Виды тканей гистология. Классификация тканей в общей гистологии

Ткань - это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций.

Ткань закладывается в эмбриогенезе из зародышевых листков.

Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей, паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, нефрогенная ткань и мезотелий (серозные оболочки).

Из энтодермы - эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы).

Направленность развития (дифференцировки клеток) обусловлена генетически - детерминация.

Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток - дифферон.

Ткани образуют органы. В органах выделяют строму, образованную соединительными тканями, и паренхиму. Все ткани регенерируют.

Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

Путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

Внутриклеточная регенерация - она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл. которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение и морфофушщипнальные. Согласно этой классификации структура определяется функцией ткани.

Первыми возникли эпителиальные или покровные ткани, важнейшие функции - защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая - поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу - кровь и лимфу -жидкие ткани.

Следующие - мышечные (сократительные) ткани. Основное свойство - сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань -умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань- внутриклеточная регенерация, и скелетную ткань- регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация.

Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать. но сами нервные клетки (нейроны) - высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации - от клеточного до внутриклеточного.

Что мы знаем о такой науке, как гистология? Косвенно с её основными положениями можно было ознакомиться еще в школе. Но более детально эта наука изучается в высшей школе (университетах) в медицине.

На уровне школьной программы мы знаем, что существует четыре типа тканей, и они являются одной из базовых составляющих нашего тела. А вот людям, которые планируют выбрать или уже выбрали своей профессией врачебное дело, необходимо более детально знакомиться с таким разделом биологии, как гистология.

Что такое гистология

Гистология - это наука, изучающая ткани живых организмов (человека, животных и других их формирование, строение, функции и взаимодействие. Данный раздел науки включает в себя несколько других.

Как учебная дисциплина эта наука включает:

  • цитологию (науку, изучающую клетку);
  • эмбриологию (изучение процесса развития зародыша, особенностей формирования органов и тканей);
  • общую гистологию (науку о развитии, функциях и структуре тканей, изучает особенности тканей);
  • частную гистологию (изучает микростроение органов и их систем).

Уровни организации человеческого организма как целостной системы

Данная иерархия объекта изучения гистологии состоит из нескольких уровней, каждый из которых включает последующий. Таким образом, визуально представить это можно как многоуровневую матрёшку.

  1. Организм . Это биологически целостная система, которая формируется в процессе онтогенеза.
  2. Органы . Это комплекс тканей, которые взаимодействуют между собой, выполняя свои основные функции и обеспечивая выполнение органами базовых функций.
  3. Ткани . На этом уровне объединены клетки вместе с производными. Изучаются типы тканей. Несмотря на то что они могут состоять из разнообразных генетических данных, основные их свойства определяют базовые клетки.
  4. Клетки . Данный уровень представляет основная структурно-функциональная единица ткани - клетка, а также её производные.
  5. Субклеточный уровень . На этом уровне изучаются составляющие клетки - ядро, органеллы, плазмолемма, цитозоль и прочее.
  6. Молекулярный уровень . Данный уровень характеризуется изучением молекулярного состава компонентов клеток, а также их функционирования.

Наука, изучающая ткани: задачи

Как и для любой науки, для гистологии также выделен ряд задач, которые выполняются в ходе изучения и развития данной сферы деятельности. Среди таких задач наиболее важными являются:

  • исследование гистогенеза;
  • трактовка общей гистологической теории;
  • изучение механизмов тканевой регуляции и гомеостаза;
  • изучение таких особенностей клетки, как адаптивность, изменчивость и реактивность;
  • разработка теории регенерации тканей после повреждений, а также методов заместительной терапии тканей;
  • трактовка устройства молекулярно-генетической регуляции, создание новых методов а также перемещения стволовых эмбриональных клеток;
  • изучение процесса развития человека в фазе эмбриона, других периодов человеческого развития, а также проблем с воспроизведением и бесплодием.

Этапы развития гистологии как науки

Как известно, область изучения строения тканей получила название «гистология». Что это такое, учёные принялись выяснять еще до нашей эры.

Так, в истории развития этой сферы можно выделить три основных этапа - домикроскопический (до 17-го века), микроскопический (до 20-го века) и современный (до сегодня). Рассмотрим каждый из этапов более конкретно.

Домикроскопический период

На данном этапе гистологией в её начальном виде занимались такие ученые, как Аристотель, Везалий, Гален и многие другие. В то время объектом изучения были ткани, которые отделялись от организма человека или животного методом препарирования. Данный этап начался в 5-м столетии до нашей эры и продлился до 1665 года.

Микроскопический период

Следующий, микроскопический, период начался с 1665 года. Датирование его объясняется великим изобретением микроскопа в Англии. Учёный использовал микроскоп для изучения различных объектов, включая биологические. Результаты исследования были опубликована в издании «Монография», где и было впервые использовано понятие «клетка».

Выдающимися учеными этого периода, изучавшими ткани и органы, были Марчелло Мальпиги, Антони ван Левенгук и Неемия Грю.

Строение клетки продолжали изучать такие учёные, как Ян Эвангелиста Пуркинье, Роберт Браун, Маттиас Шлейден и Теодор Шванн (его фото размещено ниже). Последний в итоге сформировал которая является актуальной и до сегодня.

Продолжает своё развитие такая наука, как гистология. Что это такое, на данном этапе изучают Камилло Гольджи, Теодор Бовери, Кит Робертс Портер, Кристиан Рене де Дюв. Также к этому имеют отношение работы и других ученых, таких как Иван Дорофеевич Чистяков и Пётр Иванович Перемежко.

Современный этап развития гистологии

Последний этап наука, изучающая ткани организмов, начинает с 1950-го года. Временные рамки определены так потому, что именно тогда для исследования биологических объектов был впервые использован электронный микроскоп, а также введены новые методы исследования, включая применение компьютерных технологий, гистохимии и гисторадиографии.

Что такое ткани

Перейдем непосредственно к главному объекту изучения такой науки, как гистология. Ткани - это эволюционно возникшие системы клеток и неклеточных структур, которые объединены благодаря схожести строения и имеющие общие функции. Другими словами, ткань - это одна из составляющих организма, которая представляет собой объединение клеток и их производных, и является основой для построения внутренних и внешних органов человека.

Ткань состоит не исключительно из клеток. В состав ткани могут входить следующие компоненты: мышечные волокна, синцитий (одна из стадий развития половых клеток мужчины), тромбоциты, эритроциты, роговые чешуйки эпидермиса (постклеточные структуры), а также коллагеновое, эластичное и ретикулярное межклеточные вещества.

Появление понятия «ткань»

Впервые понятие «ткань» было применено английским учёным Неемией Грю. Изучавший тогда ткани растений, ученый заметил сходство клеточных структур с волокнами ткани текстиля. Тогда (1671 год) ткани и были описаны таким понятием.

Мари Франсуа Ксавье Биша, французский анатом, в своих работах еще более прочно закрепил понятие о тканях. Разновидности и процессы в тканях также изучались Алексеем Алексеевичем Заварзиным (теория параллельных рядов), Николаем Григорьевичем Хлопиным (теория дивергентного развития) и многими другими.

А вот первая классификация тканей в таком виде, в каком мы знаем её сейчас, впервые была предложена немецкими микроскопистами Францем Лейдигом и Келикером. Согласно этой классификации, типы тканей включают 4 основные группы: эпителиальная (пограничная), соединительная (опорно-трофическая), мышечная (сокращаемая) и нервная (возбудимая).

