора

Переваривание белков в желудочно-кишечном тракте Переваривание белков начинается в желудке под действием ферментов желудочного сока. За сутки его выделяется до 2,5 литров и он отличается от других пищеварительных соков сильно кислой реакцией, благодаря присутствию

Обмен и функции углеводов.

В организме человека имеется несколько десятков разных моносахаридов и очень много разных олиго – и полисахаридов. Функции углеводов в организме заключаются в следующем:

1) Углеводы служат источником энергии: за счет их окисления удовлетворяется примерно половина всей потребности человека в энергии. В энергетическом обмене главная роль принадлежит глюкозе и гликогену.

2) Углеводы входят в состав структурно – функциональных компонентов клеток. К ним относятся пентозы нуклеотидов и нуклеиновых кислот, углеводы гликолипидов и гликопротеинов, гетерополисахариды межклеточного вещества.

3) Из углеводов в организме могут синтезироваться соединения других классов, в частности липиды и некоторые аминокислоты.

Таким образом, углеводы выполняют многообразные функции, и каждая из них жизненно важна для организма. Но если говорить о количественной стороне, то первое место принадлежит использованию углеводов в качестве источника энергии.

Наиболее распространенный углевод животных – глюкоза. Она играет роль связующего звена между энергетическими и пластическими функциями углеводов, поскольку из глюкозы могут образоваться все другие моносахариды, и наоборот – разные моносахариды могут превращаться в глюкозу.

Источником углеводов организма служат углеводы пищи – главным образом крахмал, а также сахароза и лактоза. Кроме того, глюкоза может образовываться в организме из аминокислот, а также из глицерина, входящего в состав жиров.

Переваривание углеводов

Углеводы пищи в пищеварительном тракте распадаются на мономеры при действии гликозидаз – ферментов, катализирующих гидролиз гликозидных связей.

Переваривание крахмала начинается уже в ротовой полости: в слюне содержится фермент амилаза (α-1,4-гликозидаза), расщепляющий α-1,4-гликозидные связи. Поскольку пища в ротовой полости находится недолго, то крахмал здесь переваривается лишь частично. Основным местом переваривания крахмала служит тонкий кишечник, куда поступает амилаза в составе сока поджелудочной железы. Амилаза не гидролизует гликозидную связь в дисахаридах.

Мальтоза, лактоза и сахароза гидролизуются специфическими гликозидазами - мальтазой, лактазой и сахаразой соответственно. Эти ферменты синтезируются в клетках кишечника. Продукты переваривания углеводов (глюкоза, галактоза, фруктоза) поступают в кровь.

Рис.1 Переваривание углеводов

Сохранение постоянства концентрации глюкозы в крови является результатом одновременного протекания двух процессов: поступления глюкозы в кровь из печени и потребления ее из крови тканями, где она и используется на энергетический материал.

Рассмотрим синтез гликогена .

Гликоген – сложный углевод животного происхождения, полимер, мономером которого являются остатки α-глюкозы, которые связаны между собой через 1-4, 1-6 гликозидными связями, но имеют более ветвистое строение, чем крахмал (до 3000 остатков глюкозы). Молекулярный вес гликогена очень велик – ОН лежит в пределах от 1 до 15 миллионов. Очищенный гликоген – белый порошок. Он хорошо растворяется в воде, может быть осажден из раствора спиртом. С «I» дает бурую окраску. В печени находится в виде гранул в комплексе с белками клеток. Количество гликогена в печени может достигнуть 50-70 г – это общий резерв гликогена; составляет от 2 до 8 % массы печени. Гликоген также содержится в мышцах, где он образует локальный резерв , в незначительном количестве он содержится в других органах и тканях, включая жировую ткань. Гликоген в печени представляет собой мобильный резерв углеводов, голодание в течение 24 часов полностью его истощает. По данным Уайта и соавторов, скелетная мышца содержит примерно 2/3 всего гликогена тела (в связи с большой массой мышц большая часть гликогена находится в них) – до 120 г (для мужчины весом 70 кг), но в скелетных мышцах его содержание от 0,5 до 1 % от массы. В отличие от гликогена печени мышечный гликоген не истощается так легко при голодании даже в течение длительного времени. Механизм синтеза гликогена в печени из глюкозы в настоящее время выяснен. В печеночных клетках глюкоза подвергается фосфорилированию при участии фермента гексокиназы с образованием глюкозы-6-Ф.

Рис.2 Схема синтеза гликогена

1. Глюкоза + АТФ гексоки наза Глюкоза-6-Ф + АДФ

2. Глюкоза-6-Ф фосфоглюкомутаза Глюкоза-1-Ф

(вовлекается в синтез)

3. Глюкоза-1-Ф + УТФ глюкозо-1-Ф уридил трансфераза УДФ-1-глюкоза + Н 4 Р 2 О 7

4. УДФ-1-глюкоза + гликоген гликогенсинтаза Гликоген + УДФ

(затравка)

Образовавшийся УДФ может вновь фосфорилироваться за счет АТФ и весь цикл превращений глюкозы-1-Ф повторяется снова.

Активность фермента гликогенсинтазы регулируется путем ковалентной модификации. Этот фермент может находиться в двух формах: гликогенсинтазы I (independent – независимая от глюкозы-6-Ф) и гликогенсинтазы D (dependent – зависимая от глюкозы-6-Ф).

Протеинкиназа фосфорилирует при участии АТФ (не фосфорилирует форму I-фермента, переводя ее в фосфорилированную форму D-фермента, у которого фосфорилированы гидроксильные группы серина).


АТФ + ГС – ОН протеинкиназа АДФ + ГС – О – Р – ОН

Гликогенсинтаза I Гликогенсинтаза D

I-форма гликогенсинтазы более активна, чем D-форма, однако, D-форма является аллостерическим ферментов, активируемым специфическим оферентом – глюкоза-6-Ф . В покоящейся мышце фермент находится в I-форме не фосфорилир. активной форме , в сокращающей мышце фермент фосфорилирован D-формой и почти неактивен. В присутствии достаточно высокой концентрации глюкозо-6-фосфата D-форма проявляет полную активность. Следовательно , фосфорилирование и дефосфорилирование гликоген синтазы играет ключевую роль в тонкой регуляции синтеза гликогена.

