Инфракрасное излучение представляет собой. Что такое ИК-излучение

Инфракрасное излучение - это электромагнитное излучение, находящееся на границе с красным спектром видимого света. Человеческий глаз не способен видеть этот спектр, однако мы его ощущаем кожей, как тепло. При воздействии инфракрасных лучей предметы нагреваются. Чем короче длина волны инфракрасного излучения, тем сильнее будет тепловой эффект.

Согласно международной организации стандартизации (ISO), инфракрасное излучение делится на три диапазона: ближний, средний и дальний. В медицине, в импульсной инфракрасной светодиодной терапии (LEDT) применяется только ближний инфракрасный диапазон, поскольку он не рассеивается на поверхности кожи и проникает на подкожные структуры.



Спектр ближнего инфракрасного излучения ограничен от 740 до 1400 нм, но с увеличением длины волны, снижается способность лучей проникать в ткани, за счет поглощения фотонов водой. В аппаратах “РИКТА” используются инфракрасные диоды с длиной волны в диапазоне 860-960 нм и средней мощностью 60 мВт (+/- 30).

Излучение инфракрасных лучей не такое глубокое, как лазерное, однако у него более широкий спектр воздействия. Было доказано, что фототерапия ускоряет заживление ран, уменьшает воспаление и снимает болевой синдром, воздействуя на подкожные ткани и способствуя пролиферации и адгезии клеток в тканях .

LEDT интенсивно способствует прогреванию ткани поверхностных структур, улучшает микроциркуляцию, стимулирует регенерацию клеток, способствует уменьшению воспалительного процесса и восстановлению эпителия .

ЭФФЕКТИВНОСТЬ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ В ЛЕЧЕНИИ ЧЕЛОВЕКА

LEDT используется, как дополнение к низкоинтенсивной лазерной терапии аппаратов “РИКТА” и обладает лечебным и профилактическим эффектами.

Воздействие аппарата инфракрасного излучения способствует ускорению метаболических процессов в клетках, активирует регенеративные механизмы и улучшает кровоснабжение . Действие инфракрасного излучения комплексное и оказывает следующие эффекты на организм:

    увеличение диаметра сосудов и улучшение кровообращения;

    активация клеточного иммунитета;

    снятие отечности тканей и воспаления;

    купирование болевых синдромов;

    улучшение метаболизма;

    снятие эмоционального напряжения;

    восстановление водно-солевого баланса;

    нормализация гормонального фона.

Воздействуя на кожу, инфракрасные лучи раздражают рецепторы, передавая сигнал в мозг. Центральная нервная система рефлекторно отвечает, стимулируя общий метаболизм и повышая общий иммунитет.

Гормональный ответ способствует расширению просвета сосудов микроциркуляторного роста, улучшая кровоток. Это приводит к нормализации артериального давления, лучшему транспорту кислорода в органы и ткани .

БЕЗОПАСНОСТЬ

Несмотря на пользу, оказываемую импульсной инфракрасной светодиодной терапией, воздействие инфракрасным излучением должно быть дозированным. Бесконтрольное облучение может привести к ожогам, покраснениям кожи, перегреву тканей.

Количество и длительность процедур, частоту и область инфракрасного излучения, а также другие особенности лечения должен назначать специалист.

ПРИМЕНЕНИЕ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

LEDT-терапия показала высокую эффективность при лечении разных заболеваний: пневмонии, гриппа, ангины, бронхиальной астмы, васкулита, пролежней, варикозного расширения вен, заболеваний сердца, обморожений и ожогов, некоторых форм дерматитов, заболеваний периферической нервной системы и злокачественных новообразований кожи .

Инфракрасное излучение, наряду с электромагнитным и лазерным, оказывает общеукрепляющее действие и помогает при лечении и профилактики многих заболеваний. Аппарат “Рикта” сочетает в себе излучение многокомпонентного типа и позволяет добиться максимального эффекта в короткий срок. Прибор инфракрасного излучения купить можно в .

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн λ от около 0,74 мкм до около 1-2 мм, то есть излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. Инфракрасное излучение относится к оптическому излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область инфракрасного излучения разделяют на ближнюю (λ = 0,74-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). Инфракрасное излучение открыто У. Гершелем (1800) и независимо У. Волластоном (1802).