Гистологическое исследование в медицине

Сегодня гистология как наука, изучающая ткани, очень помогает при диагностировании состояния внутренних органов человека и назначении дальнейшего лечения.

Когда человеку диагностируют подозрение на наличие злокачественной опухоли в организме, одним из первых назначается гистологическое исследование. Это, по сути, изучение образца тканей из организма пациента, полученных путем биопсии, пункции, кюретажа, с помощью хирургического вмешательства (эксцизионная биопсия) и другими способами.

Благодаря наука, изучающая строение тканей, помогает назначить максимально правильное лечение. На фото выше можно рассмотреть образец тканей трахеи, окрашенный гематоксилином и эозином.

Такой анализ проводится в том случае, если необходимо:

  • подтвердить или опровергнуть поставленный ранее диагноз;
  • установить точный диагноз в случае, когда возникают спорные вопросы;
  • определить наличие злокачественной опухоли на ранних стадиях;
  • наблюдать за динамикой изменений в злокачественных заболеваниях с целью их предупреждения;
  • осуществить дифференциальную диагностику протекающих в органах процессов;
  • определить наличие раковой опухоли, а также стадию её роста;
  • провести анализ происходящих в тканях изменений при уже назначенном лечении.

Образцы тканей детально изучаются под микроскопом традиционным или ускоренным способом. Традиционный способ более долгий, он применяется намного чаще. При этом используется парафин.

А вот ускоренный метод даёт возможность получить результаты анализа в течение часа. Такой способ используется тогда, когда есть необходимость срочно принять решение относительно удаления или сохранения органа пациента.

Результаты гистологического анализа, как правило, наиболее точные, поскольку дают возможность детально изучить клетки тканей на предмет наличия заболевания, степени поражения органа и методов его лечения.

Таким образом, наука, изучающая ткани, даёт возможность не только исследовать под организма, органов, тканей и клеток живого организма, но еще и помогает проводить диагностику и лечение опасных заболеваний и патологических процессов в организме.

Подробности

Гистология: понятие о тканях.
Общая гистология изучает

1) структуру и функцию нормальных тканей

2) развитие тканей (гистогенез) в онтогенезе и филогенезе

3) взаимодействие клеток в составе тканей

4) патологии тканей

Частная гистология изучает строение, функции и взаимодействие тканей в составе органов.

Мечников – гипотеза фагоцитоза . Два типа тканей: внутренние - соединительная ткань и кровь, и внешняя – эпителиальная.

Происхождение тканей. Заварзин.
1. Наиболее древние – ткани общего назначения: покровные, ткани внутренней среды.
2. Мышечная и нервная – более поздние, специализированные.

Ткань – филогенетически обусловленная система клеток и межклеточных структур, составляющих морфологическую основу для выполнения основных функций.

Свойства тканей : 1) пограничность – эпителий 2) внутренний обмен – кровь, соед ткань 3) движение – мышечная ткань 4) раздражимость – нервная ткань.

Принципы организации тканей : автономность снижена, клетка-ткань-орган, взаимосвязь возрастает: межклеточный матрикс, мжк организация, система обновления (гистогенез).
Внутри- и межтканевые взаимодействия обеспечивают: рецепторы, молекулы адгезии, цитокины (циркулируют в тканевой жидкости и несут сигналы), факторы роста – действуют на дифференцировку, пролиферацию и миграцию.

Молекулы адгезии : 1. Учавствуют в передаче сигнала 2. а,в-интегрины – встроены в плазмолемму 3. Кадгерины Р, Е, N, - клеточные контакты, десмосомы 4. Селектины А,Р, Е – лейкоциты крови с эндотелием. 5. Ig – подобные белки, ICAM – 1,2, NCAM – проникновение лейкоцитов под эндотелий.
Цитокины (больше 100 видов) – для общения между лейкоцитами, (интерлейкины ((ИЛ-1,18), интерфероны (ИФ-а,ф,у) – противовоспалительные, факторы некроза опухолей (ФНО-а,в), колониестимулирующие факторы: высокий пролиферативный потенциал, образование клонов: ГМ(гранулоциты, макрофаги)-КСФ, факторы роста: ФРФ, ФРК, ТФР ав – морфологические процессы.

Классификация тканей.

Метагенетическая классификация Хлопина, основоположник метода культуры тканей.
Лейдинг – морфофункциональная классификация : эпителиальная, ткани внутренней среды (соед ткань+кровь), мышечная, нервная.

Развитие: пренатальное, постнатаьное. Регенерация: физиологическая (обновление), репаративная (восстановление).
Принципы обновления клеточного состава тканей.

Гистологический ряд дифферон обновляющихся тканей. Клетки-предшественники –не делятся, дифференцированы.
Одна ушла на деление, дифференцировку, вторая сама себя поддерживает. На это способна только стволовая клетка . Она очень редко делятся (ассиметрично) – сохранение потенциала и дифференцировки. В итоге клетка входит в терминальную диф. Пока клетки пролиферируют – синтез ДНК-появление специфичных иРНК- специфические белки, диф клетки.

Свойства стволовой клетки : самоподдержание, способность к дифференцировке, высокий пролиферативный потенциал, способность репопулировать ткань in vivo.
Ниша стволовых клеток – это группа клеток и внеклеточный матрикс, которые способны неограниченно долго поддерживать самоподдерживание СК.
Классификация (тотипотентность понижается) . Тотипотентные-зигота, плюрипотентные – ЭСК, мультипотентные – мезенхимные (кроветворная, эпидермальная) СК, сателлитная – униполярные (клетки мышц), клетки опухолей.
Амплефаеры – эти клетки делятся очень активно, увеличивают популяцию.

Классификация тканей по типу обновления:
1. Высокий уровень обновления и высокий регенеративный потенциал – клетки крови, эпидермиса, эпидермис молочной железы.
2. Низкий уровень обновления, высокий регенеративный потенциал – печень, скелетные мышцы, поджелудочная железа.
3. Низкие уровни обновления и регенерации – головной мозг (нейроны), спинной мозг, сетчатка, почка, сердце.

Онтофилогенетическая классификация (Хлопин).
1. Эктодермальный тип – из экзодермы, многослойное или многорядное строение, защитная ф.
2. Этнеродермальный – из энтодермы, однослойный призматический, ф всасывания веществ (желудок, каемчатый эпителий тонкой кишки)
3. Целонефродермальный – из мезодермы, однослойный плоский, кубический или призматический. Ф барьерная или экскреторная (мочевые канальцы)
4. Эпендимоглиальный - из нервной трубки, в полостях мозга.
5. Ангиодермальный – из мезенхимы, выстилает эндотелиальную выстилку кровеносных сосудов.

Ткань - это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций.

Ткань закладывается в эмбриогенезе из зародышевых листков.

Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, неврогенная ткань и мезотелий (серозные оболочки).

Из энтодермы - эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы).

Направленность развития (дифференцировки клеток) обусловлена генетически - детерминация.

Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток - дифферон.

Ткани образуют органы. В органах выделяют строму образованную соединительными тканями, и паренхиму. Все ткани регенерируют.

Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

а) путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

б) внутриклеточная регенерация - она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл, которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение (Ник. Григ. Хлопин Х И морфофункциональные Ал. Ал. Заварзин). Согласно этой классификации структура определяется функцией ткани.

