Что такое b лимфоидные клетки. Микроокружение лимфоидных органов


Лимфоциты - ключевые клетки адаптивного иммунитета. Они несут антигенраспознающие рецепторы и выполняют основные эффекторные и регуляторные функции. Лишь естественные киллеры, или NK-клетки, не способны распознавать индивидуальные антигены и относятся к клеткам врожденного иммунитета, занимая в нем обособленное место. К клеткам врожденного иммунитета или к «промежуточной зоне» между врожденным

и адаптивным иммунитетом относят также у8Т-, NKT-, В1- клетки, а также В-лимфоциты маргинальной зоны селезенки. Тем не менее, учитывая общность происхождения этих лимфоцитов и «классических» Т- и В-клеток, рассмотрим их в разделе, посвященном адаптивному иммунитету.
В главе 1 были приведены основные характеристики лимфоцитов и в общих чертах охарактеризована их роль в иммунитете. Лимфоциты - клетки малого размера (6-8 мкм), имеющие округлую форму с большим бобовидным ядром, занимающим почти всю клетку, и слабо выраженной цитоплазмой, бедной гранулами. Однако морфология не может служить специфичным и надежным признаком для идентификации лимфоцитов, поскольку сходной морфологией обладают и другие клетки в период функционального покоя (например, кроветворные стволовые клетки). Специфическим признаком Т- и В-лимфоцитов является наличие на их поверхности антигенраспознающих рецепторов. Популяции Т- и В-кле- ток имеют клональную структуру: в процессе дифференцировки каждая клетка приобретает рецептор уникальной специфичности. При встрече с антигеном и активации лимфоциты пролиферируют, образуя клон, каждая клетка которого несет рецептор точно такой же специфичности, что и «материнская» клетка. Клетки разных клонов отличаются по структуре и специфичности антигенраспознающих рецепторов. Напомним, что Т-лим- фоциты дифференцируются в тимусе, а В-лимфоциты развиваются у птиц в бурсе (сумке) Фабриция, а у млекопитающих - в костном мозгу.
Наиболее общие свойства и маркеры клеток, принадлежащих к основным популяциям лимфоцитов, а также внутриклеточные факторы, определяющие их дифференцировку (дифференцировочные факторы), представлены в табл. 3.10 и на рис. 3.35. На рис. 3.36 показана сравнительная характеристика мембранного фенотипа зрелых Т- и В-лимфоцитов.
Таблица 3.10. Характеристика основных популяций лимфоцитов человека


Признак

В-лимфоциты

Т-лимфоциты

NK-клетки

Органы, в которых развиваются клетки

Костный мозг

Тимус

Костный мозг

Рецептор для антигена

В-клеточный
рецептор

Т-клеточный рецептор (ар или у8)

Нет

Распознаваемые
молекулы

Свободный антиген

Пептиды или липиды в составе молекул гистосовместимости

Стрессорные молекулы, молекулы главного комплекса гистосовместимости

Основные мембранные маркеры

CD19, мембранный иммуноглобулин (менее специфичны CD20, CD21, CD72)

Комплекс CD3- TCR (менее специфичны CD2, CD7)

CD56 (менее специфичны NKG2, KIR и др.)

Маркеры субпопуляций

CD5, CD43

CD4, CD8

CD16

Содержание в крови, %

10-18

65-75

10-20

Рециркуляция

Слабая

Сильная

Отсутствует

Рис. 3.35. Ранние этапы дифференцировки Т- и В-лимфоцитов с указанием дифферен- цировочных факторов и мембранных маркеров. Эллипсы означают клетки (указаны их мембранные маркеры), в прямоугольниках указаны дифференцировочные факторы


Рис. 3.36. Мембранные маркеры Т- и В-клеток. Мембранные молекулы отмечены линиями, пересекающими круг. Цветом выделены разные функциональные группы молекул

Основным местом образования лимфоцитов служит кроветворная ткань селезенки и лимфатических узлов. В костном мозге и периферической крови в норме встречаются только зрелые лимфоциты. При патологии в костном мозге и периферической крови могут появляться незрелые и атипические формы клеток лимфоидного ростка.

Клетки лимфоидного ростка

К клеткам лимфоидного ростка относятся:

Лимфобласт

Лимфобласт - клетка лимфоидного ряда размером 12 - 18 мкм. Ядро круглое или слегка овальное, распределение хроматина в нем неравномерное, рыхлое. В ядре чаще содержится 1, реже 2 - 3 ядрышка голубого цвета. Цитоплазма базофильная, с отчетливо выраженной перинуклеарной зоной.

Лимфобласты (фотографии)

Пролимфоцит

Пролимфоцит - клетка несколько меньшего размера, чем лимфобласт (12 - 15 мкм). Структура ядра грубая, отчетливо видны 1 - 2 нуклеолы светло-фиолетового цвета. Цитоплазма не отличается от таковой лимфобласта.

В норме лимфобласты и пролимфоциты встречаются в селезенке и лимфоузлах, в костном мозге и периферической крови они появляются только при патологии.

Пролимфоциты (фотографии)

Лимфоцит

Лимфоцит - зрелая клетка лимфоидного ряда, размером чаще 7 - 10 мкм. Ядро круглое, овальное, иногда бобовидное. Структура ядра грубая, чаще состоит из грубых комков базихроматина и оксихроматина, создавая впечатление глыбчатости. Ядро окрашивается в темно- или светло-фиолетовый цвет, в нем иногда обнаруживаются небольшие светлые участки, имитирующие ядрышки. Цитоплазма лимфоцита светло-синяя с просветлением вокруг ядра. Часть лимфоцитов имеет в цитоплазме азурофильную зернистость, окрашивающуюся в красный цвет. Ободок цитоплазмы может иметь различные размеры, в связи с чем, лимфоциты делят на три группы: узкоцитоплазменные, среднецитоплазменные и широкоцитоплазменные. В литературе широкоцитоплазменные лимфоциты часто называют "большими", диаметр их составляет 9 - 15 мкм, цитоплазма занимает значительную часть клетки, светло-голубая, часто с крупными азурофильными гранулами. Хроматин ядра грубый, но не такой плотный как у остальных лимфоцитов. Среднецитоплазменные и узкоцитоплазменные лимфоциты часто называют "малыми", они составляют большую часть лимфоцитов периферической крови. Их диаметр 6 - 9 мкм, ядро круглое или слегка овальное, темноокрашенное, с плотным хроматином, занимает большую часть клетки. Цитоплазма видна как узкий ободок или "серп" вокруг ядра.

