Рельеф русской равнины. Формирование рельефа равнин

Наложенные формы рельефа Восточно-Европейской равнины связаны с распространением покровных четвертичных отложений и в основном имеют ледниковое происхождение.

К началу плейстоцена Восточно-Европейская равнина имела денудационную поверхность, на которой вырисовывалась в главных чертах гидрографическая сеть. Реки, как наиболее чуткий реагент, расположением своих долин отразили особенности структуры и литологии размываемого субстрата. Наибольшее влияние на образование и расположение речной сети оказывал отраженный рельеф. Главные реки тяготели к синеклизам. В процессе развития речных долин расположение водоразделов определялось структурой субстрата. Отпрепарированные денудацией положительные элементы структуры образуют наиболее возвышенные водораздельные части Восточно-Европейской равнины.

Балтийско-Каспийский водораздел выступает как Валдайская возвышенность. Он протягивается вдоль моноклинального гребня отложений каменноугольной системы, с запада ограничивающей Московскую синеклизу. Балтийско-Черноморский водораздел протягивается по северо-западному склону Белорусской антеклизы и грубо располагается вдоль подножья северного склона моноклинального гребня меловых и, западнее, юрских отложений. На значительной части нижнего течения вдоль этой структуры протекает Неман.

Беломорско-Каспийский водораздел выделяется в рельефе Восточно-Европейской равнины как возвышенность Северные Увалы. Главный водораздел Восточно-Европейской равнины проходит в основном в пределах Московской синеклизы, вдоль ее северного борта. Водораздельная возвышенность асимметрична. В северной части поверхность ее лежит на высоте 230-270 м, в южной - 280-300 м над уровнем моря. Московская синеклиза в целом характеризуется инверсионным рельефом. Главный водораздел Восточно-Европейской равнины эрозионного происхождения.

Черноморско-Каспийский водораздел асимметричен, смещен далеко на восток, проходит по гребню сильно эродированной Приволжской возвышенности вдоль крутого правого берега Волги.

Эрозионный рельеф Восточно-Европейской равнины сложился к концу раннего плейстоцена. Его распространение расширялось вслед за отступанием морей неогенового периода и после куяльницкого времени завершилось образованием современных речных бассейнов и древнего долинно-балочного рельефа. К началу оледенения рельеф Восточно-Европейской платформы был сильно расчленен и имел большую амплитуду колебания высот по сравнению с современным. Береговая линия Черного моря располагалась около 100 м ниже современной. В соответствии с таким положением базиса эрозии реки углубили свои долины.

Уровень моря на протяжении плейстоцена периодически колебался. Максимально он поднимался до 40 м над его современным положением. Территория Восточно-Европейской равнины между береговой линией и фронтом оледенения была ареной гумиднонивального (перигляциального) рельефообразования. Общеизвестно, что границы распространения ледникового покрова в плейстоцене также смещались в значительных пределах. Это отражено в закономерностях размещения гляцигенных ландшафтов, в строении террас речных долин и развитого на них покрова четвертичных отложений. Однако синхронизация главных факторов четвертичного осадконакопления и рельефообразования остается остро дискуссионной. В частности, спорным остается вопрос взаимосвязи трансгрессии моря Черноморско-Каспийского бассейна и фаз оледенения. Принимая Черное и Каспийское моря как замкнутые, в то время внутренние бассейны, уровень которых обусловлен стоком талых ледниковых вод, трансгрессию их можно относить к фазам стояния оледенения и его отступания (Бондарчук, 1961, 1965). Многие придерживаются мнения о повышении уровня моря в межледниковье.

В четвертичном периоде на территории Восточно-Европейской равнины водно-ледниковые отложения накапливались преимущественно в области синеклиз и речных долинах. С ними связано образование наложенных аккумулятивных равнин.

Гляцигенные наложенные формы . Плейстоценовое оледенение Восточно-Европейской равнины развивалось волнами - фазами, длившимися десятки тысяч лет. Первые волны похолодания охватили сначала высокогорные районы. Дальнейшее снижение снеговой линии вызвало сползание глетчеров в предгорья и развитие длительного снежного покрова на равнине. В миндельское время, возможно, ледниковый покров захватил северо-запад платформы, южнее - он соединялся с оледенением предгорий Карпат. Ледники выполняли долины Днестра и Днепра, о чем свидетельствуют мощные скопления флювиогляциальных галечников в долине Днестра. В долине Днепра ледник распространялся ниже Канева. Морена миндельского возраста вскрыта здесь при рытье котлована Каневской ГЭС. В эпоху днепровского (рисского) оледенения на территории Восточно-Европейской равнины ледниковый покров по долине Днепра сползал до Днепропетровска. Ледниковый щит покрывал большую часть платформы, однако конечноморенные образования этого оледенения почти неизвестны. В отступании днепровского оледенения была стадия, когда край ледника располагался в бассейне нижнего течения Припяти - верховья Десны, известная в литературе под названием припятского, или московского, оледенения. Край Припятского ледника по долине Днепра протягивался до Золотоноши, где в карьерах кирпичного завода обнаружена морена, покрытая слоем среднего лесса.

В позднем плейстоцене оледенение занимало северо-западную часть Восточно-Европейской равнины. С его отступанием связано образование конечных морен стадий вюрмского оледенения: полесской, или калининской, валдайской, или осташковской, и прибалтийской.

Границы стадий вюрмского оледенения и расположение гряд конечных морей определялись структурным отраженным рельефом, и прежде всего, положением водоразделов. Основными препятствиями на пути продвижения льда были Черноморско-Балтийский и Главный водоразделы, Валдайская возвышенность, уступ силурийского плато в Прибалтике и др. Наиболее значительны из наложенных моренных гряд: Белорусская, Смоленско-Московская, Балтийская, Бежаницкие горы и др.