Регуляция синтеза гликогена :

В регуляции сахара в крови большую роль играет ряд эндокринных желез, в частности поджелудочная железа.

Инсулин образуется в В-клетках островков Лангерганса поджелудочной железы в виде проинсулина . При превращении в инсулин полипептидная цепь проинсулина расщепляется в двух точках, вычленяется средний неактивный фрагмент из 22 аминокислотных остатков.

Инсулин снижает содержание сахара в крови, задерживает распад гликогена в печени и способствует отложению гликогена в мышцах.

Гормон глюкагон действует в противоположность инсулину как гиперглинемический.

Надпочечники также принимают участие в регуляции содержания сахара в крови. Импульсы со стороны ЦНС вызывают добавочное выделение адреналина, образующегося в мозговом веществе надпочечников. Адреналин повышает активность фермента фосфогилазы , который стимулирует расщепление гликогена. В результате содержание сахара в крови повышается. Наступает так называемый гипергликелин (эмоциональное возбуждение перед стартом, перед экзаменом).



Кортикостероиды в отличие от адреналина стимулируют образование глюкозы из безазотистых остатков аминокислот.

Гликогенолиз

Благодаря способности к отложению гликогена в основном в печени и мышцах, и в меньшей степени в других органах и тканях создаются условия для накопления в норме резервов углеводов. При повышении энергозатрат происходит усиление распада гликогена до глюкозы.

Мобилизация гликогена может протекать двумя путями: 1-й – фосфоролитическим и 2-ой – гидролитическим .

Фосфоролиз играет ключевую роль в мобилизации гликогена, переводя его из запасной в метаболически активную форму в присутствии фермента фосфорилазы.

Рис.3 Гормональная регуляция фосфоролитического отщепления остатка глюкозы от гликогена.

Процесс распада гликогена начинается с действия гормонов адреналина и глюкагона, которые неактивную аденилатциклазу переводят в активную. Она в свою очередь способствует образованию из АТФ – цАМФ. Под действием активной протеинкиназы и киназы фосфорилазы «в» происходит превращение неактивной фосфорилазы «в» в активную «а».

Фермент фосфорилаза существует в двух формах: фосфорилазы «в» - неактивная (димер), фосфорилазы «а» - активная (тетрамер). Каждая из субъединиц содержит остаток фосфосерина, который имеет важное значение для каталитической активности и молекулу кофермента пиридоксальфосфата, связанную ковалентной связью с остатком лизина.

2 м. фосфорилазы «в» + 4 АТФ Mg ++ 1м. фосфорилазы «а» + 4 АДФ

Киназа фосфорилазы активная действует на гликоген в присутствии Н 3 РО 4 , что приводит к образованию глюкозо-1-фосфата. Образовавшийся глюкозо-1-фосфат под действием фосфоглюкомутазы превращается в глюкозо-6-фосфат. Образование свободной глюкозы происходит под действием глюкозо-6-фосфатазы.

Глюконеогенез

Синтез гликогена может осуществляться и из неуглеводных субстратов, этот процесс получил название глюконеогенеза . Субстратом в глюконеогенезе может выступить лактат (молочная кислота), образовавшаяся при анаэробном окислении глюкозы

(гликолизе). За счет простого обращения реакций гликолиза этот процесс протекать не может из-за нарушения констант равновесия, катализируемых рядом ферментов .

Рис.4 Гликолиз и глюконеогенез

Обращение этих реакций достигается в результате следующих процессов:

Основной путь превращения ПВК в оксалоацетат локализован в митохондриях . После прохождения через мембрану митохондрий

ПВК карбоксилируется до оксалоацетата и выходит из митохондрий в форме малата (этот путь в количественном отношении более важен) и вновь в цитоплазме превращается в оксалоацетат . Образовавшийся оксалоацетат в цитоплазме происходит его превращение до глюкозы-6-Ф. Дефосфорилирование ее осуществляется глюкозо-6-фосфатазой в эндоплазматической ретикулуме, до глюкозы .

Гликолиз

Гликолиз – сложный ферментативный процесс превращения глюкозы, протекающий при недостаточном потреблении О 2 . Конечным продуктом гликолиза является молочная кислота.

Рис.4 Гликолиз и глюконеогенез

Суммарное уравнение гликолиза можно представить следующим образом:

С 6 Н 12 О 6 + 2АДФ + 2Ф Н 2CН 3 СН(ОН)СООН + 2АТФ + 2Н 2 О

Биологическое значение гликолиза :

I. Обратимость гликолиза – из молочной кислоты вследствие глюконеогенеза может образоваться глюкоза.

II. Образование фосфорилированных соединений – гексоз и триоз, которые легче превращаются в организме.

III. Процесс гликолиза очень важен в условиях высокогорья, при кратковременной физической нагрузке, а так же при заболеваниях, сопровождающихся гипоксией.

Большая часть углеводов (около 60%) в пище представлена растительным крахмалом, 30% сахарозой, 10% лактозой. В пище содержатся небольшие количества глюкозы и фруктозы, а также гликоген.

Переваривание полисахаридов носит многоступенчатый характер (см. табл. 2). Переваривание крахмала- основного углевода пищевых продуктов – начинается уже в ротовой полости под влиянием амилазы слюны, активной в условиях нейтрального или щелочного рН слюны. Однако кратковременность пребывания пищи в ротовой полости и относительно низкая активность амилазы слюны делают этот этап переваривания крахмала малоэффективным. Хотя надо заметить содержание этого фермента в слюне очень значительно.