Спектры инфракрасного излучения могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптические свойства (коэффициенты пропускания, отражения, преломления и т.п.) веществ в инфракрасном излучении, как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Многие вещества, прозрачные для видимого света, непрозрачны для инфракрасного излучения определённых длин волн, и наоборот. Так, слой воды толщиной в несколько сантиметров непрозрачен для инфракрасного излучения с λ > 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из Ge и Si, непрозрачные для видимого излучения, прозрачны для инфракрасного излучения определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении инфракрасного излучения).

Отражательная способность большинства металлов в инфракрасном излучении значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (смотри Металлооптика). Так, отражение поверхностей Al, Au, Ag, Cu инфракрасного излучения с λ = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают селективным (зависящим от длины волны) отражением инфракрасного излучения, положение максимумов которого зависит от их химического состава.

Проходя через земную атмосферу, инфракрасное излучение ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое для инфракрасного излучения значительно меньше, чем для видимого света. Молекулы Н 2 О, О 2 , О 3 и др., присутствующие в атмосфере, селективно (избирательно) поглощают инфракрасное излучение, причём особенно сильно поглощают инфракрасное излучение пары воды. Полосы поглощения Н 2 О наблюдаются во всей ИК-области спектра, а полосы СО 2 - в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для инфракрасного излучения. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению инфракрасного излучения в результате его рассеяния на этих частицах. При малых размерах частиц инфракрасное излучение рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.

Источники инфракрасного излучения. Мощный естественный источник инфракрасного излучения - Солнце, около 50% его излучения лежит в ИК-области. На инфракрасное излучение приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрическая дуга и различные газоразрядные лампы, все типы электрических обогревателей помещений. В научных исследованиях источниками инфракрасного излучения служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (например, длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров - 1,15 и 3,39 мкм, СО 2 -лазеров - 10,6 мкм).

Приёмники инфракрасного излучения основаны на преобразовании энергии излучения в другие виды энергии, доступные для измерения. В тепловых приёмниках поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента, которое и регистрируется. В фотоэлектрических приёмниках поглощение инфракрасного излучения приводит к появлению или изменению силы электрического тока или напряжения. Фотоэлектрические приёмники (в отличие от тепловых) селективны, то есть чувствительны лишь к излучению определённой области спектра. Фоторегистрация инфракрасного излучения осуществляется с помощью специальных фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.

Применение инфракрасного излучения. ИК-излучение широко применяют в научных исследованиях и для решения различных практических задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. В далёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение используют для сушки и нагрева материалов и изделий, в быту - для обогрева помещений. На основе фотокатодов, чувствительных к инфракрасному излучению, созданы электронно-оптические преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены различные ночного видения приборы (бинокли, прицелы и т.п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их инфракрасным излучением от специальных источников. При помощи высокочувствительных приёмников инфракрасного излучения осуществляют теплопеленгацию объектов по их собственному инфракрасному излучению и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, температура которых выше температуры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в научных исследованиях, а также для осуществления наземной и космической связи, для лазерного зондирования атмосферы и т. д. Инфракрасное излучения используется для воспроизведения эталона метра.

Лит.: Шрайбер Г. Инфракрасные лучи в электронике. М., 2003; Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы «смотрящего» типа. М., 2004.

Инфракрасные лучи обладают различным диапазоном, который способствует их проникновению в организм человека в разных слоях. Их длина может колебаться в пределах от 780 до 10000 нм. В лечебных же целях используются волны длиной не более 1400 нм, проникающие на глубину до 3 см.

Понятие о методе

Инфракрасное лечение заключается в воздействии мощного света на пораженные участки тела. Оно может использоваться как в дополнении, так и в качестве самостоятельной терапии. В отличие от , ИК – лучи не содержат в себе ультрафиолет, что сводит к минимуму побочные явления.

Во время процедуры применяется поляризованный свет узкого направления. Длительность одного сеанса зависит от сложности диагноза и ожидаемого результата.

В среднем одна процедура лечения ИК – лучами длится от получаса до 2 ч.

Длинные волны инфракрасного излучения – источник здоровья и красоты. Об этом рассказывает видео ниже:

Его виды

Терапия с использованием инфракрасных лучей может быть двух типов:

  1. Местная;
  2. Общая.