Малые лимфоциты (фотографии)

Большие лимфоциты (фотографии)

Атипичные лимфоциты

При различных патологических процессах могут обнаруживаться атипичные формы лимфоцитов :

  1. клетки небольших размеров с пикнотическим ядром и еле заметной цитоплазмой;
  2. клетки Ридера , имеющие почкообразную зазубренную форму ядер или двудольчатые формы ядер;
  3. клетки с вакуолизацией в цитоплазме , реже - в ядре;
  4. голые лимфоцитарные ядра ;
  5. клетки лейколиза - разрушенные в процессе приготовления препарата лимфоциты. В большом количестве встречаются при хроническом лимфолейкозе (клетки Боткина-Гумпрехта);
  6. атипичные мононуклеары - большие клетки с обильной базофильной цитоплазмой. Часто темная базофильная периферическая цитоплазма отделяется тонкой линейной границей от более бледной околоядерной зоны. Ядра большие, могут содержать ядрышки и иногда имеют вдавления. Они очень похожи на ядра моноцитов. Такие клетки встречаются преимущественно при инфекционном мононуклеозе, но могут встречаться и при других вирусных инфекциях;
  7. плазматизированные лимфоциты - широкоплазменные лимфоциты с интенсивно синей цитоплазмой и тяжистым ядром. Встречаются при вирусных инфекциях.

Клетки лейколиза (фотографии)

Атипичные мононуклеары (фотографии):

Плазматизированные лимфоциты (фотографии):

Плазмобласт, проплазмоцит и плазмоцит

К клеткам лимфоидного ростка относятся также плазмобласт, проплазмоцит и плазмоцит.

Плазмобласт - клетка размером 16 - 20 мкм. Ядро нежной структуры, занимает большую часть клетки, располагаясь центрально или несколько эксцентрично. Нуклеолы (1 - 2) не всегда четко видимы. Цитоплазма интенсивно синего цвета; характерна перинуклеарная зона просветления.

Проплазмоцит - переходная форма от плазмобласта к зрелому плазмоциту. Размер клетки несколько больше, чем у зрелого плазмоцита (иногда до 20 мкм). Ядро занимает большую часть клетки и часто расположено эксцентрично, в нем могут быть видны остатки нуклеол. Цитоплазма резко базофильна с просветлением вокруг ядра, иногда синий цвет выражен меньше.

Плазмоциты - зрелые плазматические клетки. Весьма разнообразны по форме и величине (размер от 8 до 20 мкм). Ядро круглой или овальной формы, имеет грубую колесовидную исчерченность и расположено эксцентрично. Цитоплазма окрашена в интенсивно синий цвет с ясно выраженной перинуклеарной зоной просветления; может содержать различные вакуоли, что придает ей ячеистое строение. Плазматические клетки больших размеров могут иметь цитоплазму, окрашенную в серо-голубой цвет с менее отчетливой перинуклеарной зоной или с отсутствием ее. Иногда встречаются двух- и трехъядерные формы.

Плазматические клетки (микрофотографии):

В норме единичные плазмобласты, проплазмоциты и плазматические клетки встречаются в пунктате лимфоузлов и селезенки, в костном мозге встречаются единичные плазмоциты. В периферической крови плазматические клетки встречаются только при патологии: при ряде инфекций (корь, краснуха, ветряная оспа), сывороточной болезни, некоторых болезнях кожи, инфекционном мононуклеозе, агранулоцитозе, туберкулезе, лимфогранулематозе, тяжелом сепсисе, крупозной пневмонии, актиномикозе, циррозе печени, миеломной болезни.

Плазматические клетки при миеломной болезни обычно называют миеломными, так как они могут иметь характерные черты. Миеломные клетки имеют часто большие размеры, достигающие иногда 40 мкм и более в диаметре. Ядро нежное, содержит 1 - 2 больших или несколько мелких ядрышек, окрашенных в голубой цвет. Нередко встречаются клетки с 3 - 5 ядрами. Цитоплазма больших размеров, окрашивается в различные цвета: светло-голубой, светло-фиолетовый, интенсивно-фиолетовый, а иногда красноватый, обусловленный присутствием гликопротеидов. Околоядерное просветление выражено нечетко или отсутствует. Иногда в цитоплазме находят гиалиновые включения - тельца Русселя величиной 2 - 4 мкм, количество которых варьирует.

Литература:

  • Л. В. Козловская, А. Ю. Николаев. Учебное пособие по клиническим лабораторным методам исследования. Москва, Медицина, 1985 г.
  • Руководство по клинической лабораторной диагностике. (Части 1 - 2) Под ред. проф. М. А. Базарновой, академика АМН СССР А. И. Воробьева. Киев, "Вища школа", 1991 г.
  • Руководство к практическим занятиям по клинической лабораторной диагностике. Под ред. проф. М. А. Базарновой, проф. В. Т. Морозовой. Киев, "Вища школа", 1988 г.
  • Справочник по клиническим лабораторным методам исследования. Под ред. Е. А. Кост. Москва "Медицина" 1975 г.
  • Исследование системы крови в клинической практике. Под ред. Г. И. Козинца и В. А. Макарова. - Москва: Триада-Х, 1997 г.

Вчера беседовали с товарищем о том, почему даже самые современные лекарства помогают лишь части пациентов, которым они показаны, и почему степень терапевтического эффекта у разных пациентов неодинаковая.

