Переваривание липидов. Переваривание липидов в желудочно-кишечном тракте Переваривание липидов в желудочно кишечном тракте биохимия

. ЖЕЛУДОК : у взрослого человека в желудке пищевые триглицериды практически не расщепляются, т.к.

рН ↓ под действием НСl до 1,5 (опт. рН для липазы = 5,5-7,5). Также в желудке отсутствуют

условия для эмульгирования , а липаза может действовать только на триглицериды , находящиеся в

форме эмульсии );

у грудных детей в желудке (рН〜5,2) под действием лингвальной липазы происходит активно

гидролиз эмульгированных жиров молока.

. КИШЕЧНИК : рН под действием гидрокарбонатов , растворенных в щелочном содержимом сока

поджелудочной железы и желчи .

В составе сока поджелудочной железы в кишечник поступают:

1). липаза гидролиз жиров до свободных жирных кислот и моноацилглицеролов , может

отщеплять жирную кислоту по 1 -положению глицерина в фосфолипидах ;

1). холестеролэстераза поджелудочной железы – гидролиз пищевых эфиров холестерина;

2). фосфолипаза А 2 отщепляет жирную кислоту от фосфолипидов по 2 -положению глицерина ;

3). щелочная фосфатаза кишечного сока – гидролиз по фосфоэфирным связям фосфолипидов .

Всасывание холестерола , частично расщепленных фосфолипидов происходит с помощью мицелл,

формируемых солями парных желчных кислот .

Обмен белков, аминокислот

ОРНИТИНОВЫЙ ЦИКЛ МОЧЕВИНООБРАЗОВАНИЯ (ОЦ ) (в печени) - основной путь детоксикации аммиака (N Н 3 ), который образуется при распаде азот -содержащих веществ: аминокислот, биогенных аминов, пуринов и пиримидинов, фосфо- и гликолипидов, гексозаминов, гликозаминогликанов, гема и др. Реакции ОЦ направлены на связывание токсичного Аммиака с образованием нетоксичной Мочевины . Азот в мочевине происходит из карбамоил-фосфата (N Н 3 +СО 2 ) и аспарагиновой кислоты .

В ОЦ участвуют а/к – орнитин (непротеиногенная), аспартат и образуется аргинин ).

(На образование 1 молекулы Мочевины расходуется энергия 3 АТФ , которые ресинтезируются за счет превращения промежуточного метаболита ОЦ фумарата через малат в ОА (в ц. Кребса), что сопровождается восстановлением НАДНН + , обеспечивающим синтез 2,5 АТФ в ПДЦМХ . Образованная молекула ОА в реакции трансаминирования при участии пиридоксаминфосфата (кофермент В 6 ) превращается в аспартат , аминогруппа которого, наряду с молекулой аммиака , используется в синтезе Мочевины (N Н 2 -СО -N Н 2 )).

Гипераммониемия (аммиака в крови) – при ↓ активности ферментов ОЦ . Проявления: учащенное дыхание, возбудимость, мигрень, судороги, рвота при употреблении белковой пищи.

ТРАНСДЕЗАМИНИРОВАНИЕ (НЕПРЯМОЕ ДЕЗАМИНИРОВАНИЕ – НД ) - процесс дезаминирования α-аминокислот (а/к ) с образованием α-кетокислот (к/к ) без промежуточного освобождения аммиака . Протекает НД в 2 этапа : 1 - трансаминирование , катализируемое В 6 -зависимой аминотрансферазой : происходит перенос N Н 2 –группы с а/к на α-кетоглутарат , с образованием к/к и глутамата , соответственно. Витамин В 6 вступает в реакцию в форме кофермента – пиридоксаль-Ф , который принимает от а/к амино группу и превращается в пиридоксамин-Ф (через образование промежуточных шиффовых оснований альдимин и кетимин ), который далее отдает N Н 2 –группу на α-кетоглутарат с образованием глутамата . 2 окислительное дезаминирование глутамата при участии глутаматдегидрогеназы с выделением аммиака и образованием α-кетоглутарата . Другие типы дезаминирования : восстановительное, гидролитическое (у м/орг.), внутримолекулярное (гистидин → урокановая к-та).

ТРАНСРЕАМИНИРОВАНИЕ (НЕПРЯМОЕ АМИНИРОВАНИЕ – НА ) - процесс, обратный непрямому дезаминированию , обеспечивающий связывание аммиака с образованием из α-к/к α-а/к . НА протекает в 2 этапа: 1 – восстановительное аминирование α–кетоглутарата с образованием глутамата и 2 – трансаминирование : перенос аминогруппы с глутамата на α-к/к с образованием α-а/к .

БИОГЕННЫЕ АМИНЫ (БА ) биологически активные производные аминокислот , ключевой реакцией образования которых является В 6 –зависимое декарбоксилирование а/к . К БА относятся: ГАМК декарбоксилированное производное глутамата ; Гистамин декарбоксилированный гистидин , Серотонин – образуется из триптофана (при В 6 –зав. декарбоксилировании и гидроксилировании при участии вит.С ); Катехоламины : Дофамин , Норадреналин , Адреналин – образуются из тирозина (при участии В 6 -зависимой декарбоксилазы, вит.С -зависимой гидроксилазы, S АМ -зависимой метилтрансферазы).

ГЛИКО- и КЕТОГЕННЫЕ АМИНОКИСЛОТЫ : Гликогенные а/к – а/к, которые, распадаясь, превращаются в ЩУК и ПВК, а далее через 3 -й обходной путь вступают в глюконеогенез → далее в гликогеногенез . Кетогенные а/к (ЛЛИФТТ ) – а/к, при распаде которых образуется ацетоацетат (кетоновое тело ) или ацетилКоА (при концентрации которого синтезируются кетоновые тела ). Лиз, Лей – строго кетогенные а/к ; И/лей, Ф/а, Тир, Трп – смешанные – глико - и кетогенные а/к.

НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ : Вал, Лей, Изолей, Мет, Ф/а, Трп, Тре, Лиз. ; Полузаменимые – Тир, Цист .; Частично заменимая – Арг. ; Незаменимая в детском возрасте – Гист .