На всей территории ледниковой зоны наложенный рельеф Восточно-Европейской равнины характеризуют гляциальные формы. Большие пространства покрывает донная морена, среди холмистых образований которой часто включены ледниковые озера. На северо-западе ее распространены друмлиновый и камовый ландшафты.

Ледниково-экзарационные формы рельефа заметно выражены лишь на поверхности докембрийского фундамента Балтийского и Украинского кристаллических щитов (например, ландшафт «бараньих лбов» западнее Коростеня, выработанный движением льда Днепровского оледенения). Такое же огромное геоморфологическое значение, как и ледниковые формы, имеют водно-ледниковые аккумулятивные образования перигляциальной зоны, слагающие лессовые и песчаные равнины. Лессовые наложенные равнины занимают большие пространства в среднем Приднепровье, Причерноморской низменности, в северном Предкавказье. Значительные пространства лессовые породы покрывают в Белоруссии, верховье Дона, Подмосковье, верховье Волги и других приледниковых районах Восточно-Европейской равнины.

С образованием лессовых равнин связано много вопросов геологии четвертичного периода, по которым пока еще нет общепринятых решений: происхождение, возраст и закономерности распространения лессовых пород, ярусность лесса и стратиграфическое значение погребенных в нем почвенных горизонтов, качественные особенности собственно лесса и лессовых пород. Последнее определение до сих пор еще недостаточно конкретно и чаще всего заменяется в описаниях понятием «лессовидные суглинки», достаточно удобным для характеристики мелкоземных покровных образований.

Здесь лессовые породы рассматриваются как геологические наслоения, переходные от географической оболочки до осадочных напластований земной коры. Поэтому качественные особенности покровных лессовых пород, сохраняя главные черты вещественного состава геологического тела, в полной мере отражают особенности географических условий их образования. Из последних главнейшими факторами считаются рельеф и климат.

Особенности рельефа как фундамента для последующих аккумулятивных наложенных форм имеют двоякое значение. Первое заключается в том, что аккумуляция покровных отложений, в том числе лессовых пород гумидной зоны, локализуется в понижениях структурно-тектонического и денудационного рельефа; второе в том, что возраст рельефа является главным критерием для определения относительного возраста развитых на нем покровных отложений. Принцип стратиграфического подразделения покровных наслоений по геоморфологическому методу основан на том, что более высокие уровни рельефа имеют более древний покров осадков. Это убедительно видно на примере морских и речных террас, а также предгорных ступеней, где в каждом районе высшая терраса сложена более древними толщами.

Особенности климата отражены в источниках материала, питающих провинции в составе, транспорте, сортировке скелетной части лессовых пород, условиях их отложения и стратификации. Считается, что отложение лессовых пород связано с оледенением Восточно-Европейской равнины. Общепринято также, что главным источником минеральных масс для накопления лессовых пород были ледниковые наносы. Покров лессовидных пород всегда залегает в перигляциальной, внешней по отношению края данного оледенения, зоне на плоских понижениях внеледникового рельефа. О транспорте и отложениях лессовых пород Восточно-Европейской равнины и западных стран существуют две главные точки зрения. Согласно первой, образование лесса связано с деятельностью ветра в ледниковой пустыне; согласно другой, лессовые породы представляют собой продукт отложения талых ледниковых вод, в теплую пору года разливавшихся в приледниковых равнинах. Условия отложения лессовых пород были аналогичны условиям поймы современных рек. Эту точку зрения автор последовательно отстаивает с 1946 г. Никаких следов интенсивной эоловой деятельности в плейстоцене на территории Европы не установлено. То, что европейский лесс не эолового образования, подтверждается также распространением лессовых пород, залегающих в синеклизах и на территориях, тяготеющих к речным долинам.

Обычная слоистость лессовых отложений не выражена или скрыта. Наличие слоистости, однако, прослеживается в горизонтальных поверхностях скалывания, срезающих известную столбчатую отдельность, характерную для лессовых пород.

Седиментационная слоистость в лессе преобразована выветриванием, протекавшем вслед за аккумуляцией в холодное сухое время года и морозные, более длительные периоды. Седиментационная слоистость в лессах особенно деформирована почвообразованием и замаскирована относительно обогащенными гумусом полосами, количество которых растет с увеличением мощности слоя лесса независимо от его возраста. Так, в разрезе лессовых пород погребенной балки у с. Вязовка (район Лубен), в бассейне р. Сульт, в 56, 45-метровой толще лессовидных суглинков выделяется 13 таких полос общей мощностью около 22 м. Некоторые части разреза окрашены гумусом на 2-3 м. Эти отложения выделяются как ископаемые почвы. Образование погребенных почвенных горизонтов и закрашенных органикой частей единой толщи лесса механически связывается с межледниковьями. Сторонники такой интерпретации стратификации лесса допускают в плейстоцене 11 и более оледенений Восточно-Европейской равнины, несмотря на то что данных для этого нет.