Таблица 2

Переваривание углеводов - основные процессы

Субстрат и конечные продукты Фермент и место его выработки Механизм действия
Крахмал до олигосахаридов и амилопектин Слюнные железы альфа-амилаза Расщепляет альфа-1,4-связи амилозы в составе крахмала опт. рН 6,7
Крахмал до олигосахаридов Поджелудочная железа Панкреатическая амилаза Расщепляет альфа-1,4-связи амилозы в составе крахмала опт. рН 7,1
Крахмал и олигосахариды до мальтозы и глюкозы Ферменты, связанные с мембраной энтероцитов амилаза Глюкоамилаза
Гликоген, амилопектин до олигосахаридов, мальтозы, глюкозы олиго-альфа1,6-глюкозидаза Расщепляет альфа-1,6связи амилопектина
Сахароза до фруктозы и глюкозы Дисахаридазы Сахараза Бета-фруктозидаза
Мальтоза до глюкозы Мальтаза Альфа-глюкозидаза, расщепляет альфа-1,4-связи
Мальтоза до глюкозы Изомальтаза Действует аналогично альфа-1,6-глюкозидазе
Лактоза до галактозы и глюкозы Лактаза Бета-галактозидаза

В желудке амилаза инактивируется кислым содержимым желудка, и переваривание углеводов прекращается. И только в 12-перстной кишке происходит полный гидролиз крахмала, включая и образовавшийся в полости рта альфа- лимит-декстрин, и всех дисахаридов до моносахаров. Гидролиз углеводов в кишечнике осуществляется ферментами поджелудочной железы (альфа- амилаза, олиго – 1,6 - глюкозидаза) и кишечника (олигосахаридазы, дисахаридазы).

Эффективность расщепления крахмала под влиянием амилазы и глюкоамилазы зависит от ряда факторов, касающихся как особенностей формы крахмала в пищевых продуктах, так и функционального состояния ЖКТ.

В последние годы, было установлено, что существует так называемые резистентные формы крахмала, устойчивые к ферментативному расщеплению в кишечнике: они расщепляются значительно медленнее. Существование таких резистентных форм крахмала обусловлено двумя основными причинами:



· Способностью крахмала образовывать достаточно прочные комплексы с растительными волокнами, белками, другими компонентами клеток и клеточными структурами с формированием при этом физически защищенных форм крахмала и крахмальных гранул, в которых крахмал трудно доступен для расщепления ферментами ЖКТ человека.

· Нестабильностью желатинизированной формы крахмала, возникающей при его нагревании в присутствии воды. Образование этой формы крахмала сопровождается разрушением крахмальных гранул и быстрым ферментативным расщеплением крахмала. Эта нестабильность процесса желатинизации приводит к тому, что при охлаждении продукта, предварительно подвергнутого термической обработке (варка картофеля, выпечка хлеба), либо при некоторых видах технологической обработки зерновых происходит процесс, обратный желатинизации, и вновь образуются крахмальные гранулы, в которых крахмал оказывается трудно доступным для ферментной атаки. Важно подчеркнуть, что амилоза в большей степени способна к реассоциации в крахмальные гранулы. Поэтому продукты, содержащие большие количества амилозы, хуже расщепляются амилазой, о чем свидетельствует различия в гликемических индексах таких продуктов.

Дисахариды предварительно расщепляются до моносахаридов под влиянием соответствующих дисахаридаз – сахаразы, лактазы и мальтазы, секретируемых в кишечнике, и всасываются в основном в виде моносахаридов. Гидролиз лактозы идет медленнее, и поэтому именно он ограничивает скорость ее всасывания.

Дисахариды гидролизуются не в полости, а в стенке кишечника, поэтому образующиеся моносахариды сразу всасываются.

Всасывание моносахаридов галактозы и глюкозы происходит в два этапа с помощью активного транспорта. Прежде всего сахаридазы, расположенные в щеточной каемке энтероцитов, расщепляют олигосахариды до моносахаридов, которые переносятся в клетку с участием системы натрий - зависимого транспорта. При этом моносахариды в присутствии ионов натрия связываются с переносчиком. Присоединив натрий и глюкозу, этот переносчик диффундирует по электрохимическому градиенту для ионов натрия к внутренней стороне мембраны. Затем он высвобождает ион натрия и глюкозу в цитоплазму и диффундирует обратно к наружной поверхности энтероцита. Сравнительно низкое содержание натрия в клетке поддерживается благодаря действию энергозависимого натриевого насоса, работа которого косвенно способствует постоянной диффузии переносчика, связанного с натрием, к внутренней стороне мембраны.

Манноза и пентозы поступают в клетку путем простой, а фруктоза - путем облегченной диффузии (пассивный транспорт).

Высвобождение моносахаридов в области боковой и базальной поверхности энтероцита, по современным представлениям, не зависит от ионов натрия.

Выделившиеся моносахариды удаляются от кишечника по ветвям воротной вены.

Главные потребителями глюкозы помимо печени являются головной мозг, скелетные мышцы. В жировой ткани глюкоза используется для синтеза жировой ткани. Обычно около 65% глюкозы, поступившей при всасывании из кишечника, расходуется на окисление в клетках, на синтез жира около 30% и 5% на синтез гликогена. Эти пропорции меняются в зависимости от физиологического состояния организма, возраста и ряда других причин.

Рыбы, как и высшие позвоночные, не способны к первичному биосинтезу углеводов, поэтому главным источником углеводов для них является пища, в первую очередь растительного происхождения.

В питании мирных рыб углеводы растительных кормов являются основным источником энергии, при их недостатке организм вынужден использовать значительную часть белка корма на покрытие энергетических потребностей, что снижает эффективность использования кормов и ведет к снижению уровня продуктивности.

Углеводы делят на три класса: моносахариды, олигосахариды, полисахариды. В кормах из моносахаридов в основном встречаются гексозы и пентозы (глюкоза, фруктоза, манноза, галактоза, рибоза, арабиноза). Олигосахариды чаще представлены мальтозой, сахарозой, трегалозой и целлобиозой как продуктом промежуточного превращения клетчатки. Полисахариды пищи можно разделить на две группы: структурные и универсальные пищевые. Структурные полисахариды обычно не перевариваются позвоночными или перевариваются с помощью кишечной микрофлоры. К ним относят целлюлозу, лигнин, пентозаны, маннаны. Универсальные пищевые полисахариды представлены гликогеном и крахмалом.