ЗНАЧЕНИЕ АМНОКИСЛОТ : . ФЕНИЛАЛАНИН (незам.а/к) → ТИРОЗИН (полузамен. а/к) – глико- и кетогенные а/к являются предшественниками: 1 ). катехоламинов (в мозговом веществе надпочечников, в мозге) – дофамин , норадреналин , адреналин ; 2 ). йодтиронинов (в щитовидной железе) – трийодтиронин (Т 3 ), тетрайодтиронин (Т 4 ); 3 ). пигмента меланина (в коже, волосах, радужке).

Фенилкетонурия (выведение фенилпирувата с мочой) – наследственная энзимопатия , связанная с активности фермента – фенилаланинмонооксигеназы , гидроксилирующей фенилаланин в тирозин . Проявления: олигофрения , возбудимость, мышечная гипотония.

Алкаптонурия (выведение алкаптона с мочой) – наследственная энзимопатия , связанная с активности фермента – гомогентизатдиокигеназы , участвующего в обмене тирозина , что сопровождается гомогентизиновой кислоты и образованием из нее черного пигмента – алкаптона . Проявления: алкаптон откладывается в суставах , что сопровождается воспалением и ограничением их подвижности; развивается охроноз , связанный с отложением алкаптона в хрящах ушных раковин и крыльев носа.

Альбинизм – развивается при нарушении синтеза меланина из тирозина . Отмечается депигментация радужки глаз, волос; чувствительность кожи к УФ.

Гипотиреоз выработки Т 3 и Т 4 , что приводит к кретинизму в детском возрасте и микседеме (слизистый отек) – у взрослых. Гипертиреоз - выработки Т 3 и Т 4 , что приводит к развитию Базедовой болезни (развиваются экзофтальм, зоб, тахикардия, t 0). (Ферменты , обеспечивающие синтез Т 3 и Т 4 , из тирозина : 1) - йодидпероксидаза , активирующая пищевой йод ; 2) - тирозинйодиназа , включающая йод по С 3 и С 5 -положениям тирозина с конденсацией 2 молекул тирозина ).

. ТРИПТОФАН (незам.; глюко- и кетогенная а/к) необходим для синтеза: 1 ). серотонина (биогенный амин) – регулирует многие соматические функции организма и является антидепрессантом; 2 ). мелатонина – гормон эпифиза, регулирующий биоритмы; 3 ). витамина РР (НАД + , НАДФ + ) в печени.

Гиповитаминоз В 6 -сяактивность В 6 зависимой кинурениназы и нарушается обмен триптофана , что сопровождается выведением с мочой побочного метаболита – ксантуреновой кислоты , и нарушением синтеза витамина РР (НАД + , НАДФ + ). Развивается пеллагроподобный дерматит.

Болезнь «голубых пеленок» - связана с нарушением обмена триптофана , что сопровождается образования индолилацетата , индикана (окрашивают пеленки новорожденных в голубой цвет). Проявления: пеллагроподобный дерматит, эмоциональная лабильность, атаксия, запоры.

. МЕТИОНИН (незам. а/к ) и ЦИСТЕИН (полузамен. а/к ) – серосодержащие а/к: 1 ). Метионин в форме кофермента SAM участвует в синтезе: а). адреналина из норадреналина ; б). мелатонина из серотонина , в). холина из этаноламина (холин входит в состав лецитина , ацетилхолина ), г). креатин-фосфата (наряду с арг и гли ) – мышечный макроэрг, д). карнитина (наряду с лиз ) – переносчик ЖК через мембраны МХ, е). полиаминов спермина , спермидина (наряду с орнитином ) – регулируют процессы клеточного роста и дифференцировки, активируя синтез ДНК, РНК, белка, ж). ансерина из карнозина (наряду с гист и β-ала ) – повышают амплитуду мышечного сокращения в утомленной мышце.

2 ). ЦИСТЕИН – необходим для синтеза: а). тиоэтиламина , который участвует в образовании из витамина Пантотеновая кислота коферментов – КоА S Н и 4-фосфопантотеина , б). глутатиона – трипептида, включающего также глу и гли – участвует в переносе а/к через мембраны, в восстановлении дегидроаскорбиновой кислоты , в инактивации активных форм кислорода , в восстановлении SH - групп ферментов и мембран э/ц, в). таурина – образует парные желчные кислоты (таурохолевая, таурохенодезоксихолевая ).

Гомоцистеинурия - выведение с мочой гомоцистеина , т.к.активность цистатионин-синтазы . Нарушается синтез цис , ↓ умственное развитие, судороги, остеопороз (↓ гидроксилирование лиз в коллагене ), дрожание радужки глаз.

Цистинурия -экскреции с мочой цистеина , цистина при нарушении почечной реабсорбции. Образуются цистиновые камни, происходит закупорка мочевыводящих путей.

. ЛИЗИН (н/з ), АРГИНИН (частично н/з а/к ), ГИСТИДИН (н/з в детском возрасте ) оснóвные а/к, «+ » - заряж. ЛИЗИН и АРГИНИН : 1 ).входят в состав гистонов (Н1, Н2а, Н2в, Н3, Н4 ), 2 ). ЛИЗИН – участвует в преобразовании вит.Н в кофермент – биоцитин ; Липоевой кислоты – в липамид ; участвует в организации активного центра аминотрансфераз , связывая коферменты В 6 . 3 ). АРГИНИН – используется для синтеза креатин-фосфата (наряду с гли и мет ), орнитина . Образуется арг в орнитиновом цикле . 4 ). ГИСТИДИН – является предшественником гистамина ; участвует в образовании карнозина и ансерина ; в связывании гемоглобином О 2 .

. ГЛУТАМАТ, АСПАРТАТ (замен. а/к ) дикарбоновые а/к , «-»-заряж. – участвуют: 1 ). в связывании аммиака с образованием глутамина и аспарагина , 2 ). в синтезе пуринов и пиримидинов , 3 ). в образовании альбуминов и глобулинов крови, 4 ). в трансаминировании , 5 ). АСПАРТАТ – участвует в орнитиновом цикле , 6). ГЛУТАМАТ – в синтезе ГАМК , глутатиона .