В первом случае лучи направляются на конкретный участок тела, во втором – на весь организм. Длительность сеанса может быть 15-30 минут и происходить до двух раз на день. Курс лечения обычно составляет 7-20 процедур.

Если воздействие лучами приходится на лицо, необходимо защитить глаза специальными накладками или очками.

Плюсы и минусы

Благодаря своим свойствам ИК – лучи активно применяются в современной медицине. Их воздействие на организм заключается в следующих процессах:

  • Стимуляция кровообращения, в т. ч. головного мозга;
  • Улучшение памяти;
  • Нормализация АД;
  • Удаление из организма солей и токсинов;
  • Блокирование воздействия вредоносных грибков и микробов;
  • Нормализация гормональной сферы;
  • Противовоспалительный и обезболивающий эффект;
  • Улучшение иммунитета;
  • Нормализация водно-солевого баланса.

При всех своих преимуществах данный метод лечения обладает и недостатками. Так при использовании лучей широкого спектра наблюдается и в некоторых случаях развивается . Короткие лучи несут опасность для глаз. При длительном их использовании может развиться катаракта, боязнь света и другие нарушения зрения.

Показания для проведения

Главными показаниями для назначения инфракрасного лечения являются:

  • Болезни опорно-двигательного аппарата, носящие дегенеративно-дистрофический характер;
  • Осложнения травм, болезни суставов, а также инфильтраты и контрактуры;
  • Слабо заживляющиеся раны;
  • Воспалительные процессы в подострой и хронической форме;
  • Различные патологии зрения;
  • Болезни ЛОР-органов (в т.ч. , ангины, например, и т.п.)
  • Ожоги (в том числе ) и ;
  • , и другие заболевания кожных покровов (в т.ч ).
  • Проблемы с волосами (косметология).

Противопоказания

Процедура по лечению ИК – лучами противопоказана в следующих случаях:

  • , не имеющие оттока содержимого;
  • Обострение болезней в хронической форме;
  • Наличие ;
  • Туберкулез в открытой форме;
  • Болезни крови;
  • Беременность и период лактации;
  • Индивидуальная непереносимость.

Подготовка к инфракрасному лечению

Какой-либо подготовки перед началом процедуры не требуется. Если инфракрасные лучи используются в области косметологии, то врач может порекомендовать произвести дополнительную чистку лица перед назначенной процедурой. Также на этом этапе происходит выяснение, есть ли у пациента противопоказания к процедуре.

Чтобы лучи лучше проникали в кожный покров и не наносили ожогов, кожа должна смазываться особых гелем. После чего происходит непосредственная подготовка обрабатываемого участка тела. По завершению сеанса остатки вещества удаляются с поверхности кожи, происходит нанесение лекарственного средства против раздражения и отечности.

Как проводится процедура

В специальных учреждениях

Во время терапии инфракрасными лучами не должно ощущаться выраженного тепла. При правильном проведении лечения пациент чувствует легкое и приятное тепло. Для терапии могут использоваться термообертывания с использованием электробандажей, лампы с инфракрасными лучами, ИК-кабины и прочее оборудование.

В любом случае работа с лучами прогревает окружающий воздух до 50-60°С, что дает возможность производить сеанс достаточно длительное время. Так посещение кабины или капсулы разрешено на 20-30 мин, а при местном воздействии на организм длительность процедуры увеличивается до часа.

Такая методика может сочетаться с другим физиотерапевтическим лечением. При этом процедуры назначаются как одновременно, так и последовательно.

Про лечение ИК рассказывает данное видео:

В домашних условиях

Чаще всего для домашнего лечения этими лучами используется специальная инфракрасная лампа. Участок кожного покрова, который поддается облучению, активно снабжается кровью, а также происходит возрастание на нем обменных процессов. Эти изменения в организме и несут оздоровительный эффект.

Все медицинские приборы, которые предполагают воздействие на организм ИК – лучами, имеют свои нормы и технологии работы, а также ограничения. Именно поэтому технология проведения сеанса зависит от конкретного прибора.

Последствия проведения и возможные осложнения

Осложнения при терапии ИК – лучами возникают крайне редко и выражаются в следующих нежелательных эффектах:

  • Временное нарушение зрения;
  • Возбудимость;
  • Тревожность.

При использовании лучей в области дерматологии и косметологии в редких случаях могут наблюдаться:

  • Взволнованность;
  • Быстрая утомляемость глаз;
  • Мигрень;
  • Тошнота.