Первыми возникли эпителиальные или покровные ткани, важнейшие функции - защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая - поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу - кровь и лимфу - жидкие ткани.

Следующие - мышечные (сократительные) ткани. Основное свойство - сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань - умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань - внутриклеточная регенерация, и скелетную ткань - регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация. Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать, но сами нервные клетки (нейроны) - высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации - от клеточного до внутриклеточного.

Эпителиальные ткани

Это наиболее древние и наиболее распространённые в организме. Развиваются из всех трёх зародышевых листков. Выполняют защитную и барьерную функцию, обменную, трофическую, секреторную и выделительную.

Они подразделяются на покровные, которые выстилают тело и все полости, имеющиеся в организме, и железистые, которые вырабатывают и выделяют секрет. Все эпителиальные ткани являются пластом эпителиальных клеток. В них крайне мало межклеточного вещества. Эпителиальные клетки плотно прилегают друг к другу и прочно соединены клеточными контактами.

Для эпителиальных клеток характерна полярность - в базальной части почти всегда находятся ядро и органеллы. Здесь идёт синтез секретов, в верхушечной части накапливаются гранулы секрета и там располагаются микроворсинки и реснички. Полярность характерна для эпителиального пласта в целом. Внутри клетки содержат тонофибриллы, они выполняют функцию каркаса. Эпителиальный пласт всегда лежит на базальной мембране, которая содержит фибриллы и аморфное вещество и регулирует проницаемость. Под базальной мембраной находится рыхлая соединительная ткань, которая содержит кровеносные сосуды. Из них питательные вещества через базальную мембрану поступают в эпителий, а продукты обмена в обратном направлении. В самом эпителиальном пласте сосудов нет. Все эпителиальные ткани отличаются высокой способностью к регенерации за счёт деления и дифференцировки стволовых клеток. Регенерация усиливается при снижении концентрации в эпителиальной ткани кибионов.

Эпителий содержит большое число рецепторов. В эпителиях находятся иммунокомпетентные клетки. Это лимфоциты памяти и макрофаги, которые обеспечивают местный иммунитет. Покровный эпителий. Для него существует гистогенетическая классификация Хлопина. На первое место он поставил происхождение эпителия, поэтому его классификация имеет большое значение в онкологии в связи с метастазами опухолей. По филогенетической классификации эпителии делят на 5 типов:

1) эпидермальные эпителии эктодермального происхождения (кожные),

2) энтеродермальные эпителии кишечного типа,

3) целонефродермальные эпителии (почечного типа и целомический эпителий полостей - мезотелий),

4) ангиодермальный эпителий (эндотелий лимфатических и кровеносных сосудов и выстилка полостей сердца),

5) эпендимоглиальные эпителии (выстилка желудочков мозга и центрального канала спинного мозга).

Более распространена морфофункциональная классификация Заварзина. По ней все покровные ткани делятся на однослойные и многослойные эпителии.

Ведущей функцией однослойных эпителиев является обменная функция. Однослойные делятся на: однорядные, которые в зависимости от формы клеток подразделяются на: плоский эпителий, кубический эпителий, цилиндрический или призматический эпителий, и многорядный - эпителий, в котором все клетки лежат на базальной мембране, но имеют разную высоту, поэтому их ядра располагаются на разных уровнях, что при световой микроскопии создает впечатление многослойности (многорядности).

Выделяют многослойный эпителий, содержащий несколько слоев, этот эпителий плоский. Ведущая функция - защитная. Он подразделяется на плоский неороговевающий плоский ороговеваюший и многослойный переходный эпителий.

Однослойный плоский эпителий (эндотелий и мезотелий). Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. Эндотелиальные клетки плоские, бедны органеллами и образуют эндотелиальный пласт. Хорошо развита обменная функция. Они создают условия для кровотока. При нарушении эпителия образуются тромбы. Эндотелий развивается из мезенхимы. Вторая разновидность - мезотелий - развивается из мезодермы. Выстилает все серозные оболочки. Состоит из плоских полигональной формы клеток, связанных между собой неровными краями. Клетки имеют одно, реже два уплощенных ядра. На апикальной поверхности имеются короткие микроворсинки. Они обладают всасывательной выделительной и разграничительной функциями. Мезотелий обеспечивает свободное скольжение внутренних органов относительно друг друга. Мезотелий выделяет на свою поверхность слизистый секрет. Мезотелий предотвращает образование соединительнотканных спаек. Достаточно хорошо регенерируют за счет митоза. Однослойный кубический эпителий развивается из энтодермы и мезодермы. На апикальной поверхности имеются микроворсинки, увеличивающие рабочую поверхность, а в базальной части цитолемма образует глубокие складки, между которыми в цитоплазме располагаются митохондрии, поэтому базальная часть клеток выглядит исчерченной. Выстилает мелкие выводные протоки поджелудочной железы, желчные протоки и почечные канальцы.

Однослойный цилиндрический эпителий встречается в органах среднего отдела пищеварительного канала, пищеварительных железах, почках, половых железах и половых путях. При этом строение и функция определяется его локализацией. Развивается из энтодермы и мезодермы. Слизистую желудка выстилает однослойный железистый эпителий. Он вырабатывает и выделяет слизистый секрет, который распространяется по поверхности эпителия и защищает слизистую оболочку от повреждения. Цитолемма базальной части также имеет небольшие складки. Эпителий обладает высокой регенерацией, которая зависит от среды, с которой контактирует эпителий (в желудке 1,5 суток, в кишечнике 2-2,5 суток), у детей регенерация идет быстрее.

Почечные канальцы и слизистая оболочка кишечника выстлана каёмчатым „эпителием. В каёмчатом эпителии кишечника преобладают каёмчатые клетки - энтероциты. На их верхушке располагаются многочисленные микроворсинки. В этой зоне происходит пристеночное пищеварение и интенсивное всасывание продуктов питания. Слизистые бокаловидные клетки вырабатывают на поверхность эпителия слизь, а между клетками располагаются мелкие эндокринные клетки. Они выделяют гормоны, которые обеспечивают местную регуляцию.

Однослойный многорядный реснитчатый эпителий. Он выстилает воздухоносные пути и имеет эктрдермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные - это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия. Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток. Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

Многослойный плоский неороговевающий эпителий. Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоев. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них - стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.

Многослойный плоский ороговеваюший эпителий - эпидермис, он выстилает кожные покровы. В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоев:

Базальный слой - содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (пигментоциты)

Шиповатый слой - клетки полигональной формы, в них содержатся тонофибриллы.

Зернистый слой - клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения

Блестящий слой - узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру, и кератогиалин превращается в элеидин.

Роговой слой - содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается.

В тонкой коже, которая не испытывает нагрузки, отсутствует зернистый и блестящий слой.

Многослойный кубический и цилиндрический эпителий встречаются крайне редко - в области конъюнктивы глаза и области стыка прямой кишки между однослойным и многослойным эпителиями. Переходный эпителий (уроэпитлий) выстилает мочевыводящие пути и аллантоис. Содержит базальный слой клеток, часть клеток постепенно отделяется от базальной мембраны и образует промежуточный слой грушевидных клеток. На поверхности располагается слой покровных клеток - крупные клетки, иногда двухрядные, покрыты слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов. Эпителий способен выделять секрет, защищающий его клетки от действия мочи.