Помню, был такой анекдот (бородатый, наверное) , что, дескать, в военно-полевых условиях все заболевания делятся на две категории: «само пройдет» и «лечить бесполезно». В этой шутке только доля шутки, потому что относительно недавно именно так и выглядели возможности медицины. В статье я показывал приблизительную диаграмму эффективности лекарств, в зависимости от их класса.

Прорывом в возможностях стало появление антибиотиков, которые впервые сделали многие тяжелые заболевания излечимыми. Но в отношении других болезней с хронически-прогрессирующим или рецидивирующим-ремитирующим течением особого успеха не было очень долго. Перелом произошел в конце 20 века, когда накопленные знания о молекулярных и клеточных механизмах заболеваний встретились с новыми техническими возможностями создания лекарств.

Появились препараты, которые действуют на определенные мишени заболевания: рецепторы на клетках, растворимые в крови и тканевой жидкости цитокины и медиаторы, и так далее. Если, например, первые конвенциональные препараты химиотерапии действовали на все активно-делящиеся клетки, в том числе и здоровые, то новые - только на те, на которых есть определенная, характерная для заболевания мишень.

Такие препараты сразу назвали красивым термином «таргетные лекарства» и возложили на них большие надежды, однако, прошло время, и стало понятно, что их эффект ограничен. Эти лекарства помогают не всем и не одинаково.

Вот, например, в группе воспалительных заболеваний кишечника (ВЗК) моноклональные антитела против мощного провоспалительного цитокина TNFα, роль которого в патогенезе ВЗК доказана, обладают лишь ограниченной эффективностью, помогая достичь длительной ремиссии только части пациентов. Еще часть пациентов в течение лечения сначала достигает ремиссии, а потом выходит из нее.

Почему так происходит, ведь TNFα вовлечен во все или во многие патологические процессы при ВЗК? Научные исследования продолжаются и постоянно докладывают в корзинку знаний что-то новое. Оказывается, не меньшее значение в патогенезе этих заболеваний имеет процесс перемещения T- и В-лимфоцитов из периферической крови в ткань кишки. Появились антитела против интегриновых молекул, нарушающие процессы этой миграции. Но увы, эффективность и этих лекарств тоже оказалась ограниченной.

Исследователи во всем мире уже осознали, что механизмы, регулирующие процессы в нашем организме, столь сложны и разнообразны, что создать «универсальное лекарство» невозможно, да и двух одинаковых пациентов тоже не бывает. Поэтому сейчас начинается новый виток эволюции клинических исследований и процесса разработки новых лекарств. Новая концепция называется персонализованная медицина , в ее основе лежит индивидуальное предсказание эффективности на основании детального изучения взаимосвязи ответа на лечение с личными молекулярно-генетическими особенностями человека.

Про принципы персонализованной медицины я уже говорил, а в этом посте я хотел проиллюстрировать многообразие механизмов заболеваний и их мишеней на примере относительно недавно открытого типа лимфоцитов.

Врожденная лимфоидная клетка

Вы слышали, наверняка, что иммунную систему человека принято делить на две под-системы: врожденный (или неспецифический) иммунитет и приобретенный (или специфический и адаптивный) .

Врожденный иммунитет - это совокупность эволюционно более древних клеток и механизмов, обладающих способностью мгновенно реагировать на угрозы - чужеродные организмы или изменения в собственных тканях. Реакция быстрая, но не адаптивная. То есть врожденный иммунитет не способен соревноваться со способностями микроорганизмов, вирусов и некоторых собственных клеток человека постоянно изменяться. Клетки и рецепторы врожденного иммунитета могут распознавать только консервативные, не склонные к быстрым эволюциям, конструкции. Поэтому, генетически гибкий организм эту защиту может обойти.

Клетки приобретенного иммунитета обладают уникальной способностью к адаптации. Она всякий раз требует времени для созревания, но зато позволяет с очень высокой различать меняющиеся чужеродные организмы, находить их и уничтожать.

Эта очень уютное разделение, но в значительной степени оно условно. Увы, Природе не до нашего удобства, и она не склонна к таким полярным градациям. Мы считали, что лимфоциты, обладающие феноменом соматической рекомбинации генов, кодирующих антиген-специфические рецепторы - это инструмент приобретенного иммунитета. Однако, недавно оказалось, что есть особый класс зрелых лимфоцитов, у которых нет антигенных рецепторов, зато есть большой арсенал продуцируемых цитокинов и масса разнообразных иммунных и регулирующих функций.

Этот класс лимфоцитов назвали Innate Lymphoid Cells ( ILCs) , то есть врожденные лимфоидные клетки (розовые клетки на заглавной картинке) . Класс новый, хотя его прототип, натуральные киллеры, известны еще с 1975 года. ILC, как и обычные лимфоциты, происходит от общего лимфоидного предшественника (CLP) , но по мере созревания и под воздействием факторов микроокружения, пути «обычных» лимфоцитов системы приобретенного иммунитета и ILC-клеток расходятся.

ILC составляют лишь очень небольшой процент от общего количества циркулирующих в крови лимфоцитов, но их роль в регулировании защиты организма от чужеродных микроорганизмов, в контроле воспаления и заживления и перестройки ткани оказались очень существенными.

В организме ILC рассредоточены преимущественно в барьерных тканях то есть там, где внешняя среда граничит с внутренней средой организма, например, в слизистых. Больше всего ILC в месте максимальной концентрации всех иммунокомпетентных клеток нашего организма - в лимфоидной ткани слизистой оболочки пищеварительного тракта.

Здесь, как полагают ученые, ILC отвечают за контроль нашего мирного сосуществования с населяющими слизистые ЖКТ бактериями «нормальной флоры». Мы их считаем нормальными по той простой причине, что за долгое время совместной эволюции и они, и мы адаптировались друг к другу так, что каждый вид получает от совместного проживания больше пользы, чем вреда.