Животные и рыбы усваивают углеводы только в виде моносахаридов, поэтому олигосахариды и полисахариды в пищеварительном тракте подвергаются ферментативному гидролизу до моносахаридов. Усвоение углеводов рыбами происходит примерно на 50-60% и зависит от сложности их структуры. Например, у форели углеводы усваиваются на 40%, в том числе глюкоза - на 100%, мальтоза - на 90%, сахароза - на 70%, лактоза - на 60%, сырой крахмал - на 40%, варе-ный - на 60%.

У человека и высших животных переваривание углеводов начинается уже в ротовой полости, где пища подвергается механической (пережевывание) и химической обработке под действием довольно активных ферментов слюны - амилазы и мальтазы.

У рыб отсутствуют слюнные железы. У некоторых видов рыб имеются глоточные зубы и небная пластина, с помощью которых корм частично перетирается и смачивается слизью, выделяемой слизистой глотки и пищевода. В составе слизи обнаруживаются амилаза и мальтаза. У хищных рыб эти ферменты малоактивны и не играют существенной роли в пищеварении. у безжелудочных рыб, таких как карп, амилаза и мальтаза достаточно активно участвуют в предварительной обработке пищи. Заглатываемая пища через короткий пищевод попадает в желудок, у безжелудочных рыб - в передний, несколько расширенный отдел кишечника.

Переваривание углеводов в желудке. У теплокровных из-за отсутствия или низкой активности амилолитических ферментов в желудочном соке пищеварение углеводов в желудке практически отсутствует. У рыб (угорь, судак, ставрида, радужная форель, желтохвостик) в желудочном соке обнаружены ферменты класса гидролаз, подкласса гликозидаз - амилаза, хитиназа, лизоцим, гиалуронидаза, осуществляющие гидролиз гликозидных связей.

Большинство гликозидаз проявляют максимальную активность при рН 6,0-7,5. Кислая реакция желудочного сока (рН 0,8-4,0) практически не позволяет проявлять активность амилазе и гиалуронидазе, сохраняя возможность участия в пищеварении хитиназе и лизоциму.

Хитиназа (рН оптимум 4,6-4,0) расщепляет хитин до дисахарида хитобиозы и частично до его структурного мономера N-ацетил-глюкозамина:

СН2ОН CH2OH СН2ОН

хитиназа

ОН Н О OH Н O ОН Н nH2O

молекула хитина

СН2-ОН CH2-OH СН2-ОН

m ОН Н О OH Н + х ОН Н

ОН OH ОН ОН

Н NH-CO-CH3 Н NH-CO-CH3 n Н NH-CO-CH3

хитобиоза N-ацилглюкозамин

Хитин - представитель мукополисахаридов, является главной составной частью покровных тканей членистоногих, где он находится в комплексе с белками и минеральными солями. Роль хитиназы заключается в гидролизе гликозидных связей хитина, что способствует разрушению эндоскелета членистоногих. Осуществляя эту работу, хитиназа способствует процессам мацерирования (лишение структуры, разжижение) механически не обработанной пищи, и тем самым делает ее легко доступной для действия других ферментов. Активность хитиназы невелика и полного усвоения покровных тканей насекомых, ракообразных, оболочек яиц артемий не происходит. Образующиеся продукты гидролиза хитина не представляют для организма высокой пищевой ценности и практически полностью выводятся из организма.

В желудочном соке обнаружен высокоактивный лизоцим-фермент, расщепляющий муромовую кислоту, входящую в полисахаридные оболочки многих микроорганизмов, до N-ацетилглюкозамина. Разрушая клеточные оболочки микроорганизмов, лизоцим способствует проникновению других пищеварительных ферментов внутрь клетки, что важно для рыб, питающихся зоопланктоном.

Присутствующая в желудочном соке соляная кислота способствует набуханию и ослизнению оболочек растительных клеток и тем самым готовит углеводную часть пищи к дальнейшему ферментативному гидролизу.

Переваривание углеводов в кишечнике. Углеводы корма практически без изменений переходят из желудка в тонкий отдел кишечника. У безжелудочных рыб углеводы пищи через короткий пищевод сразу попадают в кишечник. В просвет кишечника изливаются кишечный и панкреатический соки, в составе которых обнаруживают до 22 ферментов, участвующих в переваривании белков, липидов, углеводов. У рыб кишечный сок выделяется эпителиоцитами слизистой оболочки всех отделов кишечника. Плотная часть кишечного сока представлена в основном отторгнутыми эпителиальными клетками, которые содержат основную массу пищеварительных ферментов и служат источником эндогенного питания, компенсируя недостаточное поступление с пищей органических веществ. Жидкая часть кишечного сока (вода и электролиты) способствует разжижению содержимого кишечника и созданию щелочной среды, наиболее оптимальной для ферментов кишечного сока и поджелудочной железы.

У рыб основное переваривание пищевых веществ, в том числе и углеводов, происходит за счет ферментов, выделяемых панкреатической железой. Панкреатическая железа может не иметь строгой локализации и выделять сок через самостоятельный проток или совместно с желчью. Это бесцветная слабощелочная жидкость (рН 7,3-8,7). Ферменты кишечного и панкреатического соков проявляют максимальную активность в пределах рН 6,0-7,5. у желудочных рыб рН кишечного содержимого составляет 6,4-7,3, у безжелудочных - 7,0-8,6. Необходимые значения реакции среды достигаются наличием в выделяемых соках бикарбонатов и слизи кишечного канала. Ферменты, участвующие в гидролизе углеводов, представлены глюкозидазами (карбогидразами), основными из которых являются амилазы (-, -, - амилазы), мальтаза, сахараза, трегалаза, фосфотаза. у некоторых рыб обнаружена в незначительном количестве лактаза.