. ГЛИЦИН (зам. а/к ) - участвует в синтезе: 1 ). глутатиона (наряду с цис и глу ), 2 ). гема (наряду с СукцинилКоА ), 3 ). пуринов аденина , гуанина , 4 ). парных желчных кислот – гликохолевая , гликохенодезоксихолевая , 5 ). креатин-фосфата (наряду с арг и мет ), 6 ). участвует в детоксикации продуктов гниения белков , 7 ). в образовании активной формы ТГФК (кофермент фолиевой кислоты ) – N 5 , N 10 -метилен-ТГФК , необходимой для синтеза серина , тимина из урацила .

ПРОСТЫЕ (ПБ ) и СЛОЖНЫЕ БЕЛКИ (СБ ): ПБ протеины : состоят только из аминокислот (альбумины, глобулины, гистоны, протамины, проламины ). СБ протеиды : состоят из апопротеина и простетической небелковой группы (металлопротеины (трансферрин, церулоплазмин ), фосфо- , нуклео- (РНК-содерж. - рибосома , ДНК-содерж. - нуклеосома ), хромо- (цветные белки : Нв, Мв, цитохромы , родопсин, флавопротеиды ), глико- , липопротеины ).

Фибриллярные белки коллаген , эластин ; фибронектин и ламинин (адгезивные белки ); кератины волос; актин и миозин – сократительные белки; фиброин шелка и паутины.

Азотистый баланс – соотношение количества азота , поступающего в организм в составе пищи и выделяемого с мочой, потом, калом. При положительном АБ – происходит задержка азота в организме – в растущем организме, при беременности, при восстановлении после болезни. Отрицательный АБ – больше азота выводится (гиперазотурия ) – при активном распаде тканевых белков при гипертиреозе, сахарном диабете, распаде злокачественной опухоли.

ПРОДУКТЫ ГНИЕНИЯ БЕЛКОВ (ПГБ ) и ПУТИ ИХ ДЕТОКСИКАЦИИ : ПГБ скатол ,индол (образуются из трп ), крезол ,фенол (из ф/а и тир ),сероводород (из цист , мет ),кадаверин (из лиз )и др. - образуются в результате разложения пищевых белков и а/к микрофлорой нижних отделов кишечника. Усиливаются процессы гниения при протеолитической функции поджелудочной железы (остр., хронич. панкреатит) Основное место детоксикации ПГБ печень , где происходит их метилирование, ацилирование, конъюгирование с глюкуроновой и серной кислотами , с глицином .

По гиппуровой кислоте в моче (продукт конденсации бензойной кислоты с глицином ) судят о детоксикационной функции печени .

ОБМЕН НУКЛЕОТИДОВ (Н/Т ): Н/Т - состоят из азотистого основания (АО ) (пуриновые АО – аденин и гуанин , пиримидиновые – тимин , урацил , цитозин) , рибозы/дезоксирибозы и остатка фосфорной кислоты (ФК ).

1 . при распаде Н/Т : отщепляется ФК под действием нуклеотидаз → далее отщепляется пентоза → происходит дезаминирование АО (кроме урацила ) и превращение АО в конечные продукты : для пуринов мочевая кислота (МК ) (предшественники – гипоксантин , ксантин ), для пиримидинов β-аланин (для тимина β-аминоизомасляная кислота ). Нуклеозиды отличаются от н/т – отсутствием ФК .

Подагра – отложение в суставах плохо растворимых Nа-солей мочевой кислоты при гиперурикемии (концентрации МК в крови), что является результатом употребления пурин -содержащих продуктов (кофе, икра), или активности гуанин , гипоксантин-фосфорибозил-трансферазы . Развиваются боли в суставах, позвоночнике, их подвижность, гиперурикемия , уратурия ( МК и ее Nа-солей в моче).

Болезнь Леша-Найхана наследственная энзимопатия , связанная со гуанин,гипоксантин-фосфорибозилтрансферазы . Проявления: возбудимости, ↓ умственного развития, нанесение самоповреждений, почечно-каменная болезнь.

Гиперурикемия, уратурия мочевой кислоты в крови и моче при подагре, болезни Леша-Найхана, патологии почек, печени, при лейкемии.

2 . синтез Н/Т : а ). ПУРИНОВЫЕ Н/Т синтезируются за счет формирования пуринового кольца на активированной фосфорибозе фосфорибозилпирофосфате (Ф R РР ) из глицина , аспартата , 2 -х молекул глутамина , и при участии формил- и метен- ТГФК (кофермент фолиевой кислоты В 9 ). При этом образуется Инозиновая кислота , которая далее аминируется с образованием АМФ (источник аминогруппы аспартат ) и ГМФ (источник аминогруппы глутамин ). б ). При синтезе ПИРИМИДИНОВЫХ Н/Т сначала формируется Оротовая кислота (из карбамоил-фосфата и аспартата ), которая далее переносится на Ф R РР с образованием оротидилмонофосфата (ОМФ ). ОМФ , декарбоксилируясь , превращается в УМФ , который при участии глутамина → в ЦМФ , а при участии метилен-ТГФК – в ТМФ .

Значение Н/Т : являются мономерами ДНК и РНК ; АТФ – универсальный макроэрг ; выполняют коферментную функцию. Значение УТФ и ЦТФ как коферментов : УТФ – участвует в синтезе гликогена , во взаимопревращении галактозы в глюкозу , в синтезе гликолипидов , гликозаминогликанов . ЦТФ – участвует в синтезе фосфолипидов .

Оротацидурия – выведение оротовой кислоты с мочой при активности ОМФ-декарбоксилазы , что сопровождается синтеза пиримидинов урацила , тимина , цитозина (нарушается пролиферация и дифференцировка быстро делящихся клеток). Развивается мегалобластическая анемия, дерматиты.

СИНТЕЗ ГЕМА : из Глицина и СукцинилКоА образуется Аминолевулиновая кислота , 2 -е молекулы которой формируют порфобилиноген , из 4 -х молекул которого синтезируется уропорфириноген (УПГ ), который через n- количество стадий превращается в Протопорфирин- IX , в который феррохелатаза встраивает железо ( 2+ ) и образуется ГЕМ . Значение ГЕМА - является простетической группой хромопротеидов (цветные белки): Нв , Мв, цитохромы ; является коферментом каталазы и пероксидазы .