Железистый эпителий - разновидность эпителиальной ткани, которая состоит из эпителиальных железистых клеток, которые в процессе эволюции приобрели ведущее свойство вырабатывать и выделять секреты. Такие клетки называются секреторными (железистыми) - гландулоцитами. Они имеют точно такую же общую характеристику как покровный эпителий.

Секреторный цикл железистых клеток содержит несколько фаз.

1 - поступление в клетку исходных веществ из кровеносных капилляров.

2 - синтез и накопление секрета.

3 - выделение секрета.

Механизм выделения секрета определяется его плотностью, вязкостью. По характеру вырабатываемого секрета железистые клетки подразделяются на белковые, слизистые и сальные.

Очень жидкие секреты, как правило, белковые (напр.: слюнной секрет) выделяется по мерокриновому типу, клетка не разрушается.

Более вязкий секрет (напр., потовый секрет, молочный секрет) выделяется по апокриновому типу. При этом от верхушки отделяется часть клетки в виде капель, которые содержат секрет. Верхушка клетки разрушается.

Очень вязкий секрет (сальный секрет) выделяется при полном разрушении клетки - голокриновый тип секреции.

4- восстановление (регенерация) клетки, который идёт за счёт внутриклеточной регенерации для клеток, функционирующих по мерокриновому и апокриновому типам; при голокриновом типе секреции за счёт пролиферации стволовых клеток. Процесс регенерации идёт интенсивно.

Железистый эпителий входит в состав желез, образует железы, а железы - это органы. Они также возникают в процессе эволюции (филогенеза). В эмбриогенезе часть эпителиального пласта погружается в подлежащую соединительную ткань и превращается в железистый эпителий, который участвует в формировании желез.

Если связь с покровным эпителием утрачивается, то такие железы становятся эндокринными и свой секрет - гормон - они диффузно выделяют в кровь. Если связь желез сохраняется с покровным эпителием с помощью выводного протока, то такие железы называются экзокринными.

В экзокринных железах выделяют секреторный отдел, в которых вырабатывается секрет, и выводной проток. Через него секрет выводится (попадает) на поверхность покровного эпителия или в полость органов.

Основная масса желез - многоклеточные и лишь одна железа одноклеточная - бокаловидная слизистая клетка. Эта клетка располагается эндоэпителиально, а все другие железы - экзоэпителиальные и располагаются либо в стенке органов, либо образуют крупные самостоятельные органы. По строению железы подразделяются на простые и имеют один выводной проток и сложные (у них несколько выводных протоков, они ветвятся).

Различают неразветвлённые железы, когда в один выводной проток открывается один секреторный отдел, и разветвлённые, когда в один выводной проток открывается несколько выводных протоков.

По форме секреторного отдела различают альвеолярные железы, трубчатые железы и альвеолярно-трубчатые. По характеру вырабатываемого и выделяемого секрета железы делятся на белковые, слизистые, белково-слизистые и сальные железы.

Железы эктодермального происхождения являются многослойными и в секреторных отделах, и в мелких выводных протоках. Они содержат миоэпителиальные клетки, у которых маленькое тело и тонкие длинные отростки, которыми они охватывают снаружи секреторные клетки и эпителии выводных протоков. Сокращаясь, они способствуют выведению по протокам.

Железы энтодермального происхождения однослойные.

Все железы помимо железистого эпителия содержат соединительную ткань и большое количество кровеносных капилляров.

Железы характеризуются высокой способностью к регенерации. Все крупные железы являются сложными и разветвлёнными.

Опорно-трофические ткани

Они содержат клетки, межклеточное вещество в них хорошо выражено и занимает большой объём. В нём выделяют основное вещество и волокнистые структуры. Соединительные ткани выполняют опорную, формообразующую стромальную функции, также трофическую функцию. За счёт этого поддерживается гомеостаз - постоянство внутренней среды: выполняют как специфическую, так и неспецифическую защитные функции, пластическую функцию. Она отличается высокой способностью к регенерации.

Все разновидности соединительной ткани отличаются количеством и разнообразием клеточного состава, объёмом межклеточного вещества, количеством и степенью упорядоченности расположения волокон в межклеточном веществе.

В группе опорно-трофических тканей особое место занимают жидкие ткани - кровь и лимфа, все остальные объединены под названием соединительных тканей.

Все соединительные ткани подразделяются на:

Собственно соединительные ткани (волокнистые). Здесь выделяют рыхлую неоформленную соединительную ткань, плотные ткани, которые делят на плотную неоформленную соединительную ткань и плотную оформленную соединительную ткань.

Соединительные ткани со специальными свойствами. Сюда входит ретикулярная ткань, жировая, слизистая и пигментная ткани.

Скелетные соединительные ткани. К ним относятся хрящевые и костные ткани.

Рыхлая неоформленная соединительная ткань

Входит в состав кожи, сопровождает все кровеносные сосуды, лимфатические сосуды, нервы и входит в состав внутренних органов.

Она отличается чрезвычайным разнообразием клеточного состава, большим объёмом межклеточного вещества. Основное вещество полужидкое, студенистое, слабо минерализованное и в нём без какого-либо порядка находятся волокнистые структуры. Рыхлая соединительная ткань образует строму большинства органов и сопровождает кровеносные и лимфатические сосуды.

Основные функции: трофическая, защитная и она отличается наибольшей способностью к регенерации.

Среди клеток преобладают фибробласты. Это крупные отросчатые клетки, в них крупное овальное ядро, широкая цитоплазма, в которой в большом количестве находятся канальцы гранулярной эндоплазматической сети. Ведущей является белоксинтезирующая функция. Они вырабатывают межклеточное вещество (гликопротеины, протеогликаны, коллагеновые и эластиновые волокна). Часть из них является стволовыми, они способны быстро пролиферировать и дифференцироваться. За счёт фибробластов идёт быстрая регенерация рыхлой соединительной ткани. Функция фибробластов регулируется гормонами надпочечников [минералокортикоиды клубочковой зоны коры надпочечников усиливают коллагенообразование, а глюкокортикоиды пучковой зоны - ослабляют]. Фибробласты со временем превращаются в фиброциты - это мелкие клетки веретеновидной формы с мелким плотным ядром. Они утрачивают способность к пролиферации и белоксинтезирующую функцию. Макрофаги по размерам меньше фибробластов, у них базофильное округлое или овальное ядро, чёткие гранулы, цитоплазма образует выросты, в момент фагоцитоза хорошо развит лизосомальный аппарат. Они фагоцитируют (захватывают) чужеродные клетки, микроорганизмы, антигенные структуры, переваривают их внутри, т.е. участвуют в неспецифической защите. Они переводят корпускулярную форму антитела в молекулярную форму, и передаёт информацию об антигене другим иммунокомпетентным клеткам лимфоцитам. Они участвуют в специфической иммунной защите. Мечниковым обосновано учение о макрофагической системе. Моноциты из крови выходят в ткани и органы и там превращаются в макрофаги. При этом в разных органах и тканях приобретает свои особенности строения и специальные названия, но функции свои сохраняют. Макрофаги способны синтезировать и секретировать в окружающую ткань пирогены, лизоцим, интерлейкин I и др.

Среди клеток рыхлой соединительной ткани выделяют плазматические клетки. Они образуются из В-лимфоцитов крови и выделяют антитела в ответ на антигенное раздражение. Мелкие, округлой или овальной формы, резко базофильное эксцентрично расположенное ядро, у них сильно развита гранулярная эндоплазматическая сеть, перед ядром более светлый участок - пластинчатый комплекс. Эти клетки вырабатывают иммуноглобулины (антитела).