Гидролиз полисахаридов гликогена и крахмала протекает при участии четырех видов амилаз: -амилазы, -амилазы, -амилазы и глюкоамилазы; - и -амилазы осуществляют гидролиз крахмала и гликогена преимущественно по (1-4) - связи до дисахарида мальтозы, глюкоамилаза по (1-6) - связи до глюкозы, -амилаза (собственно кишечный фермент) последовательно отщепляет остатки глюкозы с концов олиго- и полисахаридов. В результате действия амилаз образуются промежуточные продукты гидролиза крахмала - декстрины (С6Н10О5)х. В зависимости от величины остатков амилозных цепей выделяют амило-, эритро- ахро- и мальтодекстрины. При образовании последних включается в работу фермент мальтаза и гидролизует мальтозу до двух молекул -D-глюкозы. По такой же схеме протекает гидролиз гликогена:

Схема гидролиза крахмала (гликогена)

СН2ОН CH2OH СН2ОН

Н Н Н Н Н Н Н Н

ОН Н OH Н ОН Н + n H2O

H ОН H OH n H OH

фрагмент молекулы крахмала (гликогена) (С6Н10О5)n

СН2ОН CH2OH СН2ОН

амилазы Н Н Н Н мальтаза

ОН Н +хН2О ОН Н О Н Н Н2О

H ОН х H OH OH OH

декстрины (амило-, эритро-, мальтоза

ахро-, мальтодекстрины)

D-глюкоза

В кишечнике рыб обнаружены олигазы: сахараза (инвертаза), лактаза (галактозидаза) и трегалаза. В пищеварении рыб сахараза и лактаза не играют такой роли, как у теплокровных, их немного и они мало- активны. У карповых сахараза не обнаружена. Расщепление сахарозы может осуществляться более активной мальтазой (-гликозидазой).

Разрыв гликозидазной связи при участии мальтазы идет со стороны остатка -глюкозы, сахараза осуществляет разрыв со стороны

Фруктозы:

Схема гидролиза сахарозы

СН2ОН СН2ОН Н

Н сахараза

ОН О СН2ОН (мальтаза)

Н ОН ОН Н +Н2О

СН2ОН СН2ОН Н

ОН Н + Н ОН

ОН ОН ОН СН2ОН

D-глюкоза,D-фруктоза

Из олигаз наиболее активна трегалаза, расщепляющая дисахарид трегалазу:

Схема гидролиза трегалозы

CH2OH СН2ОН СН2-ОН

Н Н Н Н трегалаза Н Н

ОН Н ОН Н ОН Н

ОН ОН ОН ОН

Н ОН Н ОН Н ОН

трегалоза,D-глюкоза

В некоторых видах водорослей содержание трегалозы может достигать 10-15% от сухого вещества.

У растительноядных рыб количество и активность амилолитических ферментов выше, чем у хищных. Например, у карпа амилаза в 1000 раз более активна, чем у щуки. Рыбы сильно различаются между собой по гликолитической активности кишечника, т. е. по количеству выделяемых пищеварительными железами амилазы и глюкозидаз. Полисахариды хорошо перевариваются такими растительноядными рыбами, как толстолобик, амур, тиляпия. Карпы усваивают крахмал значительно хуже. Их пища не должна содержать более 15-20% крахмала. При избыточном содержании его в пищевом рационе наблюдается расстройство пищеварения и в результате резко замедляется рост рыбы. Использование длительных протеиновых диет у растительноядных рыб изменяет реакцию среды кишечного содержимого в кислую сторону и тем самым снижает активность амилолитических ферментов, повышая активность протеолитических ферментов. Одновременно происходит снижение доли амилолитических ферментов в пищеварительных соках.

Всасывание углеводов. У рыб основное всасывание пищевых веществ происходит в кишечнике.

В настоящее время достоверно доказано, что заключительная стадия гидролиза пищевых биополимеров происходит на поверхности мембраны микроворсинок (мембранное пищеварение) и осуществляется экзогидролазами, расщепляющими более мелкие молекулы олигосахаридов, дисахаридов до моносахаридов - продуктов для транспорта и всасывания. Образовавшиеся моносахариды без рассеивания в водной среде всасываются в слизистую кишечника.

Всасывание может осуществляться несколькими путями: посредством диффузионного, конвекционного (осмотического) потока, специфического (пассивного или активного) транспорта, путем пиноцитоза.

Пиноцитоз у взрослых организмов не играет практически никакой роли, так как разрешающий радиус мембран (0,4-0,6 нм) не позволяет проникать крупным молекулам внутрь клеток слизистой оболочки.

Диффузионный путь должен быть симметричным, т. е. при одинаковом градиенте концентрации вещества потоки из просвета кишечника в кровь и в обратном направлении должны быть равны. Иначе говоря, путем диффузии сахара переходят в кровь при высокой их концентрации в просвете кишки.

Наибольшее значение в процессе всасывания имеет активный транспорт. в этом случае моносахариды всасываются при участии специализированных комплексов-переносчиков, обеспечивающих перенос вещества через апикальную мембрану против градиента концентрации. Дальнейший путь сахаров из клеток через базальную мембрану эпителоицита в кровь осуществляется по градиенту концентрации.

У рыб гексозы всасываются быстрее, чем пентозы. Например, у линя быстрее всасывается глюкоза, затем галактоза, фруктоза и ксилоза. У щуки последовательность иная: галактоза, глюкоза, арабиноза, ксилоза, фруктоза. Установлено, что оптимальные концентрации глюкозы, обеспечивающие максимальную скорость всасывания в тонкой кишке рыб, значительно ниже таковых у высших позвоночных животных и колеблются в пределах 40-50%. При кормлении карпа концентрированными кормами лучше всего всасываются в кишечнике уроновые кислоты как продукты окисления моносахаридов. В отличие от галактоз всасывание маннозы и ксилозы происходит медленно. Не все сахара обладают способностью активно транспортироваться, и зависит это от конфигурации сахаров, т. е. от того, какой из стереоизомеров всасывается. D-глюкоза может всасываться против 20-кратного градиента, а L-глюкоза диффундирует только пассивно и распространяется поровну по обе стороны мембраны. По тому же принципу осуществляется транспорт D-галактозы и большинства других сахаров. в отличие от L-галактозы манноза, рамноза, фруктоза L-ряда практически не поступают и не включаются в метаболизм. D-глюкозамин непосредственно не переносится, но оказывает ингибирующее действие на всасывание глюкозы.