Они защищают нас от инфекций и помогают пищеварению, мы даем им убежище и пищу, а также не убиваем их. Этот симбиоз достигается благодаря сохранению статуса кво . Например, симбионтам нельзя пересекать эпителиальный барьер, а также размножаться интенсивнее дозволенного. Этот запрет регулируется выработкой слизи, содержащей большое количество антимикробных веществ и секреторных форм иммуноглобулина А, плотностью эпителиального слоя и, дежурящими под ним, и лимфоцитами.

Чем заняты ILCs?

Сейчас эти клетки разделили на три класса, в зависимости от молекул на их мембранах, продуцируемых ими цитокинов и выполняемых функций. Классы названы просто: ILC1, ILC2 и ILC3.

Общим свойством всех врожденных лимфоидных клеток является то, что они очень быстро и мощно реагируют на сигналы, исходящие от эпителиальных клеток, антиген-презентирующих клеток и других ILC-клеток. В ответ на активацию они начинают продуцировать характерные для своего класса цитокины:

  • ILC1 специализируются на интерфероне-гамма и TNFα,
  • ILC2 синтезируют интерлейкины -4, -5, -9 и -13, а
  • ILC3 - преимущественно TNFα, интерлейкин-17а и интерлейкин-22.

У каждого класса этих клеток своя зона ответственности в рамках неспецифического (врожденного) иммунного ответа -

На фотографии слева токсоплазма внедряется в клетку, справа - токсоплазмы в ткани печени человека.

ILC3-клетки быстро отвечают на инфекцию грибами и внеклеточными бактериями , например, кишечными бактериями rodentium . В ответ на это ILC3 и при помощи дендритных клеток, они начинают продуцировать интерлейкин-22 и -17, необходимые для защиты ткани.

На фотографии Citrobacter rodentium

Интерлейкин-22 действует преимущественно на эпителиальные клетки и стимулирует в них продукцию антимикробных пептидов, слизи и других факторов защиты. Все эти факторы ограничивают размножение и распространение патогенных и оппортунистических бактерий, а также повреждение ткани. Интерлейкины-17 и -22 промотируют продукцию антимикробных пептидов и хемокинов, способствующих миграции нейтрофилов из крови в ткань.

Другие свойства ILC

Врожденные лимфоидные клетки помогают защищать ткань пищеварительного тракта от патогенных микроорганизмов и контролировать колонизацию слизистой симбиотическими бактериями. Если балансы сил сохранены, то контроль осуществляется без воспаления и незаметно для человека.

Однако, если в силу каких-то причин граница между внутренней и внешней средой дает брешь - возможен конфликт между иммунной системой и бактериями нормальной флоры. Если он произойдет, тогда в стенки кишки разовьется воспаление, и в нем помимо, клеток врожденного иммунитета, уже в полный рост будут принимать участие Т- и В-лимфоциты.

Обычно, такое случается при совпадении нескольких факторов: генетической предрасположенности, воздействий окружающей среды, изменения антигенного состава микробиоты пищеварительного тракта и нарушений толерантности иммунной системы к симбиотическим бактериям.

Синдромально такая комбинация проявляется воспалительными заболеваниями кишечника (ВЗК) . И вот тогда уже, врожденные лимфоидные клетки вместо того, чтобы поддерживать мир и кооперацию нашего организма с бактериями нормальной флоры, идут на них войной, вместе с другими иммунными клетками, в том числе и лимфоцитами системы приобретенного иммунитета.

Так как природа заболевания от этих сражений никуда не девается, то процесс принимает хронический характер. Когда разработчики лекарств придумывали моноклональные антитела против TNFα и интегриновых молекул, они еще не знали о том, какую роль в патогенезе ВКЗ играет новый класс лимфоцитов - ILC-клетки. Об их роли стало известно недавно, и сейчас идут исследования, которые принесут новые знания о регуляции и эффектах этих клеток. Тогда, вероятно, появятся новые лекарства.

Сейчас же очевидно, что создать препарат, который бы вмешался даже во все изученные патологические механизмы, невозможно - слишком уж они сложны, а пример с ILC-клетками, наглядно демонстрирует, насколько мы еще далеки от полного понимания механизмов, лежащих в основе заболеваний.

Пока у ученых, врачей и производителей лекарств нет никакого другого варианта, кроме, как подбирать наиболее универсальные и при этом наиболее специфические для заболевания мишени и пытаться действовать на них. При этом, всегда эффективность этих препаратов будет ограничена тремя факторами:

  1. невозможностью воздействовать на все механизмы сразу,
  2. нехваткой знаний о том, какие еще механизмы участвуют в заболевании и
  3. индивидуальными особенностями пациентов.

Однако, каждый новый препарат расширяет варианты выбора лечения, а принципы персонализованной медицины помогают подбирать препараты, наиболее подходящие для конкретного человека.

ILС-клетки, как мишень

По мере накопления знания об этом новом классе иммунных клеток, они наверняка превратятся в мишень для очередных таргетных препаратов. Уже сейчас в литературе обсуждаются варианты воздействия на их мембранные рецепторы. Так, например, показано, что Daclizumab , моноклональное антитело против CD25 (один из маркеров ILC) , меняет функции и количество этих клеток у пациентов с рассеянным склерозом.

Некоторые исследователи полагают, что популяция ILC-клеток может сама стать лекарством, если ученые научатся их перепрограммировать в условиях ex vivo, чтобы затем вновь ввести пациенту. Дело в том, что в одной из новых работ показано, что ILC-клетки презентируют Т-лимфоцитам пептидные фрагменты антигенов бактериального происхождения в комплексе с молекулами MHC II класса. Но, по причине того, что на мембране ILC-клеток нет ко-стимулирующих молекул, эта презентация носит толерогенный, а не активирующий характер. То есть ILC-клетки учат Т-лимфоциты «не трогать» симбиотическую флору.

В экспериментах на мышах, у которых был удален ген, кодирующий компонент молекулы MHC II в ILC3 клетках, было показано развитие процесса, напоминающего болезнь Крона. У этих животных было больше, чем обычно лимфоцитов, распознающих антигены бактерий нормальной флоры. Если удастся создать метод генетической модификации ILC-клеток пациентов так, чтобы усилить у них толерогенную функцию, то может появиться новый метод лечения пациентов с ВЗК.