Порфирии (эритропоэтическая, печеночная, кожная и др.) – наследственные энзимопатии , связанные со активности какого-либо фермента, участвующего в синтезе гема (напр., ↓активности уропорфириноген- III -синтазы ). Развиваются гипертрихоз, фотодерматит, эритродонтия; с мочой выводятся порфобилиноген , уропорфириноген и др. промежуточные метаболиты.

РАСПАД ГЕМА : под действием гем-окисляющей системы ГЕМ последовательно превращается в вердоглобин биливердин билирубин , который в крови адсорбируется на альбуминах , превращаясь в непрямой билирубин (НБ , 75 %) . В печени , конъюгируясь с глюкуроновой или серной кислотами (при участии глюкуронил- и ФАФС фосфоаденозинфосфат–сульфо трансферазы ), происходит образование прямого билирубина (ПБ – нетоксичный, растворимый, дает прямую реакцию с диазореактивом ) . Поступая в кишечник билирубин многократно восстанавливается и превращается в стеркобилин – конечный продукт распада гема , который в норме выводится с калом (300 мг ) и мочой (2-3 мг ).

Желтухи – развиваются при уровня билирубина в крови (гипербилирубинемия ). Различают 3 типа желтух : 1 гемолитическая (при гемолиза эритроцитов): Н Б в крови, стеркобилин в кале и моче; 2 паренхиматозная (при гепатитах, циррозах): появление уробилиногена в моче (предшественник стеркобилина ), в крови уровня общего БР ; 3 обтурационная , механическая (при закупорке желчных протоков камнем, опухолью): ПБ в крови, отсутствует стеркобилин в кале и моче (ахоличный – бесцветный кал), ПБ выводится с мочой (билирубинурия ) – моча приобретает цвет «темного пива».

СИНТЕЗ БЕЛКА : 1. транскрипция – переписывание последовательности нуклеотидов (н/т ) ДНК в последовательность н/т и РНК по принципу комплементарности (между пуринами и пиримидинами : А=Т (У ), Г Ц ), с заменой Т на У . 2. посттранкрипционный процессинг – созревание про- и РНК : вырезание интронов , сплайсинг – сшивание экзонов , «кэпирование» и РНК по 5′-концу: (+)-е метилированных н/т ), присоединение полиаденилата по 3′-концу. 3. трансляция (происходит на рибосомах при участии т РНК , приносящей а/к к месту синтеза полипептидной цепи) – раскодирование последовательности н/т и РНК в последовательность аминокислот белка : 3 н/т кодируют 1 а/к (триплетность генетического кода ). Свойства генетического кода : универсальность, триплетность, вырожденность, неперекрываемость. 4. посттрансляцинный процессинг (фолдинг – процесс сворачивания белка в правильную пространственную биологически активную конформацию при участии белков-шаперонов ; присоединение простетической группы в сложных белках).

Процессы транскрипции , трансляции , репликации протекают в 3 этапа : инициация, элонгация, терминация.

РЕПЛИКАЦИЯ ДНК : удвоение ДНК (при делении клетки) происходит при участии следующих ферментов: 1. хеликаза - раскручивает двойную спираль ДНК с образованием репликативной вилки , 2. топоизомераза – предупреждает суперспирализацию ДНК в местах формирования репликативной вилки , 3. праймаза – катализирует образование «затравочного» праймера (олиго рибо нуклеотид ), с которого начинается синтез ДНК , 4. ДНК-полимераза III (основной фермент репликации , катализирующий синтез лидирующей цепи ДНК и отстающей цепи фрагментами Оказаки в направлении 5′→ 3′), ДНК-полимераза I (удаляет затравочный праймер и замещает на олиго дезоксирибо нуклеотид ),ДНК-полимераза II (участвует в репарации – устранении ошибок); 5. ДНК-лигаза (сшивает фрагменты Оказаки , соединяет 2 цепи ДНК ).

Липиды, поступающие с пищей, крайне гетерогенны по своему происхождению. Главным образом, это нейтральные жиры или как их еще называют триглицериды.

В желудочно-кишечном тракте они в значительной мере расщепляются до составляющих их мономеров: высших жирных кислот, глицерина, аминоспиртов и др. Эти продукты расщепления всасываются в кишечную стенку и из них в клетках кишечного эпителия синтезируются липиды, свойственные человеку. Эти видоспецифические липиды далее поступают в лимфатическую и кровеносную системы и разносятся к различным тканям и органам. Липиды, поступающие из кишечника во внутреннюю среду организма обычно называют экзогенными липидами .

Процесс расщепления пищевых жиров идет в основном в тонком кишечнике. В пилорическом отделе желудка, правда, выделяется липаза, но рН желудочного сока на высоте пищеварения составляет 1,0 - 2,5 и при этих значениях рН фермент малоактивен. Принято считать, что образующиеся в пилорическом отделе желудка жирные кислоты и моноглицериды далее участвуют в эмульгировании жиров в двенадцатиперстной кишке. В желудке под действием протеиназ желудочного сока происходит частичное расщепление белковых компонентов липопротеидов, что в дальнейшем облегчает расщепление их липидных составляющих в тонком кишечнике.

Поступающие в тонкий кишечник липиды подвергаются действию ряда ферментов. Пищевые триацилглицерины (жиры) подвергаются действию фермента липазы, поступающей в кишечник из поджелудочной железы. Эта липаза наиболее активно гидролизует сложноэфирные связи в первом и третьем положении молекулы триацилглицерина, менее эффективно она гидролизует сложноэфирные связи между ацилом и вторым атомом углерода глицерина. Для проявления максимальной активности липазы требуется полипептид - колипаза, поступающий в двенадцатиперстную кишку, по-видимому, с соком поджелудочной железы. В расщеплении жиров участвует также липаза, выделяемая стенками кишечника, однако, во-первых, эта липаза малоактивна; во-вторых, она преимущественно катализирует гидролиз сложноэфирной связи между ацилом и вторым атомом углерода глицерина.