Рядом с кровеносными капиллярами располагаются базофильные или тучные клетки, лаброциты. Они развиваются из базофилов крови. Это крупные клетки, цитоплазма заполнена большим числом базофильных гранул, которые содержат биологически активные вещества – гепарин, гистамин и многие другие, которые выделяются из клеток. Гистамин усиливает проницаемость стенки капилляров и межклеточного вещества, гепарин снижает свёртываемость крови и проницаемость стенки капилляров и межклеточного вещества.

Среди клеток рыхлой соединительной ткани встречаются жировые клетки (липоциты). Они располагаются одиночно или небольшими скоплениями, шаровидные, в цитоплазме содержат крупную жировую каплю, а ядро и органеллы смещены на периферию. Также содержатся пигментные клетки или пигментоциты. Это отросчатые клетки с большим количеством пигмента, развивающиеся из нервного гребешка (эктодермы).

Постепенно в рыхлую соединительную ткань из крови поступают нейтрофильные и эозинофильные лейкоциты, лимфоциты.

Адвентициальные клетки. Они идут по ходу капилляров, веретеновидной формы, это стволовые клетки. Вероятно, они способны пролиферировать и дифференцироваться в фибробласты, липоциты, а также участвуют в регенерации кровеносных капилляров.

Вокруг кровеносных капилляров расположены клетки перициты. Они лежат в складках базальной мембраны.

В межклеточном веществе по объёму преобладает основное вещество, оно студенистое, полужидкое, в нём мало минеральных веществ, очень много воды, немного органических соединений, среди которых практически отсутствуют липиды, а преобладают гликопротеины. Среди них преобладают гликозаминогликаны (а именно, гиалуроновая кислота). В них имеются тканевые каналы, по которым движется тканевая жидкость, несущая питательные вещества из крови к рабочим клеткам, а продукты обмена в обратном направлении - от рабочих клеток к кровеносным капиллярам. Чем больше гликозаминогликанов, тем хуже проницаемость соединительной ткани.

В основном веществе рыхло, беспорядочно располагаются волокна. Среди волокон выделяют коллагеновые волокна - широкие, лентовидные, извитые. Они построены из белка коллагена. Основу коллагена составляют три полипептидных цепочки из аминокислот. Аминокислоты располагаются строго последовательно и определяют прочность волокна, его поперечную исчерченность и тип коллагенового волокна. Известно 12 типов коллагена. Они нерастяжимы, но их способность растягиваться усиливается в водной среде, особенно в слабокислых и слабощелочных растворах. Коллагеновые волокна определяют прочность ткани.

Эластические волокна - тонкие разветвлённые волокна, растяжимы, эластичны, но менее прочны. Основа - белок эластин, молекулы которого в волокне располагаются хаотично.

Ретикулярные волокна. Основа - белок коллаген, снаружи покрыты углеводной плёнкой; тоньше, чем коллагеновые и разветвлённые, создаётся трёхмерная сеть. Входит в состав многих органов, но особенно много в органах кроветворения (в селезенке, лимфоузлах). Волокна коллагена "прячутся"1 от красителя в складках цитолеммы фибробластов, поэтому их выявляют специальными способами, например: солями серебра (отсюда другое их название - аргирофильные волокна).

Воспалительная реакция

Клетки крови и соединительной ткани участвуют в защитной реакции. Это неспецифическая реакция развивается на любом повреждении, на внедрение инородного тела, следовательно реагируют тучные клетки (тканевые базофилы). Они выделяют гистамин гепарин, которые вызывают повышение проницаемости стенки капилляров и основного вещества соединительной ткани. Расширяются капилляры, усиливается кровоток (гиперемия). Нейтрофильные лейкоциты в большом количестве из крови выходят в соединительную ткань и направляются к зоне повреждения и образуют вокруг инородного тела лейкоцитарный вал (через 5-6 часов). Это соответствует лейкоцитарной фазе воспалительной реакции. Нейтрофильные лейкоциты фагоцитируют микроорганизмы, токсические вещества и быстро погибают.

Из крови в ткань поступают моноциты, они становятся макрофагами в ткани. Образовавшиеся макрофаги мигрируют в зону вала и там фагоцитируют разрушенные, погибшие клетки, инородные частицы и погибшие Нейтрофильные лейкоциты - макрофагическая фаза.

Позднее пролиферируют фибробласты, которые выбрасывают коллагеновые волокна, заполняющие зону повреждения и выталкивающие инородное тело, или формируют вокруг него соединительнотканную капсулу, отграничивающую его от окружающей ткани. Это фибробластическая фаза.

Плотная оформленная (волокнистая) соединительная ткань.

Они отличаются меньшим количеством клеток, клеточный состав менее разнообразен. В межклеточном веществе содержатся волокна и очень мало основного вещества.

В плотной неоформленной соединительной ткани коллагеновые волокна образуют пучки и в пучке они идут параллельно, и между ними находится небольшое количество фибробластов и фиброцитов. Пучки волокон переплетаются и образуют прочную сетевидную структуру. Между пучками располагаются тонкие прослойки рыхлой соединительной ткани с гемокапиллярами (кровеносными капиллярами). Эта ткань образует сетчатый слой кожи.

В плотной оформленной соединительной ткани все волокна идут плотно и параллельно друг другу. Из этой ткани образуются фиброзные мембраны - капсулы органов, апоневрозы, твёрдая мозговая оболочка, связки и сухожилия. В сухожилиях коллагеновые волокна (пучок первого порядка) располагаются параллельно, плотно, между ними - фиброциты фибробластов нет. Несколько коллагеновых волокон образуют пучок второго порядка. Между ними лежит тонкая прослойка рыхлой соединительной ткани с кровеносными капиллярами - эндотеноний.

Пучки второго порядка объединяются в пучки третьего порядка, которые разделяются перитенонием - более широкая прослойка. Способность к регенерации очень низкая.

Соединительные ткани со специальными свойствами

Ретикулярная ткань. Состоит из отросчатых ретикулярных клеток, которые соединяются отростками, и образуют сеть. По ходу их отростков идут ретикулярные волокна. Эта ткань составляет строму кроветворных органов, является микроокружением, то есть создаёт условия для кроветворения. Очень хорошо регенерирует.

Жировая ткань - может быть белая и бурая. Белая жировая ткань характерна для взрослых, содержит скопления жировых клеток, которые образуют жировые дольки. Между ними идут прослойки рыхлой соединительной ткани с кровеносными капиллярами. Жировые клетки накапливают нейтральный жир. Объём клетки меняется. Белая жировая ткань образует подкожную жировую клетчатку, капсулу вокруг органов. Служит источником воды, энергии. Бурый жир присутствует в эмбриогенезе и у новорождённых. Он более энергоёмкий.

Пигментная ткань. Представлена скоплениями пигментных клеток в определенных участках тела (сетчатка глаза, радужна, сосок, родимые пятна).

Слизистая ткань. В норме имеется в эмбриогенезе и в пуповине, содержит студенистое полужидкое основное вещество, богатое гликозаминогликанами. и в нём располагаются в небольшом количестве мукоциты (сходны с фибробластами) и редкие тонкие коллагеновые волокна.