Новые посты проще всего отслеживать по анонсам в наших пабликах


Общее у всех лимфоидных клеток: базофилия цитоплазмы различной степени, облаковидный характер хроматина, зернистость имеет вид гранул.

Предшественники лимфоцитов образуются в костном мозге, затем в ходе дифференцировки и созревания они заселяют центральные органы иммунной системы, где происходит созревание B-лимфоцитов (гуморальный иммунитет), и T-лимфоцитов (клеточный иммунитет). После чего В-лимфоциты и Т-лимфоциты заселяют селезенку и лимфатические узлы, где размещаются в хорошо дифференцируемых В-зависимых и Т-зависимых зонах.

Пролимфоцит - клетка круглой формы, с достаточно трудной дифференциацией и морфологической характеристикой. Содержит ядро с нежной структурой с остатками ядрышек. Цитоплазма базофильная, без гранул.

Лимфоцит - имеет разнообразную морфологическую характеристику, поскольку популяции лимфоцитов, находящихся в периферической крови достаточно разнообразны. Имеет ряд четких признаков: цитоплазма клетки светло-базофильная, ядро круглое или овальное, эксцентрично расположенное, характер хроматина облаковидный, окраска ядра интенсивная. При окраске по Романовскому ядрышки в лимфоцитах не определяются, но различимы 1-3 ядрышка при специальной окраске метиленовым синим.

В зависимости от ядрерно-цитоплазматического соотношения различают лимфоциты:

  • узкоцитоплазменные, среднецитоплазменные - малые лимфоциты (6-9 мкм), ядро круглое (овальное), темное с плотным хроматином, занимает большую часть клетки, цитоплазма в виде узкого ободка вокруг ядра или в виде серпа;
  • широкоцитоплазменные - большие лимфоциты (9-15 мкм), цитоплазма занимает значительную часть клетки, светло-голубая, с азурными гранулами, хроматин ядра грубый не такой плотный, как у остальных лимфоцитов.

В периферической крови в норме не встречается, находится в костном мозге. Цитоплазма резко базофильная, ядро эксцентрично расположено, наличие вакуолей в цитоплазме.

Причины лимфоцитоза (повышенного содержания лимфоцитов):

  • острые инфекции: коклюш, инфекционный мононуклеоз, инфекционный гепатит;
  • хронические инфекции: бруцеллез, туберкулез, сифилис;
  • лимфоцитарный лейкоз, волосатоклеточный лейкоз, лимфосаркома.

Причины лимфопении (сниженного содержания лимфоцитов):

  • большинство острых инфекций;
  • сердечная недостаточность;
  • острый туберкулез;
  • карциномы, лимфомы, коллагенозы, агранулоцитоз, иммуннодефицитные состояния;
  • следствие некоторых терапевтических процедур: введение кортикостероидов, рентгеновское облучение, некоторые химиотерапевтические средства.

При некоторых заболеваниях популяция лимфоцитов приобретает морфологическое разнообразие.

ВНИМАНИЕ! Информация, представленная сайте сайт носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

по биологии

«Лимфоидные клетки»

Ежесуточно в первичныхлимфоидных органах — тимусе и постнатальном костном мозге — образуется значительное количество лимфоцитов. Часть этих клеток мигрирует из кровотока во вторичные лимфоидные ткани — селезенку, лимфатические узлы и лимфоидные образования слизистых оболочек. В организме взрослого человека содержится примерно 10 12 лимфоидных клеток и лимфоидная ткань в целом составляет приблизительно 2% обшей массы тела. При этом на лимфоидные клетки приходится примерно 20% циркулирующих с кровотоком лейкоцитов. Многие зрелые лимфоидные клетки относятся к долгоживущим и могут многие годы существовать в качестве клеток иммунологической памяти.

Лимфоциты морфологически разнообразны

В обычном мазке крови лимфоциты различаются как по размерам, так и по морфологии. Варьирует соотношение величина ядра: величина цитоплазмы, а также форма самого ядра. В цитоплазме некоторых лимфоцитов могут содержаться азурофильные гранулы.

При световой микроскопии мазков крови, окрашенных, например, гематологическим красителем Гимза, можно обнаружить два морфологически различных типа циркулирующих лимфоцитов: первый — относительно мелкие клетки, в типичном случае лишенные гранул, с высоким соотношением Я:Ц — и второй — более крупные клетки с меньшим соотношением Я.Ц, содержащие в цитоплазме гранулы и известные как большие гранулярные лимфоциты.

Покоящиеся Т-клетки крови

Большая часть их экспрессирует бв-Ф-клеточные рецепторыи может иметь один из двух описанных выше типов морфологии. Большинствохелперных Т-клетоки частьцитотоксических Т-лимфоцитовотносятся к малым лимфоцитам, лишенным гранул и имеющим высокое соотношение Я:Ц. Кроме того, в их цитоплазме присутствуют особая структура, названная тельцем Голла, — скопление первичных лизосом возле липидной капли. Тельце Голла легко выявить при электронной микроскопииили цитохимически, методом определения лизосомных ферментов. Менее 5% Тх-клеток и примерно половина Тц имеют другой тип морфологии, характерный для БГЛ, с рассеянными по цитоплазме первичными лизосомами и хорошо развитым комплексом Гольджи. Интересно, что у мыши нет цитотоксических Т-клеток, сходных по морфологии с БГЛ.

Признаки больших гранулярных лимфоцитов свойственны также еще одной субпопуляции Т-лимфоцитов, а именно Т-клеткам с гд-рецепторами. В лимфоидных тканях эти клетки имеют дендритнуюморфологию;при культивировании in vitro они способны прикрепляться к подложке, принимая в результате разнообразную форму.