При расщеплении жиров под действием липаз панкреатического сока и кишечного сока образуются преимущественно свободные высшие жирные кислоты, моноацилглицерины и глицерин. В то же время, образующаяся смесь продуктов расщепления содержит и некоторое количество диацилглицеринов и триацилглицеринов. Принято считать, что лишь 40-50% пищевых жиров расщепляется полностью, а от 3% до 10% пищевых жиров могут всасываться в неизмененном виде.

Расщепление фосфолипидов идет гидролитическим путем при участии ферментов фосфолипаз, поступающих в двенадцатиперстную кишку с соком поджелудочной железы. Фосфолипаза А1 катализирует расщепление сложноэфирной связи между ацилом и первым атомом углерода глицерина. Фосфолипаза А2 катализирует гидролиз сложноэфирной связи между ацилом и вторым атомом углерода глицерина. Фосфолипаза С катализирует гидролитический разрыв связи между третьим атомом углерода глицерина и остатком фосфорной кислоты, а фосфолипаза Д сложноэфирные связи между остатком фосфорной кислоты и остатком аминоспирта.

В результате действия этих четырех ферментов фосфолипиды расщепляются до свободных жирных кислот, глицерина, фосфорной кислоты и аминоспирта или его аналога, например, аминокислоты серина, однако часть фосфолипидов расщепляется при участии фосфолипазы А2 только до лизофосфолипидов и в таком виде может поступать в стенку кишечника.

Сложные эфиры ХС расщепляются в тонком кишечнике гидролитическим путем при участии фермента холестеринстеразы до жирной кислоты и свободного ХС. Холестеринэстераза содержится в кишечном соке и соке поджелудочной железы.

Все ферменты, принимающие участие в гидролизе пищевых липид растворены в водной фазе содержимого тонкого кишечника и могут действовать на молекулы липидов лишь на границе раздела липид/вода. Отсюда, для эффективного переваривания липидов необходимо увеличение этой поверхности с тем, чтобы большее количество молекул ферментов участвовало в катализе. Увеличение площади поверхности раздела достигается за счет эмульгирования пищевых липидов , разделения крупных липидных капель пищевого комка на мелкие. Для эмульгирования необходимы поверхностно-активные вещества - ПАВ, представляющие собой амфифильные соединения, одна часть молекулы которых гидрофобная и способна взаимодействовать с гидрофобными молекулами поверхности липидных капель, а вторая часть молекулы ПАВ должна быть гидрофильной, способной взаимодействовать с водой. При взаимодействии липидных капель с ПАВ снижается величина поверхностного натяжения на границе раздела липид/вода и крупные липидные капли распадаются на более мелкие с образованием эмульсии. В качестве ПАВ в тонком кишечнике выступают соли жирных кислот и продукты неполного гидролиза триацилглицеринов или фосфолипидов, однако основную роль в этом процессе играют желчные кислоты.

Желчные кислоты, как уже упоминалось, относятся к соединениям стероидной природы. Они синтезируются в печени из ХС и поступают в кишечник вместе с желчью. Различают первичные и вторичные желчные кислоты. Первичными являются те желчные кислоты, которые непосредственно синтезируются в гепатоцитах из ХС: это холевая кислота и хенодезоксихолевая кислота. Вторичные желчные кислоты образуются в кишечнике из первичных под действием микрофлоры: это литохолевая и дезоксихолевая кислоты. Все желчные кислоты поступают в кишечник с желчью в коньюгированных формах, т.е. в виде производных, образующихся при взаимодействии желчных кислот с гликоколом или таурином.



Кроме наличия ПАВ для эмульгирования имеют значение постоянное перемешивание содержимого кишечника при перистальтике и образование пузырьков СО2 при нейтрализации кислого содержимого желудка, поступающего в двенадцатиперстную кишку, бикарбонатами сока поджелудочной железы, поступающего в этот же отдел тонкого кишечника.

В полости рта липиды подвергаются лишь механической обработке. В желудке имеется небольшое количество липазы, которая гидролизует жиры. Малая активность липазы желудочного сока связана с кислой реакцией содержимого желудка. Кроме того, липаза может влиять только на эмульгированные жиры, в желудке отсутствуют условия для образования эмульсии жира. Только у детей и у моногастричных животных липаза желудочного сока играет важную роль в переваривании липидов.

Кишечник является основным местом переваривания липидов. В двенадцатиперстной кишке на липиды воздействует желчь печени и сок поджелудочной железы, одновременно происходит нейтрализация кишечного содержимого (химуса). Происходит эмульгирование жиров под действием желчных кислот. В состав желчи входят: холевая кислота, дезоксихолевая (3,12 дигидроксихолановая), хенодезоксихолевая (3,7 дигидроксихолановая) кислоты, натриевые соли парных желчных кислот: гликохолевая, гликодезоксихолевая, таурохолевая, тауродезоксихолевая. Они состоят из двух компонентов: холевой и дезоксихолевой кислот, а также глицина и таурина.

дезоксихолевая кислота хенодезоксихолевая кислота

гликохолевая кислота

таурохолевая кислота

Соли желчных кислот хорошо эмульгируют жиры. При этом увеличивается площадь соприкосновения ферментов с жирами и увеличивается действие фермента. Недостаточность синтеза желчных кислот или задержка поступления нарушает эффективность действия ферментов. Жиры, как правило, всасываются после гидролиза, но часть тонко эмульгированных жиров всасывается через стенку кишечника и переходит в лимфу без гидролиза.

Эстеразы разрывают в жирах эфирную связь между, спиртовой группой и карбоксильной группой карбоновых кислот и неорганических кислот (липаза, фосфатазы).

Под действием липазы жиры гидролизуются на глицерин и высшие жирные кислоты. Активность липазы возрастает под действием желчи, т.е. желчь непосредственно активирует липазу. Кроме того, активность липазы увеличивают ионы Са ++ вследствие того, что ионы Са ++ образуют нерастворимые соли (мыла) с освободившимися жирными кислотами и предотвращают их подавляющее влияние на активность липазы.

Под действием липазы в начале гидролизуются эфирные связи у α и α 1 (боковых) углеродных атомов глицерина, затем у β-углеродного атома:

Под действием липазы до 40% триацилглицеридов расщепляются до глицерина и жирных кислот, 50-55% гидролизуется до 2-моноацилглицеринов и 3-10% не гидролизуется и всасываются в виде триацилглицеринов.