Хрящевые ткани. Они выполняют механическую, опорную, защитную функции. В них упругое плотное межклеточное вещество. Содержание воды до 70- 80%, минеральных веществ до 4-7%, органические вещества составляют до 10-15%, и в них преобладают белки, углеводы и крайне мало липидов. В них выделяются клетки и межклеточное вещество. Клеточный состав всех разновидностей хрящевых тканей одинаковый и включает хондробласты - малодифференцированные, уплощенные клетки с базофильной цитоплазмой, они способны пролиферировать и вырабатывать межклеточное вещество. Хондробласты дифференцируются в молодые хондроциты, приобретают овальную форму. Они сохраняют способность к пролиферации и выработке межклеточного вещества. Затем малые дифференцируются в более крупные, округлые зрелые хондроциты. Они утрачивают способность к пролиферации и выработке межклеточного вещества. Зрелые хондроциты в глубине хряща скапливаются в одной полости и называются изогенными группами клеток.

Отличаются хрящевые ткани строением межклеточного вещества и волокнистыми структурами. Различают гиалиновую, эластическую и волокнистую хрящевые ткани. Они участвуют в образовании хрящей и образуют гиалиновый, эластический и волокнистый хрящ.

Гиалиновый хрящ выстилает суставные поверхности, находится в зоне соединения рёбер с грудиной и в стенке воздухоносных путей. Снаружи покрыт надхрящницей - перихондрий, который содержит кровеносные сосуды. Её периферическая часть состоит из более плотной соединительной ткани, а внутренняя часть из рыхлой, содержит фибробласты и хондробласты. Хондробласты вырабатывают и выделяют межклеточное вещество и обусловливают аппозиционный рост хряща. В периферической части собственно хряща находятся молодые хондроциты. Они пролиферируют, вырабатывают и выделяют хондромукой (хондроитинсульфаты * протеогликаны), обеспечивая рост хряща изнутри.

В средней части хряща находятся зрелые хондроциты и изогенные группы клеток. Между клетками располагается межклеточное вещество. Оно содержит основное вещество и коллагеновые волокна. Сосуды отсутствуют, питается он диффузно из сосудов надкостницы. В молодом хряще межклеточное вещество оксифильное, постепенно становится базофильным. С возрастом, начиная с центральной части, в нём откладываются соли кальция, хрящ обызвествляется. становится хрупким, ломким.

Эластический хрящ - образует основу ушной раковины, в стенке воздухоносных путей. Он аналогичен по строению гиалиновому хрящу, но содержит не коллагеновые, а эластические волокна, и в норме он никогда не обызвествляется.

Волокнистый хрящ - он находится в зоне перехода связок, сухожилий с костной тканью, в участке, где кости покрыты гиалиновым хрящом и в зоне межпозвоночных соединений. В нем грубые пучки коллагеновых волокон идут продольно оси натяжения, являясь продолжением сухожильных нитей. Волокнистый хрящ в области прикрепления к кости больше похож на гиалиновый хрящ, а в области перехода в сухожилие - на сухожилие.

Костные ткани

Они формируют костный скелет тела человека. Для костной ткани характерна очень высокая степень минерализации (70%), в основном за счет фосфата кальция. Межклеточное вещество представлено преимущественно коллагеновыми волокнами, основного склеивающего вещества очень мало. Из органических веществ в основном преобладают коллагеновые белки.

Различают следующие виды костной ткани:

Грубоволокнистую или ретикулярно-фиброзную ткань. Эта ткань имеется в эмбриогенезе. У взрослых из нее построены швы плоских костей черепа:

Пластинчатую костную ткань.

Клеточный состав этих двух видов тканей одинаков. Есть остеобласты - клетки образующие костную ткань. Они крупные, округлой или кубической формы, с хорошо развитым белоксинтезирующим аппаратом, вырабатывающим коллагеновые волокна. Этих клеток много в растущем организме и при регенерации костей. Остеобласты превращаются в остеоциты. У них мелкое овальное тело и длинные тонкие отростки, которые располагаются в костных канальцах, анастомозируют между собой. Эти клетки не делятся, не вырабатывают межклеточное вещество.

Остеокласты - очень крупные клетки. Они происходят из моноцитов крови, являются макрофагами костной ткани, многоядерные, в них хорошо развит лизосомальный аппарат и на одной из поверхностей имеются микроворсинки. Из клетки в зону микроворсинок выделяются гидролитические ферменты, которые расщепляют белковую матрицу кости, в результате чего высвобождается и вымывается из костей кальций.

Межклеточное вещество содержит коллагеновые (оссеиновые) волокна. Эти волокна широкие, лентовидной формы и в пластинчатой костной ткани располагаются параллельно и прочно склеены между собой основным веществом. Именно эти волокна образуют костные пластинки.

В соседних костных пластинках коллагеновые волокна идут под разными углами, за счет этого достигается высокая прочность костной ткани. Между костными пластинками находятся тела остеоцитов, отростки которых пронизывают костные пластинки. В грубоволокнистой костной ткани костные волокна идут беспорядочно, переплетаются друг с другом и образуют пучки. Между волокнами залегают остеоциты.

Кости взрослого человека построены из пластинчатой костной ткани, причем она формирует компактное вещество кости, содержащее остеоны и губчатое вещество кости (в нем остеоны отсутствуют).

Эпифизы трубчатых костей построены из губчатой костной ткани, а диафизы - из компактного костного вещества.

Строение диафиза трубчатой кости

Снаружи диафиз покрыт надкостницей или периостом. Ее наружный слой построен из более плотной волокнистой соединительной ткани, а внутренний - из более рыхлой. Во внутреннем слое находятся фибробласты и остеобласты, в надкостнице располагаются кровеносные сосуды и рецепторы.

Из надкостницы прободающие коллагеновые волокна внедряются в вещество кости, поэтому надкостница очень плотно связана с веществом кости. Далее располагается собственно вещество кости, которое построено из пластинчатой костной ткани - компактное вещество, содержащее остеоны. Пластинки образуют 3 слоя. Наружный слой общих пластинок содержит крупные концентрические пластинки. Внутренний слой общих пластинок располагается ближе к костномозговому каналу. Эти пластинки более мелкие, чем наружные. Изнутри костный выстлан рыхлой соединительной тканью, которая содержит кровеносные сосуды и называется эндостом.

Между наружным и внутренним слоями располагается остеонный слой. Этот слой содержит остеоны - это структурно-функциональные единицы кости. Остеон содержит костные пластинки в виде цилиндров разного диаметра. При этом мелкие цилиндры вставлены в более крупные, располагаются они продольно оси диафиза. Внутри остеома находится канал, содержащий кровеносный сосуд. Эти сосуды соединяются.

Между остеонами находятся вставочные пластинки - остатки разрушающихся остеонов. В норме разрушение и восстановление остеонов происходит постоянно.

Между костными пластинками во всех слоях находятся остеоциты, отростки которых по костным канальцам пронизывают все вещество кости и в ней формируется сильно разветвленная сеть костных канальцев по которым мигрирует тканевая жидкость.

Кровеносные сосуды (артерии) из надкостницы по прободающим каналам попадают в остеон, затем проходят по каналам остеонов, соединяются между собой. Питательные вещества из сосудов поступают в каналы остеона и по системе канальцев быстро распространяются во все участки костной ткани.

В эпифизах и перекладинах трубчатых костей остеоны отсутствуют - губчатое костное вещество.