Процессы мембранного пищеварения углеводов и всасывание продуктов их гидролиза определяются характером субстратов, изменяются с возрастом рыб и подвержены сезонным колебаниям.

Некоторые полагают, что углеводы, жиры и белки всегда полностью усваиваются организмом. Многие думают, что абсолютно все присутствующие на их тарелке (и, конечно, подсчитанные) калории поступят в кровь и оставят свой след в нашем организме. На самом деле все обстоит иначе. Давайте рассмотрим усвоение каждого из макронутриентов по отдельности.

Переваривание (усвоение) - это совокупность механических и биохимических процессов, благодаря которым поглощаемая человеком пища преобразуется в вещества, необходимые для функционирования организма.



Процесс переваривания обычно начинается уже во рту, после чего пережеванная пища попадает в желудок, где подвергается различным биохимическим обработкам (в основном на данном этапе обрабатывается белок). Продолжается процесс в тонком кишечнике, где под воздействием различных пищевых ферментов происходит превращение углеводов в глюкозу, расщепление липидов на жирные кислоты и моноглицериды, а белков - на аминокислоты. Все эти вещества, всасываясь через стенки кишечника, попадают в кровь и разносятся по всему организму.

Всасывание макронутриентов не длится часами и не растягивается на все 6,5 метров тонкой кишки. Усвоение углеводов и липидов на 80%, а белков - на 50% осуществляется на протяжении первых 70 сантиметров тонкого кишечника.

Усвоение углеводов

Усвоение различных типов углеводов происходит по-разному, так как они имеют различную химическую структуру, а следовательно, различную скорость усвоения. Под действием различных ферментов сложные углеводы расщепляются на простые и менее сложные сахара, которые имеют несколько типов.




Гликемический индекс (ГИ) - это система классификации гликемического потенциала углеводов в различных продуктах. По сути, эта система рассматривает, как тот или иной продукт влияет на уровень глюкозы в крови.

Наглядно: если мы съедим 50 г. сахара (50% глюкоза/ 50% фруктоза) (см. картинку ниже) и 50 г. глюкозы и проверим через 2 часа уровень глюкозы в крови, то ГИ сахара будет меньше, чем у чистой глюкозы, так как ее количество в сахаре ниже.

А если мы съедим равное количество глюкозы, например, 50 г глюкозы и 50 г крахмала? Крахмал - это длинная цепочка, состоящая из большого количества единиц глюкозы, но для того чтобы эти "единицы" можно было обнаружить в крови, цепочку надо переработать: расщепить каждое соединение и по одному отпустить в кровь. Поэтому у крахмала ГИ ниже, т. к. уровень глюкозы в крови после съеденной крахмала будет ниже, чем после глюкозы. Представьте, если в чай бросить ложку сахара или кубик рафинада, что растворится быстрее?




Гликемическая реакция на продукты:


  • левая - медленное усвоение крахмальных продуктов с низким ГИ;

  • правая - быстрое усваивание глюкозы с резким падением уровня глюкозы в крови как результат быстрого выброса инсулина в кровь.

ГИ - это относительная величина, и измеряется она относительно влияния глюкозы на гликемию. Выше приведен пример гликемической реакции на съеденную чистую глюкозу и на крахмал. Таким же экспериментальным образом ГИ был измерен для более тысячи продуктов питания.

Когда мы видим цифру "10" рядом с капустой, это значит, что сила ее воздействия на гликемию будет равна 10% от того, как повлияла бы глюкоза, у груши 50% и т. д.

Мы можем повлиять на уровень глюкозы, выбирая продукты не только с низким ГИ, но и с низким содержанием углеводов, которое называется гликемической нагрузкой (ГН).

ГН учитывает и ГИ продукта, и количество глюкозы, которое поступит в кровь при его употреблении. Так, нередко у продуктов с высоким ГИ будет маленькая ГН. Из таблицы видно, что смотреть только на какой-то один параметр не имеет смысла - необходимо комплексно рассматривать картину.



(1) Хотя в гречке и в сгущенном молоке содержание углеводов практически одинаковое, у этих продуктов разный ГИ, потому что вид углеводов в них разный. Поэтому, если гречка приведет к постепенному высвобождению углеводов в кровь, то сгущенное молоко вызовет резкий скачок. (2) Несмотря на идентичный ГИ у манго и сгущенного молока, их влияние на уровень глюкозы в крови будет разным, на этот раз не потому, что вид углеводов разный, а потому что количество этих углеводов значительно отличается.

Гликемический индекс продуктов и похудение

Начнем с простого: есть огромное количество научных и медицинских исследований, которые указывают на то, что продукты с низким ГИ положительно влияют на снижение веса. Биохимических механизмов, которые в этом участвуют, множество, но назовем наиболее актуальные для нас:


  1. Продукты с низким ГИ вызывают большее чувство сытости, нежели продукты с высоким ГИ.

  2. После употребления продуктов с высоким ГИ поднимается уровень инсулина, который стимулирует всасывание глюкозы и липидов в мышцы, жировые клетки и печень, параллельно приостанавливая расщепление жиров. Как следствие, уровень глюкозы и жирных кислот в крови падает, и это стимулирует голод и новый прием пищи.

  3. Продукты с разными ГИ по-разному влияют на расщепление жиров во время отдыха и во время спортивных тренировок. Глюкоза из продуктов с низким ГИ не так активно откладывается в гликоген, но зато во время тренировок гликоген не так активно сжигается, что указывает на повышенное использование жиров для этой цели.

Почему мы едим пшеницу, но не едим пшеничную муку?

  • Чем продукт более измельчен (в основном относится к зерновым), тем выше ГИ продукта.


Различия между пшеничной мукой (ГИ 85) и зерном пшеницы (ГИ 15) попадают под оба этих критерия. Это значит, что процесс расщепления крахмала из зерна более длительный и образующаяся глюкоза поступает в кровь медленней, чем из муки, тем самым дольше обеспечивая организм необходимой энергией.