Для использования погребенных почв для стратиграфических сопоставлений внеледниковых отложений различных фаз оледенения и на разных элементах рельефа необходимо исходить из реально существующей закономерности распространения лесса и его стратификации. В последней обогащенность гумусом лессовой толщи, как геологического тела, переходного от географической оболочки до земной коры, неизбежна. Именно это давало основание Л. С. Бергу и В. А. Обручеву рассматривать лессовый покров как почву. Выделяющиеся на общем фоне лесса ископаемые почвы не являются свидетелями перерывов в накоплении лесса, а служат показателем условий осадконакопления, аналогичных с условиями современной поймы. В лессовых породах на склонах антеклиз, а также на склонах вообще, в южной части Восточно-Европейской равнины, как, впрочем, и в других лессовых районах, покровные отложения более обогащены гумусом, чем на равнинах, количество прослоев их больше, мощность увеличена. Наличие гумуса в покровных отложениях можно рассматривать как характерную черту алювиального, пролювиального и делювиального осадконакопления и объяснять тем, что седиментация лессовой толщи сопровождалась одновременным выветриванием и почвообразованием, зависящем в первую очередь от изменчивости степени увлажнения. В основе происхождения гумусовых полос в лессе в большинстве случаев лежит не прямое почвообразование, а сорбция лессовыми породами гумусового вещества из растворов грунтовых вод. Гумусирование и вообще изменение окраски лессовых пород связано с положением уровня увлажнения как в современной пойме или изменявшимся положением горизонтов грунтовых вод в ходе накопления лесса. Исключением не являются и горизонты погребенных почв, устилающих более повышенные участки, в том числе и террасы лессовых районов, переработанные землероями, что характерно для степной зоны. Последнее обстоятельство можно использовать для корреляции лессовых разрезов аналогичных геоморфологических образований речных и морских террас данного района. На территории Восточно-Европейской равнины выделяется несколько возрастных генераций лесса, образование и распространение которых связано с определенными фазами оледенения. Наложенные лессовые равнины прилегают к границам оледенений и располагаются закономерно: связаны с максимальным оледенением, занимают более южные и обширные территории, более молодые лессовые аккумуляции смещаются на север вслед за отступающим фронтом оледенения и в прилегающих к нему частях имеют покровное залегание. В пределах бассейнов главных рек лесс располагается на террасах, имеет долинное распространение. Таким образом, стратиграфические лессовые горизонты покрывают определенную территорию, но прилегают к более древним аккумуляциям.

Имеющиеся данные позволяют выделить в лессовом покрове Восточно-Европейской равнины разновозрастные толщи лесса:

молодой лесс - вюрм, включает одну-две погребенные почвы, распространен в Белоруссии, Смоленской области, Подмосковье - у Владимира на Клязьме;

средний лесс - поздний рисс - припятское, или московское, оледенение, включает один-два-три горизонта погребенных почв, распространен в верховьях Оки, Дона, Десны, на северных склонах Среднерусской возвышенности и на высокой террасе Днепра;

древний лесс - рисс - максимальное, или днепровское, оледенение, включает пять-шесть и больше горизонтов погребенных почв, покрывает всю юго-западную часть Восточно-Европейской равнины в бассейне Нижнего Дуная, Днестра, Днепра, Донца, Кубани и всего Причерноморья;

бурые, или шоколадные, подлессовые суглинки - миндель, включают один-два горизонта красно-бурых суглинков, распространены в южной части Европейской территории СССР: красно-бурые глины - поздний плиоцен - ранний антропоген, распространены в южной части Восточно-Европейской равнины, но занимают значительно большую территорию, чем бурые подлессовые суглинки: на повышенных частях антеклиз отсутствуют.

Из почв, заключенных в лессах, достоверно миндель-рисской, никулинской может считаться лишь почва на пресноводных подморенных суглинках и древнеэвксинских морских отложениях. Погребенная почва на днепровской морене может соответствовать одинцовскому (днепровско-припятскому, московскому) интерстадиалу.

Кроме лессовых сглаженных пространств, в геоморфологии Восточно-Европейской равнины значительную роль играют также элювиально-делювиальные отложения, мощным плащом покрывающие склоны возвышенностей. Они часто представлены лессовидными породами, сильно обогащены гумусом, образующим множество прослоев погребенных почв. Делювиальные площади смягчают рельеф возвышенностей и уступы террас, создают плавные переходы от водораздельных гребней к лессовым низменным пространствам. Своды антеклиз в большинстве лишены всякого покрова рыхлых образований на обнажающихся там выветрелых коренных породах.

Песчаные равнины . Среди наложенных форм рельефа в ландшафтах Восточно-Европейской равнины значительное место занимают песчаные образования. Мощные толщи песков имеют ледниковое, аллювиальное, озерное и морское происхождение. В последующем переработанные ветром, они создали однообразный бугристый рельеф. Значительные зандровые поля связаны с поясами конечных морен разных фаз оледенения. Большие пространства флювиогляциальные пески занимают на Полесье, особенно в бассейне Припяти и Тетерева.

В долинах рек флювиогляциальные пески переходят в аллювиальные отложения первых надпойменных террас. Песчаные террасы хорошо выражены у большинства рек Восточно-Европейской равнины.

Огромные пространства пески занимают в приморских районах. В Прибалтике дюнные ландшафты хорошо выражены в Калининградской области, на Рижском взморье, о-в Сарема и др. В Причерноморье дюнные пески распространены на пересыпях лиманов, занимают большую площадь в низовьях Днепра и Дуная. Значительные площади бугристые пески покрывают в Прикаспийской низменности. Наиболее крупные арены их сосредоточены в низовьях Терека и Кумы, в низовьях Волги, между Волгой и Уралом. Пески почти лишены растительного покрова и характеризуются разнообразием элементарных форм, обычных для зон аридного климата.

Формирование осадочного и осадочно-вулканогенного покрова на Восточно-Европейской платформе началось в докембрии. Высокая степень планации кристаллического фундамента уже имела место до криворожского времени. В протерозое в южной части платформы образовался осадочно-вулканогенный покров, от которого сохранился останцовый Овручский кряж.

В тектоорогении послекембрийского осадочного комплекса Восточно-Европейской платформы выделяется ряд этапов образования структурного рельефа и его денудационной переработки. Следы этого развития выражены в наличии многочисленных поверхностей стратиграфического несогласия и распространения на платформе осадочных толщ от рифейского до неогенового возраста. Изучение их составляет задачу исторической геоморфологии. Здесь отмечается лишь главное.

В позднем палеозое в процессе герцинского горообразования вырисовывались основные черты структуры и орографии Восточно-Европейской платформы и прилегающих к ней территорий. Выделились Донецкий и Тиманский кряжи, оформились моноклинальные гребни на северо-западе страны, возвышенности представляли Приволжье, Высокое Заволжье, Украинский кристаллический щит, Воронежская антеклиза и др. На востоке страны поднялись Уральские горы, на юго-западе протянулись Европейские герциниды. В раннем мезозое происходило энергичное выравнивание поверхности Восточно-Европейской равнины. В ландшафтах страны преобладали денудационные формы рельефа, реликты их - древние долины Сев. Двины, Сухоны и др.