Гистогенез (образование) костной ткани и костей

Выделяют 2 механизма:

1. Прямой остеогенез - образование костей прямо из мезенхимы. Таким механизмом образуются плоские кости на втором месяце эмбриогенеза. Мезенхимные клетки в том месте, где будет формироваться кость, усиленно размножаются, группируются, утрачивают отростки, превращаются в остеокласты, формируются остеогенные островки. Остеобласты начинают вырабатывать и выделять межклеточное вещество, замуровывая тем самым себя. Эти замурованные клетки превращаются в остеоциты. В результате образуются костные балки. Далее происходит кальцинация. Снаружи костной балки распределяются остеобласты, а основу составляет грубо волокнистая костная ткань. Из мезенхимы в костные балки врастают кровеносные сосуды. Вместе с кровеносными сосудами врастают и остеокласты, разрушающие грубоволокнистую костную ткань, на месте которой образуется плотная пластинчатая костная ткань. В результате происходит полная замена грубоволокнистой костной ткани на пластинчатую.

2. Непрямой остеогенез - образование кости на месте гиалинового хряща. Таким образом, образуются все трубчатые кости. На месте будущей кости из гиалинового хряща формируется зачаток трубчатой кости, снаружи он покрыт надкостницей. Этот процесс протекает на втором месяце эмбриогенеза. Далее в области диафиза между надкостницей и веществом хряща образуется из грубоволокнистой костной ткани перихондральная кость или перихондральная

костная манжетка, которая полностью окружает вещество хряща в зоне диафиза и тем самым нарушает поступление питательных веществ из надхрящницы в хрящ. Это вызывает частичное разрушение гиалинового хряща в диафизе, а остатки хряща обызветствляются. Надхрящница превращается в надкостницу, и из надкостницы кровеносные сосуды пронизывают костную манжетку. При этом грубоволокнистая ткань костной манжетки разрушается и замещается

пластинчатой костной тканью. Кровеносные сосуды глубоко врастают в диафиз, вместе с ними проникают остеобласты, остекласты и мезенхимные клетки. Остеокласты постепенно разрушают обызвествленный хрящ, а остеобласты вокруг участков обызвествленного хряща образуют пластинчатую костную ткань, которая формирует эндохондральную кость.

Перихондральная и эндохондральная костные ткани разрастаются, соединяются, остеокласты начинают разрушать костную ткань в средней части диафиза, и постепенно формируется костномозговой канал (полость). Из мезенхимы

закладывается красный костный мозг.

Позднее осуществляется окостенение эпифиза, между эпифизами и диафизом сохраняется метаэпифизарный хрящ (зона роста кости). За счет этой пластинки кость растет в длину. В ней выделяют пузырчатый слой на границе с диафизом, содержащий разрушающиеся клетки. Затем идет столбчатый слой, в котором молодые хондроциты образуют ряды. Молодые хондроциты пролиферируют, образуют межклеточное вещество. Также выделяют пограничный слой, имеющий строение типичного гиалинового хряща. Эти пластинки окостеневают последними.

Костная ткань в общем, и кости в частности хорошо регенерируют за счет метаэпифизарных стволовых клеток надкостницы. В начале с помощью фибробластов надкостницы образуется рыхлая соединительная ткань. Далее активируются остеобласты, вырабатывающие грубоволокнистую костную ткань. В течение первых двух недель она заполняет зону повреждения и формирует костные мозоли.

Со 2 недели в костные мозоли внедряются кровеносные сосуды, и грубоволокнистая костная ткань замещается пластинчатой костной тканью.

На развитие, рост и регенерацию костной ткани и костей существенно влияют: физическая нагрузка, оптимальный пищевой режим (пища должна содержать достаточное количество белка, кальция, витаминов), гормоны роста, тиреоидные и половые гормоны.

Ткань – это система клеток и межклеточного вещества, объединенных единством строения, функции и происхождения. В организме человека различают 4 вида тканей: эпителиальные, соединительные, мышечные, нервная. Ткани состоят из клеток и межклеточного вещества, соотношение которых различно. Межклеточное вещество обычно гелеобразное и может содержать волокна.

Эпителиальная ткань (рис. 2.2) представлена клетками-эпителиоцитами, образующими сплошные пласты, в которых нет сосудов. Питание эпителия происходит путем диффузии питательных веществ через опорную базальную мембрану, отделяющую эпителий от подлежащей рыхлой соединительной ткани.

Покровный эпителий бывает однослойным (плоским, кубическим, многорядным мерцательным, цилиндрическим) и многослойным (ороговевающим, неороговевающим, переходным).

Однослойный плоский эпителий выстилает серозные оболочки, альвеолы легких. В камерах сердца, сосудах он уменьшает трение протекающих жидкостей и называется эндотелием. Многорядный мерцательный эпителий покрывает слизистые оболочки дыхательных путей, маточные трубы и состоит из ресничных и бокаловидных слизистых клеток, ядра которых расположены на разных уровнях. Реснички - выросты цитоплазмы на свободном конце столбчатых клеток этого эпителия. Они постоянно колеблются, препятствуя попаданию любых чужеродных частиц в легкие, продвигая яйцеклетку в маточных трубах. Кубический эпителий встречается в собирательных канальцах почек, выстилает протоки поджелудочной железы. Цилиндрический эпителий представлен высокими узкими клетками с функциями секреции и всасывания. Иногда на свободной поверхности клеток имеется щеточная кайма, состоящая из микроворсинок, увеличивающих поверхность всасывания (в тонкой кишке). Бокаловидные клетки, расположенные между цилиндрическими эпителиоцитами, выделяют слизь, защищающую слизистую желудка от вредного действия желудочного сока и облегчающую прохождение пищи в кишечнике.

Железистый эпителий образует железы (потовые, сальные и др), выполняющие функции выделения. Железы бывают многоклеточными (печень, гипофиз) и одноклеточными (бокаловидная клетка мерцательного эпителия, выделяющая слизь). Экзокринные железы расположены в коже или полых органах. Они обычно имеют выводные протоки и выводят секрет или наружу (пот, кожное сало, молоко), или в полость органа (бронхиальная слизь, слюна). Их секреты оказывают местное воздействие. Экзокринные железы делятся на простые и сложные в зависимости от того, ветвится или нет их выводной проток. Эндокринные железы не имеют выводных протоков, выделяют свои гормоны (адреналин и др.) в кровь и лимфу, влияя на весь организм.



Многослойный эпителий состоит из нескольких рядов клеток. Только нижний слой клеток расположен на базальной мембране. Эпидермис (многослойный плоский ороговевающий эпителий) покрывает кожу. Его нижний слой представлен ростковыми клетками, среди которых находятся пигментные клетки меланоциты с черным пигментом меланином, придающим цвет коже. Слизистые оболочки выстилает многослойный плоский неороговевающий эпителий (полость рта, глотка, пищевод и др.). Переходный эпителий может иметь разное количество слоев в зависимости от степени наполнения органа мочой (мочевыводящие пути).

Соединительная ткань составляет 50% веса тела, разнообразна по строению и функциям, широко распространена в организме.

Собственно соединительная ткань образует строму и капсулы внутренних органов, находится в коже, связках, сухожилиях, фасциях, сосудистых стенках, оболочках мышц и нервов. В организме эта ткань выполняет пластическую, защитную, опорную и трофическую функции. Она состоит из клеток и межклеточного вещества, содержащего волокна и основное вещество. Главная клетка – подвижный фибробласт – образует основное вещество и выделяет волокна: коллагеновые, эластические, ретикулиновые. Различают собственно соединительную ткань, хрящевую и костную.