Неактивированные В-клетки крови.Эти клетки не содержат тельца Голла и морфологически не сходны с большими гранулярными лимфоцитами; их цитоплазма в основном заполнена рассеянными монорибосомами.В кровотоке иногда можно наблюдать активированные В-клетки с развитым шероховатым эндоплазматиче-ским ретикулумом.

НК-клетки Нормальные киллерные клетки, подобно гд-Ф-клеткам и одной из субпопуляций Тц, имеют морфологию БГЛ. Однако при этом в их цитоплазме больше азурофильных гранул, чем у гранулярных Т-клеток.

Лимфоциты экспрессируют особые у каждой субпопуляции поверхностные маркеры

На поверхности лимфоцитовприсутствует множество разнообразных молекул, которые могут служить меткамиразличных субпопуляций. Значительная часть этих клеточных маркеров в настоящее время легко идентифицируется с помощью специфических моноклональных антител. Разработана систематизированная номенклатура маркерных молекул; в ней группы моноклональных антител, каждая из которых специфически связывается с определенной маркерной молекулой, обозначены символом CD. За основу CD-номенклатуры принята специфичность прежде всего мышиных моноклональных антител к лейкоцитарным антигенам человека. В создании этой классификации участвуют многие специализированные лаборатории разных стран. Для ее обсуждения проведена серия международных рабочих встреч, на которых удалось определить характерные наборы образцов моноклональных антител, связывающихся с различными популяциями лейкоцитов, а также молекулярные массы выявляемых при этом маркеров. Моноклональные антитела совпадающей специфичности связывания объединяют в одну группу, присваивая ей номер в системе CD. Однако в последнее время принято таким образом обозначать не группы антител, а маркерные молекулы, распознаваемые данными антителами

В дальнейшем молекулярные маркеры стали классифицировать в соответствии с информацией, которую они несут об экспрессируюших их клетках, например:

Популяционные маркеры, которые служат характерным признаком данного цитопоэтического ряда, или линии; пример — маркер CD3, выявляемый только на Т-клетках;

Дифференцировочные маркеры, экспрессируемые временно, в процессе созревания; пример — маркер CD1, который присутствует на развивающихся тимоцитах, но не на зрелых Т-клетках;

Маркеры активации, такие как CD25 — низкоаффинный Т-клеточный рецептор для фактора роста, экспрессируемый только на Т-клетках, активированных антигеном.

Иногда такой подход к классификации маркеров весьма полезен, однако не всегда он возможен. У некоторых популяций клеток маркер активации и маркер дифференцировки — это одна и та же молекула. Например, CD 10, присутствующий на незрелых В-клетках, исчезает при созревании, но появляется вновь при активации.

Кроме того, маркеры активации могут постоянно присутствовать на клетках в низкой концентрации, но в более высокой — после активации. Так, под действием ИФу возрастает экспрессия молекул главного комплекса гистосовместимостикласса II на моноцитах.

Клеточные маркеры образуют несколько семейств

Компоненты клеточной поверхности относятся к различным семействам, гены которых произошли, вероятно, от нескольких предковых. Маркерные молекулы из разных семейств различаются по структуре и образуют следующие основные группы:

Суперсемейство иммуноглобулинов, включающее молекулы, близкие по строению к антителам; к нему относятся CD2, CD3, CD4, CD8, CD28, молекулы МНС классов I и II, а также многие другие;

Семейство интегринов — гетеродимерных молекул, образованных а- и в-цепями; существует несколько подсемейств интегринов; все члены одного подсемейства имеют общую в-цепь, но разные, уникальные в каждом случае, б-цепи; в одном из подсемейств ф 2 -ин-тегрины) в-цепь представляет собой маркер CDI8. В комбинации с CDI la, CDI lb, CDI Ic или aD он образует соответственно лимфоци-тарные функциональные антигены LFA-1, Мас-1и с 150, 95и молекулы клеточной поверхности быв 9 , часто выявляемые на лейкоцитах. У второго подсемействав-цепь представляет собой маркер CD29; в сочетании с различными б-цепями он образует маркеры поздней стадии активации;

Селектины, экспрессируемые налейкоцитахили на активированных клетках эндотелия. Они обладают лектиноподобной специфичностью в отношении Сахаров в составе высокогликозилированных мембранных гликопротеинов; к селектинам относится, например, CD43;

Протеогликаны, имеющие ряд глюкозаминогликановых участков связывания; пример — хондроитинсульфат.

Другие семейства клеточных маркеров — это суперсемейство рецепторов для фактора некроза опухолейи фактора роста нервов, суперсемейство лектинов С-типа, включающее, например, CD23, а также суперсемейство многодоменных трансмембранных рецепторных белков, в которое входит рецептор для ИЛ-6.

Следует подчеркнуть, что маркеры, экспрессируемые лимфоцитами, можно обнаружить и на клетках иных линий. Так, CD44 часто выявляется на клетках эпителия. Молекулы клеточной поверхности можно выявить с помощью флуоресцирующих антител, используемых в качестве зондов. На этом подходе основан метод проточной иммунофлуоресцентной цитометрии, позволяющей сортировать и подсчитывать клетки в зависимости от их размеров и параметров флуоресценции. С помощью этого метода удается проводить детальную сортировку популяций лимфоидных клеток.

Т-клетки различаются по своим антигенраспознающим рецепторам

Маркером, характеризующим линию Т-клеток, служит Т-клеточный рецептор для антигена. Имеется два различных типа ТкР, и тот и другой — гетеродимеры из двух соединенных ди-сульфидными связями полипептидных цепей. ТкР первого типа образован цепями б и в, второго типа, сходный по структуре — цепями г и д. Оба рецептора ассоциированы на клеточной поверхности с пятью полипептидами СОЗ-комплекса, образуя вместе с ним рецепторный комплекс Т-клетки. Примерно 90—95% Т-клеток в крови представляют собой бв-Ф-клетки, остальные 5—10% — гд-Ф-клетки.