В конце среднего и в начале позднего мезозоя центральная и южная части Восточно-Европейской платформы прошли длительный этап морского осадкообразования.

Морская обстановка, постепенно сокращаясь и отступая к югу, существовала с юрского по плиоценовое время. Важнейшими этапами морского развития осадочного чехла платформы в послемеловое время было существование эоценового - киевского, миоценового - сарматского и плиоценового - понтического бассейнов. В результате отступания мезокайнозойских бассейнов на Восточно-Европейской платформе возникли аккумулятивные равнины и геоморфологические уровни, представляющие собой гигантские, снижающиеся к Причерноморью ступени.

Вслед за смещением береговой линии значительные области Восточно-Европейской равнины вступали в новый этап континентального развития. В кайнозое на большей части страны формировался эрозионный рельеф.

Первая половина кайнозоя в истории тектоорогении осадочной коры в прилегающей в Восточно-Европейской платформе подвижной зоне завершилась становлением Крымо-Карпатских гор и Кавказа. Вместе с этим окончательно оформились системы речных долин, вырисовывались черты отраженного рельефа.

В плейстоцене структурно-денудационная поверхность Восточно-Европейской равнины стала субстратом для формирования наложенного рельефа, постепенно приобрела современный вид.

Восточно-Европейской платформы расположена Русская или Восточно-Европейская равнина, фундамент которой простирается до северных границ. На востоке платформа доходит до западного склона Уральских гор, а на юге и юго-западе её ограничивают горы Кавказа, Крыма, Карпатские горы альпийского орогенеза. Основными геоструктурами платформы являются синеклизы – области глубокого залегания фундамента, антеклизы – области неглубокого залегания фундамента, авлакогены – глубокие тектонические рвы.

Отдельные части платформы в нижнем палеозое опустились, в результате чего Балтийский и Украинский щиты, Воронежский выступ и Окско-Волжская антеклиза обособились. Балтийская и Московская синеклизы разделили поднятия платформы. Также крупными элементами платформы являются Саратовско-Рязанская синеклиза и Камско-Печорская синеклиза. Восточно-Европейская платформа имеет докембрийский кристаллический фундамент, а на юге северный край Скифской плиты имеет палеозойский складчатый фундамент. На докембрийском фундаменте платформы лежат толщи докембрийских и фанерозойских осадочных пород со слабонарушенным залеганием.

Одной из древнейших и сложных внутренних структур Восточно-Европейской платформы является Московская синеклиза , Среднерусский и Московский авлакогены , которые заполнены толщами рифея. В четвертичный период здесь происходили неравномерные поднятия, что в рельефе обозначилось крупными возвышенностями.

Печорская синеклиза проходит на северо-востоке платформы между Тиманским кряжем и Уралом. Её блоковый фундамент на востоке опускается на глубину $5$-$6$ тыс. м. Синеклизу заполняют мощные толщи палеозойских пород, перекрытые мезокайнозойскими отложениями.

В центре платформы находятся крупные антеклизы – Воронежская и Волго-Уральская . Они разделены Пачелмским авлакогеном. К северу в Московскую синеклизу полого опускается Воронежская антеклиза. Отложения малой мощности, представленные породами ордовика, девона и карбона, покрывают её фундамент, а на крутом южном склоне породы карбона, мела и палеогена. Крупные поднятия и впадины (своды и авлакогены) образуют Волго-Уральскую антеклизу. Осадочный чехол сводов имеет мощность не менее $800$ м.

Прикаспийская краевая синеклиза . Кристаллический фундамент этой обширной области имеет глубокое погружение, доходящее до $20$ км. Синеклиза относится к структурам древнего заложения и со всех сторон ограничена флексурами и разломами. Очертания её угловаты. Ергенинский и Волгоградский флексуры обрамляют её с запада, а на севере – флексуры Общего Сырта. Дальнейшее погружение до $ 500$ м происходило в неоген-четвертичное время, сопровождавшееся накоплением мощной толщи морских и континентальных отложений.

На юге часть Восточно-европейской равнины лежит на Скифской эпигерцинской плите.

Рельеф Восточно-Европейской равнины

Расположенная на Восточно-Европейской платформе Русская равнина образована возвышенностями, высота которых над уровнем моря составляет $200$-$300$ м. Её средняя высота $170$ м, а максимальная – $479$ м расположена в приуральской части на Бугульминско-Белебеевской возвышенности. Если говорить об особенностях орографического рисунка, то в пределах равнины можно выделить– центральную, северную, южную части.

    Центральная часть представлена полосой чередующихся крупных возвышенностей и низменностей – Среднерусской, Приволжской, Бугульминско-Белебеевской возвышенностями и Общим Сыртом. Они разделены Окско-Донской низменностью и Низким Заволжьем. Здесь в южном направлении протекают Волга и Дон.

    В северной части в рельефе представлены низкие равнины с разбросанными мелкими возвышенностями. Сменяя друг друга, в северо-восточном направлении протянулись Смоленско-Московская, Валдайская возвышенности и Северные Увалы. Это своеобразные водоразделы между двумя океанами и внутренним бессточным бассейном. В сторону к Белому и Баренцеву морям от Северных Увалов территория равнины понижается, о чем свидетельствуют текущие на север реки Онега, Северная Двина, Печора.

    Южная часть равнины занята низменностями, но в пределах российской территории можно назвать только Прикаспийскую низменность.

Замечание 1

Рельеф Восточно-Европейской равнины типично платформенный , предопределенный её тектоническими особенностями, т.е. неоднородностью структуры, о чем говорит наличие глубинных разломов, кольцевых структур, авлакогенов, антеклиз, синеклиз и неодинаковое проявление новейших тектонических движений.