Стериды корма расщепляются ферментом холестеролэстеразой до холестерина и высших жирных кислот. Фосфатиды гидролизуются под влиянием фосфолипаз А, A 2 , С и D. Каждый фермент действует на определенную сложноэфирную связь липида. Точки приложения фосфолипаз представлены на схеме:


Фосфолипазы поджелудочной железы, тканевые фосфолипазы вырабатываются в виде проферментов и активируются трипсином. Фосфолипаза A 2 змеиных ядов катализирует отщепление ненасыщенной жирной кислоты в положении 2 фосфоглицеридов. При этом образуются лизолецитины с гемолитическим действием.

фосфотидилхолин лизолецитин

Поэтому при попадании этого яда в кровь происходит сильный гемолиз.. В кишечнике эта опасность устраняется действием фосфолипазы A 1 , быстро инактивирующей лизофосфатид в результате отщепления от него остатка насыщенной жирной кислоты с превращением его в неактивный глицерофосфохолин.

Лизолецитины в малых концентрациях стимулируют дифференцировку лимфоидных клеток, активность протеинкиназы С, усиливают клеточную пролиферацию.

Коламинфосфатиды и серинфосфатиды расщепляются фосфолипазой А до лизоколаминфосфатидов, лизосеринфосфатидов, которые далее расщепляются фосфолипазой A 2 . Фосфолипазы С и D гидролизуют связи холина; коламина и серина с фосфорной кислотой и остатка фосфорной кислоты с глицерином.

Всасывание липидов происходит в тонком отделе кишечника. Жирные кислоты с длиной цепи менее 10 углеродных атомов всасываются в неэтерифицированной форме. Для всасывания необходимо присутствие эмульгирующих веществ – желчных кислот и желчи.

Ресинтез жира, характерного для данного организма, происходит в кишечной стенке. Концентрация липидов в крови в течение 3-5 часов после приема корма высокая. Хиломикроны – мелкие частицы жира, образующиеся после всасывания в кишечной стенке, представляют собой липопротеиды, окруженные фосфолипидами и белковой оболочкой, внутри содержат молекулы жира и желчных кислот. Они поступают в печень, где липиды подвергаются промежуточному обмену, а желчные кислоты проходят в желчный пузырь и далее обратно в кишечник (см. рис.9.3 на стр.192). В результате такого кругооборота теряется малое количество желчных кислот. Считают, что молекула желчной кислоты в сутки совершает 4 кругооборота.

Первые два этапа переваривания липидов, эмульгирование и гидролиз , происходят практически одновременно. Вместе с этим, продукты гидролиза не удаляются, а оставаясь в составе липидных капелек, облегчают дальнейшее эмульгирование и работу ферментов.

Переваривание в ротовой полости

У взрослых в ротовой полости переваривание липидов не идет, хотя длительное пережевывание пищи способствует частичному эмульгированию жиров.

Переваривание в желудке

Собственная липаза желудка у взрослого не играет существенной роли в переваривании липидов из-за ее небольшого количества и того, что ее оптимум рН 4,5-5,5. Также влияет отсутствие эмульгированных жиров в обычной пище (кроме молока).

Тем не менее, у взрослых теплая среда и перистальтика желудка вызывает некоторое эмульгирование жиров. При этом даже низко активная липаза расщепляет незначительные количества жира, что важно для дальнейшего переваривания жиров в кишечнике, т.к. наличие хотя бы минимального количества свободных жирных кислот облегчает эмульгирование жиров в двенадцатиперстной кишке и стимулирует секрецию панкреатической липазы.

Переваривание в кишечнике

Под влиянием перистальтики ЖКТ и составных компонентов желчи пищевой жир эмульгируется. Образующиеся при переваривании лизофосфолипиды также являются хорошим поверхностно-активным веществом, поэтому они способствуют дальнейшему эмульгированию пищевых жиров и образованию мицелл. Размер капель такой жировой эмульсии не превышает 0,5 мкм.

Гидролиз эфиров ХС осуществляет холестерол-эстераза панкреатического сока.

Переваривание ТАГ в кишечнике осуществляется под воздействием панкреатической липазы с оптимумом рН 8,0-9,0. В кишечник она поступает в виде пролипазы , для проявления ее активности требуется колипаза , которая помогает липазе расположиться на поверхности липидной капли.

Колипаза , в свою очередь, активируется трипсином и затем образует с липазой комплекс в соотношении 1:1. Панкреатическая липаза отщепляет жирные кислоты, связанные с С 1 и С 3 атомами углерода глицерола. В результате ее работы остаются 2-моноацилглицеролы (2-МАГ), которые всасываются или превращаются моноглицерол-изомеразой в 1-МАГ. Последний гидролизуется до глицерола и жирной кислоты. Примерно 3/4 ТАГ после гидролиза остаются в форме 2-МАГ и только 1/4 часть ТАГ гидролизуется полностью.

Полный ферментативный гидролиз триацилглицерола

В панкреатическом соке также имеется активируемая трипсином фосфолипаза А 2 , отщепляющая в фосфолипидах жирную кислоту от С 2 , также обнаружена активность фосфолипазы С и лизофосфолипазы .

Действие фосфолипазы А 2 и лизофосфолипазы на примере фосфатидилхолина

В кишечном соке также имеется активность фосфолипазы А 2 и фосфолипазы С.

Для работы всех указанных гидролитических ферментов в кишечнике необходимы ионы Са 2+ , способствующие удалению жирных кислот из зоны катализа.

Точки действия фосфолипаз

Образование мицелл

В результате воздействия на эмульгированные жиры ферментов панкреатического и кишечного соков образуются 2-моноацилглицерол ы, свободные жирные кислоты и свободный холестерол , формирующие структуры мицеллярного типа (размер уже около 5 нм). Свободный глицерол всасывается напрямую в кровь.

Лекция «ОБМЕН ЛИПИДОВ»

ПРЕВРАЩЕ НИЯ ЛИПИДОВ В ПРОЦЕССЕ ПИЩЕВАРЕНИЯ

Липиды, представляющие большую биологическую ценность для организма человека (триацилглицерины, фосфолипиды, холестерин и др.), поступают в него как компоненты пищи биологического происхождения.