бв-Ф-клетки различаются в свою очередь по экспрессии CD4 или CD8

бв-Ф-клетки подразделяются на две различные, неперекрывающиеся субпопуляции: клетки одной из них несут маркер CD4 и в основном «помогают» в осуществлении иммунного ответа или «индуцируют» его, клетки другой несут маркер CD8 и обладают преимущественно цитотоксической активностью. Т-клетки CD4 + распознают антигены, к которым они специфичны, в ассоциации с молекулами МНС класса II, тогда как Т-клетки CD8 + способны узнавать антигены в ассоциации с молекулами МНС класса 1. Таким образом, возможность взаимодействия Т-клетки с клеткой другого типа зависитот присутствия на первой маркера CD4 или CD8. Небольшая часть бв-Ф-клеток не экс-прессирует ни CD4, ни CD8. Подобным же образом «дважды отрицательны» большинство циркулирующих гд-Ф-клеток, хотя некоторые из них все же несут CD8. Напротив, большая часть гд-Ф-клеток в тканях экспрессирует этот маркер.

бв-Ф-клетки CD4 + и CD8 + подразделяются на функционально различные субпопуляции

Как отмечено выше, примерно 95% Т-клеток CD4 + и 50% Т-клеток CD8 + морфологически представляют собой малые негранулярные лимфоциты. Эти популяции можно дифференцировать дальше по фенотипической экспрессии CD28 и CTLA-4 на функционально различные субпопуляции. Экспрессируемый Т-клетками CD4 + маркер CD28 обеспечивает передачу кос-тимулирующего сигнала активации при распознавании антигена.Лигандами CD28 служат молекулы В7-1и В7-2на АПК. Гомологичную CD28 молекулу CTLA-4 Т-клетки CD4 + начинают экспрессировать после активации. CTLA-4 связывается с теми же лигандами, что и CD28, тем самым ограничивая активацию. Кроме того, бв-Ф-клетки экспрессируют различные изоформы общего лейкоцитарного антигена, CD45. Считается, что CD45RO, а не CD45RA, связан с клеточной активацией. Для выделения функционально различных субпопуляций бв-Ф-клеток используют также другие критерии, в частности экспрессию клеточных маркеров нормальных киллерных клеток, выявляемых на 5—10% циркулирующих Т-клеток. Эти клетки образуют ИЛ-4, но не ИЛ-2, и дают слабый пролиферативный ответ на антигены и митогены.

бв-Ф-лимфоциты можно классифицировать также по профилю цитокинов

ГД-Ф-клетки относительно часто встречаются в эпителии слизистых оболочек, но представляют лишь минорную субпопуляцию среди циркулирующих Т-клеток. У мыши почти все внутриэпи-телиальные лимфоциты относятся к гд-Ф-клеткам, экспрессирующим CD8 - маркер, который отсутствует на большинстве циркулирующих гд-Ф-клеток. Как установлено, гд-Ф-клетки CD8 + обладают особым репертуаром Т-клеточных рецепторов, специфичных к определенным бактериальным и вирусным антигенам. Согласно современной точке зрения, эти клетки могут играть важную роль в защите слизистых оболочек организма от инфекции.

Т-клетки обладают рядом общих маркеров с клетками других линий

До сих пор описывали клеточные маркеры и антигенспецифичные рецепторы, характерные для отдельных субпопуляций Т-лимфоцитов. Однако ряд молекул экспрессируется на поверхности всех Т-клеток, а также на клетках других линий. Хороший пример — рецепторы для эритроцитов барана. В норме молекула CD2, связываясь с соответствующими лигандами, принимает участие в процессе активации Т-клеток вместе с ТкР — CD3-комплексом и другими гликопротеинами в составе мембран. Вместе с тем CD2 выявляется также у 75% НК-клеток CD3 - . Другая участвующая в Т-клеточной активации молекула — это маркер CD5, экспрессируемый на всех Т-клетках и на одной из субпопуляций В-клеток. Молекула CD5 может связываться с CD72, но вопрос о ее роли в качестве физиологического лиганда В-клеток остается открытым. Маркер CD7 присутствует почти на всех НК- и Т-клетках. Полный перечень Т-клеточных CD-маркеров, часть которых экспрессируется и на других клетках гемопоэтического происхождения, приведен в приложении. Т-клетки мыши экспрессируют маркеры, сходные с обнаруженными на Т-клетках человека.

Супрессорные Т-клетки

Получены очевидные функциональные доказательства существования антигенспецифичных супрессорных Т-клеток, однако эти клетки, по-видимому, не составляют отдельной субпопуляции Т-клеток с исключительно супрессивной функцией. Доказано также, что Т-клетки. как CD4 + , так и CD8 + , способны подавлять иммунный ответ либо путем прямого цитотоксического действия на антигенпрезентируюшие клетки, либо путем выделения «супрессивных» цитокинов, либо путем передачи сигнала отрицательной регуляции, либо посредством идиотип-антиидиотипических сетевых взаимодействий.

От 5 до 15% циркулирующих с кровью лимфоидных клеток — это В-лимфоциты, выявляемые по наличию поверхностных иммуноглобулинов. Молекулы Ig синтезируются конститутивно; они встроены в цитоплазматическую мембрану клетки и функционируют как антигенспецифичные рецепторы. Такие рецепторы можно определить на клеточной поверхности, используя меченные флуорохромом антитела к иммуноглобулину крови экспрессируют IgG, IgA и lgE, но в определенных областях тела такие клетки встречаются с большей частотой; например, В-клеток, несущих.

Лектины — это белки растительного и бактериального происхождения, связывающие углеводы. Некоторые из них способны активировать лимфоциты, перекрестно взаимодействуя с ВкР или ТкР, и служить митогенами. Считается, что митогенная стимуляция лимфоцитов in vitro довольно близко воспроизводит активацию специфическими антигенами. Лектины ФГА и КонА стимулируют Т-лимфоциты мыши и человека. Бактериальный липополисахаридстимулирует В-клетки мыши, а митоген лаконоса вызывает пролиферацию и В-, и Т-клеток человека.