Крупные возвышенности и низменности Восточно-Европейской равнины имеют тектоническое происхождение. Они формировались как единые территории в морфоструктурном, орографическом и генетическом отношении. На формирование рельефа равнины существенное влияние оказали ледники – Окское, Днепровское, Валдайское. Ледники участвовали в создании моренных и зандровых равнин. Моренный рельеф, размытый водами днепровского ледника, к нашему времени не сохранился

Полезные ископаемые Восточно-Европейской равнины

Геологическая история древней платформы оказала влияние на образование полезных ископаемых.

На территории равнины открыто крупнейшее месторождение железных руд – Курская магнитная аномалия (КМА). Запасы месторождения оцениваются в $31,9$ млрд. тонн, что составляет $57,3$ % всех рудных запасов страны. Руда залегает в основном на территории Курской и Белгородской областей. В рудах КМА железа содержится $41,5$ %, что выше средних показателей по России. Руду добывают на Михайловском, Лебединском, Стойленском, Губкинском месторождениях. Небольшие рудные запасы отмечаются в Тульской и Орловской областях. Близкое расположение к поверхности земли позволяют вести добычу открытым способом, которая оказывает огромное воздействие на природу черноземной зоны Русской равнины, а именно приводит к уничтожению десятков тысяч гектаров черноземной почвы.

В пределах Белгородской области разведаны запасы бокситов – Висловское месторождение. Содержание глинозема оценивается в $20$-$70$ %.

Химическое сырье на Русской равнине представлено фосфоритами в Московской области, калийными, каменными солями Верхнекамского бассейна и Илецкого месторождения Оренбургской области. Также известны соли озер Эльтон и Баскунчак.

Запасы строительного сырья , представленные мелом, мергелем, цементом, тонкозернистыми песками, распространены в Белгородской, Брянской, Московской, Тульской областях. Высококачественные цементные мергели известны в Саратовской области. Стекольные пески в Ульяновской области, в Оренбургской – месторождение асбеста. Кварцевые пески Брянской и Владимирской областей используются для производства искусственного кварца, стекла, хрустальной посуды. Для работы фарфорофаянсовой промышленности используются каолиновые глины Тверской и Московской областей.

На территории Восточно-Европейской равнины есть месторождения каменных и бурых углей . Добыча их осуществляется в Печорском, Донецком, Подмосковном бассейнах. Бурые угли Подмосковья используются в качестве химического сырья и в качестве технологического топлива для черной металлургии района.

В пределах Волго-Уральского и Тимано-Печорского нефтегазоносных районов добывают нефть и природный газ . Есть и газоконденсатные месторождения в Астраханской и Оренбургской областях.

Горючие сланцы известны в Ленинградской, в Псковской области, в Среднем Поволжье и на севере Прикаспийской низменности.

Значительны запасы торфа , который в топливном балансе некоторых регионов равнины имеет существенное значение. Только в пределах Центрального федерального округа его запасы составляют $5$ млрд. т. Есть залежи торфа в Кировской и Нижегородской областях и в Республике Марий Эл.

В Архангельской области открыты месторождения алмазов .

Замечание 2

По сравнению с другими физико-географическими странами России Восточно-Европейская равнина давно заселена и имеет высокую плотность населения, наибольшую освоенность, а это означает, что она претерпела существенные антропогенные изменения.


В районах, где породы кристаллического фундамента платформ выходят на поверхность, например на Украине - в среднем течении Днепра у г. Днепропетровска и Кривого Рога, видно, что эти породы смяты в складки, разбиты трещинами и имеют такие же структуры, как и в горах. Из этого был сделан вывод, что когда-то, на первых этапах формирования платформ, на месте современных равнин существовали горы. Затем наступили длительные периоды спокойной тектонической жизни, в течение которых горы были почти полностью разрушены внешними силами денудации. Горные хребты и вершины были снижены, выровнены. Образовалась почти равнина, которую американский геолог и географ Уильям Дэвис - один из основателей науки геоморфологии - предложил называть пенепленом («пене»-почти, «плен»-равнина). Первичные древние пенеплены постепенно опускались и покрывались водами палеозойских и мезозойских морей. На дне морей накапливались толщи осадков. После ухода моря и пологого общего поднятия платформы эти осадочные породы образовали платформенный чехол.

Одновременно с общими слабыми тектоническими поднятиями и опусканиями всей платформы отдельные ее участки испытывали местные (локальные) движения вверх или вниз. Этими-то движениями и были образованы пологие поднятия и прогибы в поверхности фундамента и в современном рельефе - те возвышенности и плоские впадины, о которых мы уже говорили.

Местные движения на платформах продолжаются и сейчас. Точные измерения показали, что, например, район Курска поднимается на 3,6 мм в год, а Кривого Рога-на 10 мм в год. Кажущаяся нам незыблемость и неподвижность поверхности нашей планеты иллюзорна. На самом деле движения разного направления и разной силы, вызванные не до конца еще выясненными процессами, идущими в недрах Земли, происходят непрерывно в течение всей истории планеты.

На равнинах. где уничтожена естественная травянистая растительность, под действием сильных ливней или при бурном таянии снегов струи воды, собирающиеся на склонах, размывают их и образуют глубокие быстрорастущие овраги.

На обнажившуюся из-под вод ушедшего моря поверхность воздействуют экзогенные силы - речная эрозия и аккумуляция, ветер, гравитационное осыпание, обваливание и оползание разрушающихся пород, растворение их подземными водами. В результате взаимодействия тектонических движений и экзогенных процессов сформировался холмистый или плоский, волнистый или котловинный рельеф равнин. И чем сильнее тектонические движения, тем сильнее воздействуют на них экзогенные процессы. Однако эти процессы зависят не только от тектонических движений. На разные участки земной поверхности поступает неодинаковое количество солнечного тепла. Одни области получают много осадков в виде дождей и снега, другие страдают от засухи. Различия в климате определяют и различия в работе экзогенных процессов.