Для переваривания липидов в желудочно-кишечном тракте необходимыми являются следующие условия:

    наличие гидролизующих липиды липолитических ферментов ;

    оптимальное для проявления высокой каталитической активности липолитических ферментов значение рН среды (нейтральное или слабощелочное);

    наличие эмульгаторов.

Все перечисленные условия создаются в кишечнике человека. Слюнные железы не способны продуцировать ферменты, гидролизующие жиры, вследствие чего в ротовой полости заметного переваривания жиров не происходит. В желудке взрослого человека переваривания жиров также не происходит, так как рН желудочного сока близок к 1,5, а оптимум рН среды для действия желудочного липолитического фермента - липазы находится в пределах 5,5-7,5. Следует отметить, что рН желудочного сока у новорожденных детей составляет около 5,0, что способствует перевариванию эмульгированных триацилглицеринов молока желудочной липазой. В кишечнике происходит нейтрализация соляной кислоты желудочного сока бикарбонатами кишечного сока и эмульгирование жиров. Эмульгирование липидов осуществляется выделяющимися в процессе нейтрализации пузырьками СО2 с участием натриевых или калиевых солей желчных кислот - холевой, 7-дезоксихолевой, глицинхолевой, таурохолевой и других в качестве поверхностно-активных веществ. Желчные кислоты поступают в кишечник из желчного пузыря в составе желчи. Эмульгированию способствуют также соли жирных кислот (мыла), образующиеся при гидролизе липидов. Но основная роль поверхностно-активных веществ в эмульгировании жиров принадлежит желчным кислотам.

Анионы желчных кислот резко уменьшают поверхностное натяжение на границе раздела фаз жир - вода, стабилизируют образовавшуюся эмульсию и образуют с жирными кислотами транспортный комплекс, в составе которого осуществляется их всасывание в стенки кишечника. Кроме того, желчные кислоты выполняют функцию активаторов липолитических ферментов.

Триацилглицерины, составляющие основную массу липидов пищи, гидролизуются под действием панкреатической липазы, которая поступает в кишечник в неактивном виде, а затем активируется желчными кислотами. Активная липаза имеет гидратированный гидрофильный участок и гидрофобную головку, контактирующую с триацилглицеринами на поверхности раздела фаз, где и происходит постадийный гидролиз:

В ходе гидролиза на первых стадиях быстро гидролизуются сложноэфирные связи 1 и 3, а затем медленно идет гидролиз 2-моноацилглицерина. Образующийся 2-моноацилглицерин затем может всасываться стенкой кишечника, и использоваться на ресинтез специфических для данного вида организмов триацилглицеринов (см. ниже).

В гидролизе фосфолипидов принимают также участие фосфолипазы. Поступающие с пищей эфиры холестерина, которыми богаты некоторые продукты (желток яиц, сливочное масло, икра и др.), гидролизуются холестеролэстеразой до свободного холестерина и жирных кислот. Холестеролэстераза проявляет свою активность только в присутствии желчных кислот.

Продукты гидролитического расщепления всех пищевых липидов всасываются в кишечнике. Глицерин и жирные кислоты с короткой углеродной цепью (до 10-12 атомов С) хорошо растворимы в воде и переходят в кровь в виде водного раствора. Длинноцепочечные жирные кислоты (более 14 атомов С) и моноацилглицерины не растворимы в воде, поэтому всасываются при участии желчных кислот, фосфолипидов и холестерина, образующих в кишечнике смесь состава 12,5: 2,5: 1,0, соответственно. В результате формируются мицеллы из продуктов гидролиза липидов, окруженных гидрофильной оболочкой из холестерина, фосфолипидов и желчных кислот. В последующем мицеллы распадаются, желчные кислоты снова возвращаются в кишечник, совершая 5-6 таких циклов ежесуточно.

Липиды, прежде чем поступить в лимфу, в кишечной стенке подвергаются ресинтезу, т.е. превращению в триацилглицерины. Важность этого процесса заключается в том, что вновь синтезированные специфические жиры отличаются по физико-химическим показателям от пищевых липидов и наиболее пригодны для данного организма. Поскольку все различия в составе триацилглицеринов определяются составом жирных кислот, то при ресинтезе липидов используются собственные жирные кислоты с длинной цепью, которые синтезируются в кишечнике из предшественников (лишь часть всосавшихся жирных кислот пригодна для ресинтеза). Жирные кислоты образуют ацил-КоА, а затем ацильные остатки переносятся на моноацилглицерин при участии трансацилаз, с последовательным образованием из моноацилглицерина ди- и триацилглицеринов.

Транспорт холестерина и ресинтезированных липидов осуществляется в составе липопротеинов, белковая часть которых (аполипопротеина) придает им растворимость в водных средах.

Основные метаболические пути жирных кислот, образующиеся при гидролизе триацилглицеринов пищи, представлены на рисунке.

Внутриклеточный гидролиз липидов

В тканях происходит непрерывное обновление липидов. Период полупревращения триацилглицеринов, играющих важную энергетическую роль в организме, колеблется от 2 до 18 суток. Другие липиды (фосфо-, сфинго-, гликолипиды и холестерин) преимущественно выполняют роль компонентов биологических мембран и обновляются менее интенсивно. Обновление липидов требует их предварительного внутриклеточного ферментативного гидролиза - липолиза.

Принято считать, что триацилглицерины выполняют в обмене липидов роль, аналогичную той, которую выполняет гликоген в обмене углеводов, а высшие жирные кислоты по своей энергетической ценности напоминают глюкозу. При физической нагрузке и других состояниях организма, требующих повышенных энергетических затрат, увеличивается потребление триацилглицеринов жировой ткани как энергетического резерва. Однако в качестве источника энергии могут использоваться только свободные жирные кислоты. Поэтому триацилглицерины сначала гидролизуются до глицерина и свободных жирных

кислот под действием специфических тканевых липаз. Этот процесс контролируется центральной нервной системой и запускается с помощью ряда гормонов (адреналин, норадреналин и др.), которые активируют гормоночувствительную триацилглицеринлипазу. Триацилглицеринлипаза расщепляет триацилглицерин на диацилглицерин и жирную кислоту. Затем при действии ди- и моноацилгли- церинлипаз происходит дальнейший липолиз до глицерина и жирных кислот.