  • Чем больше в продукте содержится клетчатки, тем ниже его ГИ.

  • Количество углеводов в продукте не менее важно, чем ГИ.

Свекла - это овощ с более высоким содержанием клетчатки, чем мука. Несмотря на то что у нее высокий гликемический индекс, у нее низкое содержание углеводов, т. е. более низкая гликемическая нагрузка. В данном случае несмотря на то, что ГИ у нее такой же, как и у зернового продукта, количество глюкозы, поступившее в кровь, будет намного меньше.


  • ГИ сырых овощей и фруктов ниже, чем вареных.

Это правило касается не только моркови, но и всех овощей с высоким содержанием крахмала, таких как батат, картошка, свекла и т. д. В процессе тепловой обработки существенная часть крахмала превращается в мальтозу (дисахарид), который очень быстро усваивается.

Следовательно, даже вареные овощи лучше не разваривать, а следить, чтобы они оставались целыми и твердыми. Однако, если у вас такие заболевания, как гастрит или язва желудка, все же лучше употреблять в пищу овощи в приготовленном виде.


  • Сочетание белков с углеводами снижает ГИ порции.

Белки, с одной стороны, замедляют всасывание простых сахаров в кровь, с другой стороны, само присутствие углеводов способствует наилучшей усвояемости белков. Кроме того, овощи также содержат полезную для организма клетчатку.

Натуральные продукты, в отличие от соков, содержат клетчатку и тем самым понижают ГИ. Более того, желательно есть фрукты и овощи с кожурой не только потому, что кожура - это клетчатка, но и потому, что большая часть витаминов прилегает непосредственно к кожуре.

Усвоение белков

Процесс переваривания белков требует повышенной кислотности в желудке. Желудочный сок с повышенной кислотностью необходим для активизации ферментов, ответственных за расщепление белков на пептиды, а также за первичное расформировывание пищевых белков в желудке. Из желудка пептиды и аминокислоты попадают в тонкую кишку, где часть из них всасывается через стенки кишечника в кровь, а часть расщепляется далее на отдельные аминокислоты.

Для оптимизации этого процесса нужно нейтрализовать кислотность желудочного раствора, и за это отвечает поджелудочная железа, а также желчь, вырабатываемая печенью и необходимая для абсорбции жирных кислот.
Белки из пищи делятся на две категории: полноценные и неполноценные.

Полноценные белки - это белки, которые содержат все необходимые (незаменимые) для нашего организма аминокислоты. Источником этих белков в основном являются животные белки, т. е. мясо, молочные продукты, рыба и яйца. Есть также растительные источники полноценного белка: соя и киноа.

Неполноценные белки содержат только часть незаменимых аминокислот. Считается, что бобовые и злаковые сами по себе содержат неполноценные белки, однако их сочетание позволяет нам получить все незаменимые аминокислоты.

Во многих национальных кухнях правильные сочетания, приводящие к полноценному потреблению белков, возникли естественным путем. Так, на Ближнем Востоке распространена пита с хумусом или фалафелем (пшеница с нутом) или рис с чечевицей, в Мексике и Южной Америке нередко сочетают рис с фасолью или кукурузой.

Одним из параметров, определяющих качество белка, является наличие незаменимых аминокислот . В соответствии с этим параметром существует система индексации продуктов.

Так, например, аминокислота лизин находится в малых количествах в злаках, и поэтому они получают низкую оценку (хлопья - 59; цельная пшеница - 42), а в бобовых содержится небольшое количество незаменимых метионина и цистеина (нут - 78; фасоль - 74; бобовые - 70). Животные белки и соя получают высокую оценку по этой шкале, так как содержат необходимые пропорции всех незаменимых аминокислот (казеин (молоко) - 100; яичный белок - 100; соевый белок - 100; говядина - 92).


Кроме того, необходимо учитывать белковый состав , их усвояемость из данного продукта, а также пищевую ценность всего продукта (наличие витаминов, жиров, минералов и калорийность). Например, гамбургер будет содержать много белка, но также много насыщенных жирных кислот, соответственно, его пищевая ценность будет ниже, чем у куриной грудки.

Белки из разных источников и даже разные белки из одного источника (казеин и белок из молочной сыворотки) утилизируются организмом с разной скоростью .

Питательные вещества, поступающие с пищей, не обладают стопроцентной усвояемостью. Степень их всасывания может существенно меняться в зависимости от физико-химического состава самого продукта и поглощаемых одновременно с ним продуктов, особенностей организма и состава кишечной микрофлоры.

Основная цель для детокса - выйти из зоны комфорта и попробовать новые системы питания.

Более того, очень часто, как и "печенька к чаю", употребление мяса и молочных продуктов - это привычка. У нас никогда не было возможности поисследовать их важность для нас в рационе и понять, насколько они нам нужны.

Кроме выше сказанного, большинство диетологических организаций рекомендует, чтобы в основу здорового рациона ложилось большое количество растительной пищи. Этот выход из зоны комфорта отправит вас на поиск новых вкусов и рецептов и разнообразит ваш повседневный рацион после.

В частности, результаты исследований указывают на повышенный риск сердечно-сосудистых заболеваний, остеопороза, заболеваний почек, ожирения и диабета.

При этом низкоуглеводные, но высокопротеиновые диеты, основанные на растительных источниках белка, ведут к снижению концентрации жирных кислот в крови и к снижению риска сердечных заболеваний .

Но даже при большом желании разгрузить наш организм не стоит забывать об особенностях каждого из нас. Такое относительно резкое изменение рациона может вызвать дискомфорт или побочные эффекты, такие как вздутие (следствие большого количества растительного белка и особенности микрофлоры кишечника), слабость, головокружение. Эти симптомы, возможно, указывают на то, что такой строгий рацион не полностью подходит вам.


Когда человек употребляет большое количество белка, особенно в совокупности с низким количеством углеводов, происходит расщепление жиров, в процессе которого возникают вещества под названием кетоны. Кетоны могут иметь негативное воздействие на почки, выделяющие кислоту для его нейтрализации.