Во влажных странах главную работу производит вода. После дождей или таяния снега она частично впитывается в почву, покрытую лесами и лугами, частично стекает по склонам. И почвенная и поверхностная вода собирается в ручейки, которые соединяются в малые реки, а затем в большие водные потоки. Реки текут, размывая свое ложе, подмывая берега, вызывая обрушение их и оползание. Возникает сеть больших и малых речных долин. Долинный рельеф - отличительная черта геоморфологических ландшафтов влажных областей.

Там, где овраги располагаются близко друг к другу, образуется труднопроходимое смешение резких и узких гребней и «небольших ущелий». Такой рельеф называют бедлендом или дурными землями.

В лесостепных и степных областях осадков выпадает меньше, и выпадают они в течение года очень неравномерно. Реки и долины здесь уже не так густо расчленяют поверхность. Но там, где естественная травянистая растительность уничтожена, во время редких, но сильных ливней или при весеннем бурном таянии снегов струи воды, собирающиеся на склонах, разрезают их и образуют глубокие быстрорастущие овраги.

В засушливых областях полупустынь и пустынь дожди выпадают очень редко. Растительность здесь скудна и не покрывает почву защитным ковром. Главной действующей силой становится ветер. Он царит в пустынях повсюду, даже в редких руслах рек, сухих большую часть года.

Ветер выдувает из почвы пыль и песчинки. Черными бурями пыль уносится на многие сотни километров. Выпадая на землю, когда ветер стихает, эта пыль может образовать мощные толщи пылеватых отложений - так называемых лёссов.

Песок, переносимый ветром в воздухе или перекатываемый по оголенной поверхности, скапливается в пустынях, нагромождая двигающиеся барханы, барханные цепи и гряды. Рисунок эолового рельефа песков, особенно хорошо видный на аэрофотоснимках, определяется режимом и силой ветров, встречающимися на их пути преградами - горными хребтами и кряжами.

Климат любого района Земли не оставался одинаковым. Причины изменений климата нашей планеты сложны и не до конца еще выяснены. Ученые связывают эти изменения с космическими явлениями, с изменениями в положении оси Земли и миграциями полюсов, с вертикальными и горизонтальными смещениями материков.

Озеро Лосиное. Кареллия. Такие озера располагаются в понижениях моренно-ледникового рельефа.

Сильные колебания климата Земля испытала в новейшее геологическое время, особенно в течение четвертичного периода (антропогена). В этот период в полярных областях земного шара возникли крупные оледенения. В Евразии ледники постепенно спускались с гор севера Скандинавии, Урала, Средней Сибири. Они соединялись друг с другом, образовывали обширные ледниковые щиты. В Европе во время максимума оледенения (200-300 тыс. лет тому назад) край ледникового щита высотой в несколько сот метров доходил до северных подножий Альп и Карпат, спускался языками по долинам Днепра до Днепропетровска и Дона до Калача.

Лед в ледниковом покрове медленно растекался от центра к краям. На возвышениях подледникового рельефа ледники сдирали и сглаживали скалы, выворачивая крупные валуны и глыбы пород. И сейчас, особенно в районах, близких к центрам прежних оледенений, - в Скандинавии, на Кольском полуострове, в Карелии прекрасно сохранились сглаженные и исцарапанные, а порой отполированные до блеска гранитные скалы, так называемые бараньи лбы. По расположению царапин и штрихов на этих скалах и ледниковых валунах ученые устанавливают направления движения древних, давно исчезнувших ледников.

Пятнистая тундра. Это ровная, сухая, глинистая тундра с глинистыми пятнами величиной с тарелку или колесо, обычно совершенно лишенными растительности. Пятна вкраплены в сухую, покрытую растительностью тундру или же окаймлены бордюром из растений.

В лед вмерзали камни, и он переносил их на сотни и тысячи километров, нагромождая вдоль краев ледниковых покровов в виде гряд и холмистых морен. В трещинах на ледниках, внутри и под ними текли потоки незамерзшей воды, насыщенные песком, галькой и гравием. Некоторые трещины полностью забивались наносами. И, когда ледники начали таять, и отступать, песчано-гравийные массы спроектировались из трещин на освобожденную из подо льда поверхность. Образовались извилистые гряды. Такие песчаные гряды длиной до 30-40 км, а шириной от нескольких метров до 2-3 км часто встречаются в Прибалтике, под Ленинградом, в Карелии, Финляндии. Они называются азами- (по-шведски гряда). Озы, моренные гряды и холмы, а также камы - округлые песчаные бугры и друмлины - холмы характерной удлиненной формы - это типичные свидетели рельефообразующей работы древних покровных оледенений, которые охватывали огромные территории.

Остаточная ледниковая морена, сложенная рыхлыми суглинками со скоплением обломков горных пород.

Ледники несколько раз наступали и отступали на северные районы Европы, Азии, Северной Америки. Во время этих великих четвертичных оледенений температуры воздуха на всей Земле уменьшались, особенно сильно в полярных и умеренных широтах. На громадных пространствах Европы, Сибири и Северной Америки, куда не проникали ледники, почва промерзала на глубину в несколько сот метров. Сформировалась вечная мерзлота грунтов, сохранившаяся и поныне в Западной и Восточной Сибири, на Дальнем Востоке, в Канаде и т. д. Летом поверхность скованной мерзлотой земли оттаивает, почва переполняется водой, образуется множество мелких озер и болот. Зимой вся эта вода вновь замерзает. При замерзании, как вы знаете, вода расширяется. Лед, содержащийся в грунтах, разрывает их трещинами. Сеть этих трещин часто имеет закономерный решетчатый (полигональный) рисунок. Поверхность выпучивается, образуются бугры. Деревья на таких участках наклоняются в разные стороны. При вытаивании почвенных льдов и мерзлоты образуются котловины и впадины - термокарстовый рельеф. Мерзлотное пучение и просадки вытаивания разрушают строения, дороги, аэродромы, и людям, осваивающим полярные мерзлотные районы, приходится отдавать много сил для борьбы с этими вредными природными явлениями.