Инфракрасный прибор для лечения в домашних условиях

Восстановление и уход после терапии

По завершению сеанса на обрабатываемом участке кожи может наблюдаться красное пятно без четких контуров (). Оно проходит самостоятельно, как правило, через 1-1,5 ч после процедуры.

Инфракрасный свет визуально недоступен зрению человека. Между тем длинные инфракрасные волны воспринимаются человеческим организмом как тепло. Некоторыми свойствами видимого света обладает инфракрасный свет. Излучение этой формы поддаётся фокусировке, отражается и поляризуется. Теоретически ИК-свет больше трактуется как инфракрасная радиация (ИР). Космическая ИР занимает спектральный диапазон электромагнитного излучения 700 нм — 1 мм. ИК-волны длиннее волн видимого света и короче радиоволн. Соответственно, частоты ИР выше частот микроволн и ниже частот видимого света. Частота ИР ограничена диапазоном 300 ГГц — 400 ТГц.

Инфракрасные волны удалось обнаружить британскому астроному Уильяму Гершелю . Открытие было зарегистрировано в 1800 году. Используя стеклянные призмы в своих опытах, учёный таким способом исследовал возможности разделения солнечного света на отдельные компоненты.

Когда Уильяму Гершелю пришлось измерять температуру отдельных цветов, обнаружился фактор увеличения температуры при последовательном прохождении следующего ряда:

  • фиолет,
  • синька,
  • зелень,
  • желток,
  • оранж,
  • красный.

Волновой и частотный диапазон ИК-радиации

Исходя из длины волны, учёные условно делят инфракрасное излучение на несколько спектральных частей. При этом нет единого определения границ каждой отдельной части.

Шкала электромагнитного излучения: 1 — радиоволны; 2 — микроволны; 3 — ИК-волны; 4 — видимый свет; 5 — ультрафиолет; 6 — лучи x-ray; 7 — гамма лучи; В — диапазон длин волн; Э — энергетика

Теоретически обозначены три волновых диапазона:

  1. Ближний
  2. Средний
  3. Дальний

Ближний ИК-диапазон отмечен длинами волн, приближенных до конечной части спектра видимого света. Примерный расчётный отрезок волны здесь обозначен длиной: 750 — 1300 нм (0,75 — 1,3 мкм). Частота излучения составляет примерно 215-400 Гц. Короткий ИК-диапазон излучат минимум тепла.

Средний ИК-диапазон (промежуточный), охватывает длины волн 1300-3000 нм (1,3 — 3 мкм). Частоты здесь измеряются диапазоном 20-215 ТГц. Уровень излучаемого тепла относительно невысок.

Дальний ИК-диапазон наиболее близок к диапазону микроволн. Расклад: 3-1000 мкм. Частотный диапазон 0,3-20 ТГц. Эту группу составляют короткие длины волн на максимальном частотном отрезке. Здесь излучается максимум тепла.

Применение инфракрасной радиации

ИК-лучам нашлось применение в различных сферах. Среди наиболее известных устройств — , тепловизоры, оборудование ночного видения и т.п. Коммуникационным и сетевым оборудованием ИК-свет используется в рамках проводных и беспроводных операций.


Пример работы электронного прибора — тепловизора, принцип действия которого основан на использовании инфракрасного излучения. И это лишь отдельно взятый пример из множества других

Пульты дистанционного управления оснащаются системой ИК-связи ближнего действия, где сигнал передаётся через ИК-светодиоды. Пример: привычная бытовая техника – телевизоры, кондиционеры, проигрыватели. Инфракрасным светом передаются данные по волоконно-оптическим кабельным системам.

Кроме того, излучение ИК-диапазона активно используется исследовательской астрономией для изучения космоса. Именно благодаря ИК-радиации удаётся обнаруживать космические объекты, невидимые глазу человека.

Малоизвестные факты, связанные с ИК-светом

Глаза человека действительно не могут видеть инфракрасные лучи. Но «видеть» их способна кожа тела человека, реагирующая на фотоны, а не только на тепловое излучение.

Поверхность кожи фактически выступает «глазным яблоком». Если солнечным днём выйти на улицу, закрыть глаза и протянуть к небу ладони, без особого труда можно обнаружить месторасположение солнца.