Собственно соединительная ткань представлена рыхлой и плотной волокнистой соединительной тканью с функциями опорно-механической, защитной (плотная волокнистая соединительная ткань, хрящевая, костная). Трофическую (питательную) функцию выполняют рыхлая волокнистая и ретикулярная соединительная ткань, кровь и лимфа.

Рыхлая волокнистая соединительная ткань (рис. 2.3.) содержит фибробласты, фиброциты и др. клетки и волокна, по-разному расположенные в основном веществе в зависимости от строения и функции органа. Эта ткань составляет строму паренхиматозных органов, сопровождает кровеносные сосуды, участвует в иммунных, воспалительных реакциях, заживлении ран.

Плотная волокнистая соединительная ткань может быть неоформленной и оформленной в зависимости от упорядоченности расположения ее волокон. В сетчатом слое кожи соединительно-тканные волокна беспорядочно переплетаются. В сухожилиях, связках, фасциях эти волокна образуют пучки, расположенные в определенном направлении и придающие этим образованиям прочность (рис.2.4).

Ретикулярная соединительная ткань, состоящая из ретикулярных клеток и волокон, образует основу кроветворных и иммунных органов (красного костного мозга, лимфатических узлов и фолликулов, селезенки, вилочковой железы). Основная ее клетка – многоотростчатый ретикулоцит, выделяющий тонкие ретикулиновые волокна. Отростки клеток соединяются друг с другом с образованием сети, в петлях которой расположены кроветворные клетки и форменные элементы крови.

Жировая соединительная ткань образует подкожно-жировой слой, расположена под брюшиной, в сальниках. Ее клетки – шаровидные липоциты - накапливают жировые капли. Жировая ткань – депо важнейшего источника энергии жира и связанной с ним воды, имеет хорошие теплоизоляционные свойства.

Хрящевая ткань состоит из хондроцитов, образующих группы из двух-трех клеток, и основного вещества – плотного, упругого геля. Хрящ не имеет сосудов, питание осуществляется из капилляров покрывающей его надхрящницы. Различают три разновидности хряща. Гиалиновый хрящ – полупрозрачный, гладкий, плотный, блестящий. Он почти не содержит волокон, образует суставные, реберные хрящи, хрящи гортани, трахеи, бронхов. Волокнистый (фиброзный) хрящ имеет много прочных коллагеновых волокон и образует фиброзные кольца межпозвоночных дисков, внутрисуставные диски, мениски, лобковый симфиз. Эластический хрящ желтоват, содержит множество спиралевидных эластических волокон, обуславливающих упругость. Из него состоят некоторые хрящи гортани, ушная раковина и др.

Костная ткань твердая и прочная, образует скелет. Состоит из зрелых многоотростчатых клеток – остеоцитов, молодых – остеобластов, вмонтированных в твердое межклеточное вещество, содержащее минеральные соли. При повреждении кости остеобласты участвуют в процессах регенерации. Третий вид клеток костной ткани - многоядерные остеокласты способны фагоцитировать (поглощать) межклеточное вещество костной и хрящевой ткани в процессе роста и перестройки кости.

Мышечная ткань обладает возбудимостью, проводимостью и сократимостью. Основная клетка – миоцит. Выделяют три вида мышечной ткани (рис. 2.5). Поперечнополосатая скелетная мышечная ткань образует скелетные мышцы и некоторые внутренние органы (язык, глотку, гортань и др.). Поперечнополосатая сердечная мышечная ткань формирует сердце. Гладкая мышечная ткань расположена в глазном яблоке, стенках сосудов и полых внутренних органов (в желудке, кишечнике, трахее, бронхах и др.).

Скелетная мышечная ткань состоит из многоядерных, поперечно счерченных мышечных волокон длиной до 4-10 см, оболочка которых по электрическим свойствам похожа на мембрану нервных клеток. Волокна содержат специальные сократительные органеллы, миофибриллы - продольные нити, способные при возбуждении укорачиваться. Миофибриллы образованы сократительными белками – актином и миозином с разными светопреломляющими и физико-химическими свойствами, что обуславливает чередование темных и светлых поперечных полосок (дисков) при микроскопии этой мышечной ткани. Цитоплазма мышечного волокна содержит эндоплазматическую сеть. Ее мембраны связаны с оболочкой клетки и активно транспортируют Са + из цитоплазмы в трубочки эндоплазматической сети. Скелетная мышца при кратковременных нагрузках покрывает свои энергетические потребности как за счет аэробного, так и за счет анаэробного окисления. Сокращение скелетных мышц осуществляется быстро, контролируется сознанием и регулируется соматической нервной системой.

Сердечная мышечная ткань, миокард, состоит из клеток - поперечно исчерченных кардиомиоцитов, которые с помощью вставочных дисков соединяются в функционально единую сеть. Возбуждение, возникающее в каком-либо отделе сердца, распространяется на все мышечные волокна миокарда. Миокард чрезвычайно чувствителен к недостатку кислорода: он покрывает свои энергетические потребности только за счет аэробного окисления. Миокард сокращается непроизвольно и регулируется вегетативной нервной системой.

Гладкая мышечная ткань состоит из тонких одноядерных, не имеющих исчерченности веретенообразных миоцитов длиной до 0,5 см, собранных в пучки или пласты. Их актиновые и миозиновые нити расположены беспорядочно, не образуя миофибрилл. Сокращение гладкой мышечной ткани происходит медленно (кроме мышц, регулирующих ширину зрачка), непроизвольно и контролируется вегетативной нервной системой.

Нервная ткань состоит из нервных клеток – нейронов и нейроглии. Нейроны вырабатывают нервные импульсы, нейрогормоны и медиаторы. Нейроны и нейроглия формируют единую нервную систему, регулирующую взаимосвязь организма с внешней средой, координирующую функции внутренних органов и обеспечивающую целостность организма.

Нейрон имеет тело, отростки и концевые аппараты. По количеству отростков различают нейроны с одним, двумя и несколькими отростками (униполярные, биполярные и мультиполярные - последние у человека преобладают). Коротких ветвящихся отростков – дендритов - у нейрона может быть до 15. Они соединяют нейроны между собой, передавая нервные импульсы. По единственному длинному (до 1,5 м), тонкому, не ветвящемуся отростку – аксону – нервный импульс перемещается от тела нейрона к мышце, железе или другому нейрону (рис.2.6)

Нервные волокна заканчиваются концевыми аппаратами - нервными окончаниями. Аксоны заканчиваются на мышцах и железах эффекторами - двигательными нервными окончаниями. Рецепторы - чувствительные нервные окончания. В ответ на раздражение в рецепторах возникает процесс возбуждения, который регистрируется как очень слабый переменный электрический ток (нервные импульсы, биотоки). В нервных импульсах закодирована информация о раздражителе. Синапсы - контакты между нервными клетками и их отростками. Передача возбуждения в синапсах и эффекторах происходит с помощью биологически активных веществ – медиаторов (ацетихолина, норадреналина и др.).

Нейроны не делятся митозом в обычных условиях. Восстановительные функции принадлежат нейроглии. Клетки нейроглии выстилают полости головного и спинного мозга (желудочки, каналы), служат опорой для нейронов, окружая их тела и отростки, осуществляют фагоцитоз и обмен веществ, выделяют некоторые медиаторы.