Рельеф Восточно-Европейской равнины

Практически на всём протяжении преобладает полого-равнинный рельеф. Восточно-Европейская равнина почти полностью совпадает с Восточно-Европейской платформой. Это обстоятельство объясняет её равнинный рельеф, а также отсутствие или незначительность проявлений таких стихийных явлений, как землетрясения, вулканизм. Крупные возвышенности и низменности возникли в результате тектонических движений, в том числе и по разломам. Высота некоторых возвышенностей и плоскогорий достигает 600-1000 метров.

На территории Русской равнины платформенные отложения залегают практически горизонтально, но мощность их местами превышает 20 км. Там, где складчатый фундамент выступает на поверхность, образуются возвышенности и кряжи (например, Донецкий и Тиманский кряжи). В среднем высота Русской равнины составляет около 170 метров над уровнем моря. Наиболее низкие участки на побережье Каспия (его уровень примерно на 26 метров ниже уровня Мирового океана).

Рельеф Западно-Сибирской равнины

Дифференцированные опускания Западно-Сибирской плиты в мезозое и кайнозое обусловили преобладание в ее пределах процессов аккумуляции рыхлых отложений, мощный покров которых нивелирует неровности поверхности герцинского фундамента. Поэтому современная Западно-Сибирская равнина отличается в целом плоской поверхностью. Однако она не может рассматриваться в качестве однообразной низменности, как это еще недавно считалось. В целом территория Западной Сибири имеет вогнутую форму. Самые пониженные ее участки (50-100 м ) располагаются преимущественно в центральной (Кондинская и Среднеобская низменности) и северной (Нижнеобская, Надымская и Пурская низменности) частях страны. Вдоль западной, южной и восточной окраин протягиваются невысокие (до 200-250 м) возвышенности: Северо-Сосьвинская, Туринская, Ишимская, Приобское и Чулымо-Енисейское плато, Кетско-Тымская, Верхнетазовская, Нижнеенисейская. Отчетливо выраженную полосу возвышенностей образуют во внутренней части равнины Сибирские Увалы (средняя высота - 140-150 м), простирающиеся с запада от Оби на восток до Енисея, и параллельная им Васюганская равнина.

Некоторые орографические элементы Западно-Сибирской равнины соответствуют геологическим структурам: пологим антиклинальным поднятиям отвечают, например, возвышенности Верхнетазовская и Люлимвор, а Барабинская и Кондинская низменности приурочены к синеклизам фундамента плиты. Однако в Западной Сибири нередки и несогласные (инверсионные) морфоструктуры. К ним относятся, например, Васюганская равнина, сформировавшаяся на месте пологой синеклизы, и Чулымо-Енисейское плато, располагающееся в зоне прогиба фундамента.

Западно-Сибирскую равнину обычно разделяют на четыре крупные геоморфологические области: 1) морских аккумулятивных равнин на севере; 2) ледниковых и водно-ледниковых равнин; 3) приледниковых, главным образом озерно-аллювиальных, равнин; 4) южных внеледниковых равнин (Воскресенский, 1962).

Различия рельефа этих областей объясняются историей их формирования в четвертичное время, характером и интенсивностью новейших тектонических движений, зональными различиями современных экзогенных процессов. В тундровой зоне особенно широко представлены формы рельефа, формирование которых связано с суровым климатом и повсеместным распространением вечной мерзлоты. Весьма обычны термокарстовые котловины, булгунняхи, пятнистые и полигональные тундры, развиты процессы солифлюкции. Для южных же степных провинций типичны многочисленные замкнутые котловины суффозионного происхождения, занятые солончаками и озерами; сеть речных долин здесь негустая, а эрозионные формы рельефа на междуречьях встречаются редко.

Основные элементы рельефа Западно-Сибирской равнины - широкие плоские междуречья и речные долины. Благодаря тому, что на долю междуречных пространств приходится большая часть площади страны, именно они определяют общий облик рельефа равнины. Во многих местах уклоны их поверхности незначительны, сток выпадающих атмосферных осадков, особенно в лесоболотной зоне, весьма затруднен и междуречья сильно заболочены. Большие пространства занимают болота севернее линии Сибирской железной дороги, на междуречьях Оби и Иртыша, в Васюганье и Барабинской лесостепи. Однако местами рельеф междуречий приобретает характер волнистой или холмистой равнины. Такие участки особенно типичны для некоторых северных провинций равнины, подвергавшихся четвертичным оледенениям, которые оставили здесь нагромождении стадиальных и донных морен. На юге - в Барабе, на Ишимской и Кулундинской равнинах - поверхность нередко осложнена много численными невысокими гривами, протягивающимися с северо-востока на юго-запад.

Другой важный элемент рельефа страны - речные долины. Все они формировались в условиях небольших уклонов поверхности, медленного и спокойного течения рек. Благодаря различиям в интенсивности и характере эрозии облик речных долин Западной Сибири весьма разнообразен. Есть здесь и хорошо разработанные глубокие (до 50-80 м ) долины крупных рек - Оби, Иртыша и Енисея - с крутым правым берегом и системой невысоких террас в левобережье. Местами ширина их составляет несколько десятков километров, а долина Оби в низовьях достигает даже 100-120 км . Долины же большинства малых рек представляют собой нередко лишь глубокие канавы с плохо выраженными склонами; во время весен него половодья вода целиком заполняет их и заливает даже соседние придолинные участки.



Эта физико– географическая страна площадью около 4 млн. кв. км.– крупнейшая в пределах России. В географической литературе утвердилось представление о совпадении границ Русской равнины и Восточно– Европейской платформы. Границы последней проходят на западе по линии: юг Скандинавского полуострова - устье Дуная – Перекопский перешеек – низовья Северского Донца – дельта Волги – Мугоджары; на востоке - по западному подножью Урала. Административными границами территория Русской равнины поделена на зарубежную и российскую части. Нам предстоит изучить часть Восточно– Европейской равнины в границах бывшего СССР.