Зимой в комнате, где температура воздуха составляет 21-22ºС, будучи тепло одетыми (свитер, брюки). Летом в той же комнате, при той же температуре, люди также ощущают комфорт, но в более лёгкой одежде (шорты, футболка).

Объяснить сей феномен просто: несмотря на одинаковую температуру воздуха, стены и потолок помещения летом излучают в большем количестве волны дальнего ИК-диапазона, несомые солнечным светом (FIR – Far Infrared). Поэтому телом человека при одинаковых температурах, летом воспринимается больше тепла.


ИК-тепло воспроизводится любым живым организмом и неживым предметом. На экране тепловизора этот момент отмечается более чем отчётливо

Пары людей, спящие в одной кровати, непроизвольно являются передатчиками и приемниками FIR-волн по отношению друг к другу. Если человек находится в кровати один, он действует как передатчик FIR-волн, но уже не получает такие же волны в ответ.

Когда люди беседуют друг с другом, они непроизвольно отправляют и получают вибрации FIR-волн один от другого. Дружеские (любовные) объятия также активируют передачу FIR-излучения между людьми.

Как воспринимает ИК-свет природа?

Люди не в состоянии видеть световые лучи ИК-диапазона, но змеи семейства гадюковых или виперовых (например, гремучие) имеют сенсорные «впадины», которые используются для получения изображения в инфракрасном свете.

Это свойство позволяет змеям в полной темноте обнаруживать теплокровных животных. Змеи с двумя сенсорными «впадинами», как предполагается наукой, имеют некоторое восприятие глубины инфракрасного диапазона.


Свойства ИК змеи: 1, 2 — чувствительные зоны сенсорной впадины; 3 — мембранная впадина; 4 — внутренняя полость; 5 — MG волокно; 6 — наружная полость

Рыба успешно использует свет ближней области спектра (NIR – Near Infrared) для захвата добычи и для ориентации в акватории водоёмов. Это чувство NIR помогает рыбе безошибочно ориентироваться в условиях слабого освещения, в темноте либо в мутной воде.

Инфракрасное излучение играет важную роль для формирования погоды и климата Земли, также как солнечный свет. Общая масса солнечного света, поглощаемого Землей, в равном количестве ИК-излучения должна перемещаться от Земли обратно в космос. Иначе неизбежно глобальное потепление или глобальное похолодание.

Очевидна причина, по которой воздух быстро охлаждается сухой ночью. Низкий уровень влажности и отсутствие облаков на небе открывают свободный путь ИК-радиации. Инфракрасные лучи быстрее выходят в космическое пространство и, соответственно, быстрее уносят тепло.

Значительная часть , приходящая к Земле – это именно инфракрасный свет. Любой природный организм или предмет обладает температурой, а это значит — выделяет ИК-энергию. Даже предметы, априори являющиеся холодными (например, кубики льда), излучают ИК-свет.

Технический потенциал инфракрасной зоны

Технический потенциал ИК-лучей безграничен. Примеров масса. Инфракрасное отслеживание (самонаведение) применяется в системах пассивного управления ракетами. Электромагнитное излучение от цели, получаемое в инфракрасной части спектра, используется в этом случае.


Систем отслеживания цели: 1, 4 — камера сгорания; 2, 6 — относительно длинный выхлоп пламени; 5 — холодный поток, обходящий горячую камеру; 3, 7 — назначенная важная ИК сигнатура

Спутники погоды, оборудованные сканирующими радиометрами, производят тепловые изображения, которые затем позволяют аналитической методикой определять высоты и типы облаков, рассчитывать температуру суши и поверхностных вод, определять особенности поверхности океана.

Инфракрасное излучение является наиболее распространенным способом дистанционного управления различными приборами. На базе технологии FIR разрабатываются и выпускаются множество продуктов. Особо здесь отличились японцы. Вот лишь несколько примеров, популярных в Японии и по всему миру:

  • специальные накладки и обогреватели FIR;
  • пластины FIR для сохранения рыбы и овощей свежими долгое время;
  • керамическая бумага и керамика FIR;
  • тканевые FIR перчатки, куртки, автомобильные сиденья;
  • парикмахерский FIR-фен, снижающий повреждение волос;

Инфракрасная рефлектография (арт-консервация) применяется для изучения картин, помогает выявить лежащие в основе слои, не разрушая структуры. Этот приём, помогает обнаружить детали, скрытые под рисунком художника.