Образующийся в результате липолиза глицерин может участвовать в глюконеогенезе или включаться в гликолиз с предварительным образованием глицерол-3-фосфата под действием глицеролкиназы и при участии АТФ:

Затем под действием дегидрогеназы глицерол-3-фосфат превращается в трио- зофосфаты, которые, собственно, и вовлекаются в глюконеогенез или гликолиз.

Жирные кислоты в составе белкового комплекса с альбумином крови поступают в клетки различных тканей и органов, где подвергаются окислению.

Биоокисление жирных кислот

Окисление жирных кислот в организмах - чрезвычайно важный процесс, он может протекать по α-, β- и ω-углеродным атомам жирных кислот. Основной путь окисления жирных кислот как в животных, так и в растительных тканях - это β-окисление.

β-Окисление жирных кислот. β-Окисление жирных кислот было впервые изучено в 1904 г. Ф. Кноопом. В дальнейшем было установлено, что β- окисление осуществляется только в митохондриях. Благодаря работам Ф. Линена с сотрудниками (1954-1958 гг.) были выяснены основные ферментативные процессы окисления жирных кислот. В честь ученых, открывших данный путь окисления жирных кислот, процесс β-окисление получил название цикла Кноопа-Линена.

По современным представлениям, процессу окисления жирных кислот предшествует их активация в цитоплазме с участием ацил-КоА-синтетазы и с использованием энергии АТФ:

В форме ацил-КоА жирные кислоты поступают в митохондрии, в матриксе которых они подвергаются β-окислению, включающему последовательность нижеприведенных ферментативных окислительно-восстановительных реакций.

Первой реакцией на пути расщепления жирных кислот является дегидрирование с образованием транс-2,3-ненасыщенных производных, катализируемое различными ФАД-содержащими ацил-КоА-дегидрогеназами:

Вторая реакция - гидратация двойной связи - катализируется еноил-КоА - гидратазой:

На следующей (третьей) стадии происходит дегидрирование спиртового фрагмента, которое осуществляется соответствующей дегидрогеназой и окисленной формой кофермента НАД:

В результате окисления образуется β-оксокислота, из-за чего весь процесс в целом и получил название β-окисления.

Четвертая, последняя реакция, катализируемая тиолазой, сопровождается окислительно-восстановительным расщеплением связи С α -С β с отщеплением ацетил-КоА и присоединением остатка КоА по месту разрыва межуглеродной связи:

Эта реакция носит название тиолиза и является высоко экзергонической, поэтому равновесие в ней всегда смещено в сторону образования продуктов.

Последовательное повторение этого цикла реакций приводит к полному распаду жирных кислот с четным числом атомов углерода до ацетил-КоА. В результате этого процесса образуются ацетил-КоА, ФАДН 2 и НАД-Н. Далее ацетил-КоА вступает в цикл Кребса, а восстановленные коферменты - в дыхательную цепь.

Особенности окисления жирных кислот с нечетным числом углеродных атомов заключается в том, что наряду с обычными продуктами окисления, образуется одна молекула СН 3 -СН 2 -СО~SКоА (пропионил-КоА), которая в процессе карбоксилирования переводится в сукцинил-КоА, поступающий в цикл Кребса.

Особенности окисления ненасыщенных жирных кислот определяются положением и числом двойных связей в их молекулах. До места двойной связи ненасыщенные жирные кислоты окисляются так же, как и насыщенные. Если двойная связь имеет ту же транс-конфигурацию и расположение, что и еноил-КоА, то далее окисление идет по обычному пути. В противном случае в реакциях участвует дополнительный фермент, который перемещает двойную связь в нужное положение и изменяет конфигурацию молекулы кислоты.

При β-окислении жирных кислот выделяется большое количество энергии. При полном окислении одного моля жирной кислоты, содержащей 2n атомов углерода, образуется n молей ацетил-КоА и (n-1) молей (ФАДН 2 + НАДН). Окисление ФАДН 2 дает 2АТФ, а при окислении НАДН образуется 3АТФ. Полное сгорание одного моля ацетил-КоА приводит к образованию 12 молей АТФ.

С учетом того, что 1 моль АТФ затрачивается на активацию жирной кислоты, баланс АТФ при полном окислении жирной кислоты с четным числом атомов углерода можно выразить следующей формулой:


Например, моль пальмитиновой кислоты, содержащая 16 атомов углерода, при окислении дает 130 молей АТФ. Таким образом, энергетическая ценность жирных кислот намного выше, чем глюкозы. Однако в процессе окисления глюкозы образуется оксалоацетат, который облегчает включение ацетильных остатков жирных кислот в цикл Кребса. В связи с этим, в биохимической литературе бытует выражение, что «жиры сгорают в пламени углеводов».

Для удобства восприятия цикл β-окисления жирных кислот схематично представлен на рисунке.

α-Окисление жирных кислот. Наряду с β-окислением жирные кислоты с достаточно большим числом атомов углерода (С13-С18) могут подвергаться α- окислению. Этот тип окисления особенно характерен для растительных тканей, но может происходить и в некоторых тканях животных. α-Окисление имеет циклический характер, причем цикл состоит из двух реакций.

Первая реакция заключается в окислении жирной кислоты пероксидом водорода в соответствующий альдегид и СО2 с участием специфической пероксидазы:

В результате этой реакции углеводородная цепь укорачивается на один атом углерода.

Суть второй реакции заключается в гидратации и окислении образовавшегося альдегида в соответствующую карбоновую кислоту под действием альдегиддегидрогеназы, содержащей окисленную форму кофермента НАД:

Затем цикл α-окисления повторяется снова. В сравнении с β-окислением α- окисление энергетически менее выгодно.

Затем ω-оксокислота окисляется в ω-дикарбоновую кислоту под действием соответствующей дегидрогеназы:

ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление жирных кислот, т.е. окисление по концевой СН 3 -группе, обозначаемой буквой ω. Сначала под действие монооксигеназы происходят гидроксилирование с образованием ω-оксикислоты:

Полученная таким образом ω-дикарбоновая кислота укорачивается с любого конца с помощью реакций β-окисления.