Есть утверждения, что для восстановления кислотно-щелочного баланса кости скелета выделяют кальций, и поэтому повышенное вымывание кальция ассоциируется с высоким потреблением животного белка. Также белковая диета ведет к обезвоживанию и слабости, головным болям, головокружениям, плохому запаху изо рта.

Усвоение жиров

Жир, попадая в организм, проходит через желудок почти нетронутым и попадает в тонкую кишку, где есть большое количество ферментов, перерабатывающих жиры в жирные кислоты. Эти ферменты называются липазы. Они функционируют в присутствии воды, но для переработки жиров это проблематично, т. к. жиры не растворяются в воде.

Для того чтобы иметь возможность утилизировать жиры , наш организм производит желчь. Желчь разъединяет комки жира и позволяет ферментам, находящимся на поверхности тонкой кишки, расщепить триглицериды на глицерол и жирные кислоты.

Транспортеры для жирных кислот в организме называются липопротеины . Это специальные белки, способные упаковывать и транспортировать жирные кислоты и холестерин по кровеносной системе. Далее жирные кислоты упаковываются в жировых клетках в довольно компактном виде, т. к. для их комплектации (в отличие от полисахаридов и белков) не требуется вода .



Доля всасывания жирной кислоты зависит от того, какую позицию она занимает относительно глицерина. Важно знать, что только те жирные кислоты, которые занимают позицию Р2, хорошо всасываются. Это связано с тем, что липазы имеют разную степень воздействия на жирные кислоты в зависимости от расположения последних.

Не все поступившие с пищей жирные кислоты полностью всасываются в организме, как ошибочно полагают многие диетологи. Они могут частично или полностью не усвоиться в тонком кишечнике и быть выведены из организма.

Например, в сливочном масле 80% жирных кислот (насыщенных) находятся в позиции Р2, то есть они полностью всасываемы. Это же относится к жирам, входящим в состав молока и всех не проходящих процесс ферментации молочных продуктов.

Жирные кислоты, присутствующие в зрелых сырах (особенно сырах длительной выдержки), хоть и являются насыщенными, находятся все же в позициях Р1 и Р3, что делает их менее абсорбируемыми.

Кроме того, в большинстве своём сыры (особенно твердые) богаты кальцием. Кальций соединяется с жирными кислотами, образуя «мыла», которые не всасываются и выводятся из организма. Вызревание сыра способствует переходу входящих в него жирных кислот в положение P1 и P3, что свидетельствует о слабой их всасываемости .

Высокое потребление насыщенных жиров также коррелирует с некоторыми типами рака, включая рак толстой кишки, и инсультом.

На усвоение жирных кислот влияет их происхождение и химический состав:

- Насыщенные жирные кислоты (мясо, сало, омары, креветки, яичный желток, сливки, молоко и молочные продукты, сыр, шоколад, топленый жир, растительный шортенинг, пальмовое, кокосовое и сливочное масла), а также транс-жиры (гидрогенизированный маргарин, майонез) имеют тенденцию откладываться в жировые запасы, а не сразу сжигаться в процессе энергетического обмена.

- Мононенасыщенные жирные кислоты (мясо птицы, оливки, авокадо, кешью, арахис, арахисовое и оливковое масла) преимущественно используются непосредственно после всасывания. Кроме того, они способствуют снижению гликемии, что уменьшает выработку инсулина и тем самым ограничивает формирование жировых запасов.

- Полиненасыщенные жирные кислоты , в особенности Омега-3 (рыба, подсолнечное, льняное, рапсовое, кукурузное, хлопковое, сафлоровое и соевое масла), всегда расходуются непосредственно после всасывания, в частности, за счёт повышения пищевого термогенеза - энергозатрат организма на переваривание пищи. Кроме того, они стимулируют липолиз (расщепление и сжигание жировых отложений), способствуя тем самым похудению.


В последние годы наблюдается целый ряд эпидемиологических исследований и клинических испытаний, которые ставят под сомнение предположение, что обезжиренные молочные продукты здоровее, чем полноценные. Они не просто реабилитируют молочные жиры, они все чаще находят связь между полноценными молочными продуктами и улучшением здоровья.

Недавнее исследование показало, что у женщин появление сердечно-сосудистых заболеваний полностью зависит от типа потребляемых молочных продуктов. Потребление сыра было обратно пропорционально связано с риском сердечного приступа, в то время как масло, намазанное на хлеб, повышает риск. Другое исследование показало, что ни обезжиренные, ни полные жира молочные продукты не связаны с сердечно-сосудистыми заболеваниями.

Тем не менее, цельные кисломолочные продукты защищают от сердечно-сосудистых заболеваний. Молочный жир содержит более 400 "видов" жирных кислот, что делает его самым сложным естественным жиром. Не все из этих видов были изучены, но есть доказательства того, что, по крайней мере, несколько из них оказывают благотворное влияние.



Литература:

1. Mann (2007) FAO/WHO Scientific Update on carbohydrates in human nutrition: conclusions. European Journal of Clinical Nutrition 61 (Suppl 1), S132-S137
2. FAO/WHO. (1998). Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation (Rome, 14-18 April 1997). FAO Food and Nutrition Paper 66
3. Holt, S. H., & Brand Miller, J. (1994). Particle size, satiety and the glycaemic response. European Journal of Clinical Nutrition, 48 (7), 496-502.
4. Jenkins DJ (1987) Starchy foods and fiber: reduced rate of digestion and improved carbohydrate metabolismScand J Gastroenterol Suppl.129:132-41.
5. Boirie Y. (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 94 (26):14930-5.
6. Jenkins DJ (2009) The effect of a plant-based low-carbohydrate ("Eco-Atkins") diet on body weight and blood lipid concentrations in hyperlipidemic subjects. Arch Intern Med. 169(11):1046-54.
7. Halton, T.L., et al., Low-carbohydrate-diet score and the risk of coronary heart disease in women. N Engl J Med, 2006. 355 (19): p. 1991-2002.
8. Levine ME (2014) Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metabolism 19, 407-417.
9. Popkin, BM (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutrition reviews 70 (1): pp. 3 -21.
10.