Таким способом определяется, является ли текущая картина оригинальным художественным произведением или всего лишь профессионально сделанной копией. Определяются также изменения, связанные с реставрационной работой над произведениями искусства.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.


Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

  • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
  • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
  • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
  • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
  • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение », показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
  • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
  • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет

Инфракрасное излучение - это часть спектра излучения Солнца, которая непосредственно примыкает к красной части видимой области спектра. Человеческий глаз не в состоянии видеть в этой области спектра, но мы можем чувствовать это излучение, как тепло.

Инфракрасное излучение имеет две важные характеристики: длину волны (частоту) излучения и интенсивность излучения. В зависимости от длины волны выделяют три области инфракрасного излучения: ближнюю (0,75−1,5 микрометров), среднюю (1,5 - 5,6 мкм) и дальнюю (5,6−100 мкм). Учитывая физиологические особенности человека, современная медицина делит инфракрасную область спектра излучения на 3 диапазона:

  • длина волны 0,75-1,5 мкм - излучение проникающее в глубь кожи человека (диапазон IR-A);
  • длина волны 1,5-5 мкм - излучение, поглощаемое эпидермисом и соединительно-тканным слоем кожи диапазон IR-B);
  • длина волны более 5 мкм - излучение поглощаемое на поверхности кожи (диапазон IR-C). Причем, наибольшее проникновение наблюдается в диапазоне от 0,75 до 3 мкм и этот диапазон называется "окном терапевтической прозрачности".

На рисунке 1 (первоисточник - Journal of Biomedical Optics 12(4), 044012 July/August 2007) приведены спектры поглощения ИК-излучения для воды и ткани человеческих органов в зависимости от длины волны. Отмечено, что ткань человеческого организма состоит из воды на 98% и этот факт объясняет схожесть характеристик поглощения инфракрасного излучения в области спектра 1,5-10 мкм.

Если учесть тот факт, что сама вода интенсивно поглощает ИК-излучение в диапазоне 1,5-10 мкм с пиками на длинах волн 2,93, 4,7 и 6,2 мкм (Юхневич Г.В. Инфракрасная спектроскопия воды, М, 1973), то наиболее эффективными для процессов обогрева и сушки следует считать ИК-излучатели, излучающие в средней и дальней области инфракрасного спектра с пиком интенсивности излучения в диапазоне длин волн 1,5-6,5 мкм.

Полное количество энергии, излучаемое в единицу времени единицей излучающей поверхности называют излучательной способностью ИК-излучателя E, Вт/м². Энергия излучения зависит от длины волны λ и температуры излучающей поверхности и является интегральной характеристикой, поскольку учитывает энергию излучения волн всех длин. Излучательную способность, отнесенную к интервалу длин волн dλ, называют интенсивностью излучения I, Вт/(м²∙мкм).

Интегрирование выражения (1) позволяет определить излучательную способность (удельную интегральную энергию излучения) исходя из определенного экспериментальным путем спектра интенсивности излучения в диапазоне длин волн от λ1 до λ2:


На рисунке 2 представлены спектры интенсивности излучения ИК-излучателей НОМАКОН™ ИКН-101, полученные при различной номинальной электрической мощности излучателя 1000 Вт, 650 Вт, 400 Вт и 250 Вт.

С увеличением мощности излучателя и, соответственно, температуры излучающей поверхности возрастает интенсивность излучения, а спектр излучения сдвигается в область меньших длин волн (закон смещения Вина). При этом пик интенсивности излучения (85-90 % спектра) приходится на диапазон длин волн 1,5-6 мкм, что соответствует оптимальной для данного случая физике процесса инфракрасного обогрева и сушки.

Интенсивность инфракрасного излучения и, соответственно, удельная энергия излучения уменьшается с увеличением расстояния от источника излучения. На рисунке 3 приведены кривые изменения удельной энергии излучения керамических излучателей НОМАКОН™ ИКН-101 в зависимости от расстояния между излучающей поверхностью и точкой измерения по нормали к излучающей поверхности. Измерения проводились селективным радиометром в диапазоне длин волн 1,5-8 мкм с последующим интегрированием спектров интенсивности излучения. Как видно из приведенного графика удельная энергия излучения E, Вт/м² снижается обратно пропорционально расстоянию L, м до источника излучения.