Исследования in vitro с применением этих агентов показали, что активация Т- и В-клеток вызывает синтез цитокинов и рецепторов для них. Взаимодействие цитокинов с рецепторами индуцирует вступление клеток в цикл деленияи их последующее созревание с образованием эффекторных клеток или клеток иммунологической памяти. В условиях in vitro клетки памяти рециркулируют и в итоге расселяются по Т- и В-зависимым областям лимфоидных тканей, где они в дальнейшем остаются, сохраняя готовность к ответу при новой встрече с тем же антигеном.

Сигнал активации передают «вторые посредники»

В результате взаимодействия покоящихся лимфоцитов с антигеном индуцируется цепь биохимических процессов, приводящих к образованию внутри В- или Т-клетки «вторых посредников». Эти посредники ответственны за последующие изменения на уровне генов. Существует несколько основных механизмов активации лимфоцитов, но до конца они пока не ясны. Как в Т-, так и в В-клетках в передаче сигнала активации участвует гуанозинтрифосфат-связывающийбелок, который стимулирует метаболизм фосфатидилинозитола. В результате образуются два вторых посредника — инозитол-1,4,5-трифосфати диацилглицерол. Посредник ЙС3 индуцирует выход ионов Са 2+ из внутриклеточных депо, а ДАГ активирует протеинкиназу С, которая вместе с другими киназами фосфолирует ряд компонентов плазматической мембраны, что приводит к появлению факторов транскрипции и последующей экспрессии определенных генов. Таким образом, сразу после контакта Т-лимфоцитов с антигеном на их поверхности экспрессируется ряд молекул, в том числе gp39 и рецептор для ИЛ-2. Дальнейшие межклеточные взаимодействия с участием этих молекул вызывают пролиферацию и дифференцировку лимфоцитов.

Дифференцировка В-клеток приводит к образованию плазматических клеток и клеток иммунологической памяти

После активации митогеном или антигеном Т- и В-клетки претерпевают характерные ультраструктурные изменения, превращаясь в лимфобла-сты. Впоследствии многие В-лимфобласты созревают в антителообразующие клетки, которые in vivo развиваются затем в окончательно дифференцированные плазматические клетки. В некоторых В-лимфобластах не образуется цистерн шероховатого эндоплазма-тического ретикулума. Такие клетки присутствуют в центрах размножения внутри лим-фоидных фолликулов; они названы центральными клетками фолликула, или центроцитами.

Как показывает световая микроскопия, цитоплазма плазматических клеток базофильна, т. е. обладает сродством к основным красителям. Это свойство цитоплазмы объясняется присутствием в ней больших количеств РНК, обеспечивающей синтез антител на рибосомах шероховатого ЭР. С помошью электронного микроскопа в плазматических клетках можно наблюдать параллельные ряды шероховатого ЭР. Эти клетки редко появляются в кровотоке, составляя не больше 0,1% циркулирующих лимфоцитов. В норме плазматические клетки встречаются только во вторичных лимфоидных органах и тканях, и, кроме того, их довольно много в красном костном мозге. Антитела, образуемые одной плазматической клеткой, обладают одной антигенной специфичностью и принадлежат к одному изотопу иммуноглобулинов. Их можно выявить в цитоплазме этих клеток с помощью меченных флуорохромом антиглобулиновых антител. Плазматические клетки имеют короткую продолжительность жизни; просуществовав лишь несколько дней, они погибают в процессе апоптоза.

Маркеры активации на лимфоцитах

Активация Т- и В-клеток вызывает синтез de novo ряда поверхностных маркеров и увеличение экспрессии других.

К этим маркерам активации относятся молекулы межклеточной адгезии, обеспечивающие более эффективное взаимодействие активированных клеток с другими, а также рецепторы факторов роста и дифференцировки, необходимые для постоянной пролиферации и созревания клеток. Один из них — рецептор для ИЛ-2, экспрессируемый Т-клетками после активации; он состоит из трех субъединиц. В состоянии покоя Т-клетки постоянно экспрессируют г-цепьэтого рецептора, а некоторые из нихобразуют также его в-цепь. Активация вызывает синтез б-субъединицы ИЛ-2Ри образование гетеротримерного высокоаффинного ИЛ-2Р. Временно активация Т-клеток вызывает также экспрессию gp39и рецепторов трансферрина, CD38 и CD69. Эти маркеры появляются в ранней фазе онтогенеза Т-клеток, но исчезают в ходе внутритимусного развития. Поздними маркерами активации Т-клеток человека служат молекулы МНС класса 11. На Т-клетках, в частности Т-клетках иммунологической памяти, экспрессируется как поздний маркер активации CD29. Поэтому функцию «памяти» субпопуляции Т-клеток CD4 + CD29 + можно интерпретировать как индуцированное активацией увеличение числа различных молекул межклеточной адгезии, которые облегчают взаимодействие этих Т-клеток с другими, если организм встречается с данным антигеном вновь.

К маркерам активации В-клеток относятся высокоаффинный ИЛ-2Р и другие рецепторы для факторов роста и дифферецировки, таких как ИЛ-3. ИЛ-4, ИЛ-5 и ИЛ-6. Все эти рецепторы изучены методами молекулярного клонирования и секвенирования. Кроме того, на активированных В-клетках экспрессируются рецепторы трансферринаи в повышенной концентрации мембранные антигены МНС класса II. Экспрессируемый на активированных В-клетках человека и мыши маркер CD23участвует в индукции клеточного деления. Маркер CD38 отсутствует на зрелых В-клетках человека, но обнаруживается на конечной стадии дифференцировки плазматических клеток и клеток центров размножения, а также на В-клетках очень ранних стадий созревания. Молекулы специфического плазмоцитарного антигена-1 найдены на В-клетках человека только в плазмоцитарной стадии их дифференцировки. Клетки иммунологической памяти, выявляемые в центрах размножения внутри вторичных лимфоидных фоликулов, не экспрессируют ни IgD, ни CD22.

К маркерам активации З К-клеток относятся молекулы МНС класса II.