Гелогическое развитие . В основе указанной части Русской равнины лежат две геоструктуры второго ранга: Русская плита и Украинский щит. Подобно Балтийскому щиту они пережили нуклеарную, протоплатформенную и платформенно– геосинклинальную эпохи развития (см. соответствующий раздел). В фанерозое развитие Русской плиты сильно отличалось от генезиса щитов. Ее фундамент сложными ортогональными и диагональными системами разломов был разбит на множество блоков, испытывавших дифференцированные опускания. Уже в докембрии вдоль разломов заложилось большое количество узких линейно вытянутых рифтообразных структур, названных Н.С Шатским авлакогенами. В рифее на их днищах начали аккумулироваться вулканогенные и осадочные толщи. В фанерозое осадконакопление охватило всю площадь геоструктуры, независимо от рельефа фундамента – шло формирование чехла и превращение геоструктуры в двухэтажную (плитную). Активно продолжались и процессы преобразований фундамента.

Развитие авлакогенов шло двумя путями: консервация или перерождение в синеклизы или экзагональные впадины (см. соответствующий раздел общего обзора). Поверхность фундамента затапливалась мелководными эпиплатформенными морями, на дне которых последовательно шла седиментация осадков. Трансгрессии морей никогда не охватывали всей поверхности Русской плиты одновременно. В раннем палеозое (кембрий, ордовик, силур) они робко проникли на крайний северо– запад плиты, сформировав песчано– глинистые пласты (не цементированные!) Глинта. Девонские моря охватили значительно большие площади северо– запада (главное девонское поле). Морские и лагунные фации каменноугольного периода охватывают подковой Подмосковье с северо– запада и юга. Лагунные осадки пермского периода заполнили северо– восток Русской плиты и структуры Предуральского краевого прогиба (главное пермское поле). Таким образом, трансгрессии палеозоя охватили северную полосу Русской плиты, последовательно пройдя по ней с запада на восток.

В мезозое максимум трансгрессий сместился в среднюю полосу плиты. Триасовые лагунные фации наложились на пермские отложения, особенно сильно выдвинувшись в среднюю полосу в предуральской части структуры. Юрские отожения отразили дальнейшее сокращение лагун в средней полосе. В меловом периоде морские и лагунные отложения распространились на обширные пространства, особенно на западе средней полосы. В кайнозое максимум трансгрессий охватил юг Русской плиты, последовательно смещаясь с запада на восток.


Геотектоническое строение . Нижний структурный этаж Русской плиты и Украинского щита аналогичен фундаменту Балтийского щита (см. соответствующий раздел). В составе плиты выделяются геоструктуры третьего ранга: синеклизы (Московская, Балтийская, Причерноморская), экзагональные впадины (Прикаспийская, Печорская), антеклизы (Волго– Уральская, Воронежская, Белорусская и близкие им склоны соседних щитов – Балтийского и Украинского). Мощность чехла в пределах антеклиз небольшая (минимальная в пределах Воронежской антеклизы – 40 м), в синеклизах она достигает 2 – 3, в экзагональных впадинах – 9 – 25 км. О принципиальных различиях синеклиз и экзагональных впадин см. соответствующий раздел общего обзора. На поверхности Украинского щита имеется маломощный чехол палеогеновых и неогеновых отложений, поэтому породы фундамента вскрываются только в долинах крупных рек. Структуры Тиманского поднятия сходны с щитами, но они развиты в складчатых комплексах рифея и подверглись складкообразованию в байкальскую эпоху. Восточно– Европейская платформа составляет значительную часть Евразиатской литосферной плиты, практически не испытывавшей значительных перемещений по горизонтали.

Рельеф. Орография и гипсометрия . Древний рельеф Русской равнины не сохранился вследствие быстрой его изменчивости. Современный же рельеф сформировался под влиянием новейшей тектоники. Преобладали поднятия очень слабые, слабые, реже умеренные. В Прикаспийской, Печорской, Причерноморской низменностях наблюдались слабые опускания. Такая дифференциация новейших движений при их общей малой интенсивности обусловила всеобщее распространение равнин разных высотных уровней. В северной полосе Русской равнины преобладают низменности: Печорская и Двинско– Мезенская (на общем низменном фоне которой разбросаны небольшие возвышенности до 275 – 300 м высотой). Они разделены возвышенностями Тимана и Канина Камня высотой 200– 300 м. На крайнем западе располагается сложно расчлененная Прибалтийская равнина, на низменном фоне которой выделяются невысокие (максимум 145 – 300 м) возвышенности: Курземская, Видземская, Жямайтская.

В средней полосе чередуются возвышенности и низменности. По Северным Увалам, Валдайской, Смоленско– Московской, Белорусской и более мелким возвышенностям, Клинско– Дмитровской гряде проходит водораздел рек северного и южного направлений. С ними чередуются низменные полесья – Вятско– Камское, Унженско– Ветлужское, Мещерское, Припятско– Днепровское. Южнее чередуются меридионально ориентированные возвышеннности: Высокое Заволжье (Общий Сырт и Бугульминско– Белебеевская); Приволжская и Ергени; Среднерусская и Донецкий кряж; Волынская, Приднепровская, Подольская, Кодры и низменности: Низкое Заволжье, Окско– Донская, Приднепровская. В свое время такое чередование обусловило появление учения о волнообразном характере рельефа.

На юге Русской равнины снова господство переходит к низменным равнинам (Прикаспийской, Кумо– Манычской впадине, Причерноморской и Северо- Крымской). Наибольших высот, близких 500 м, достигают районы по соседству с Карпатами, минимальная высотанаблюдается на берегах Каспия и составляет 26 м ниже уровня моря.Средняя высота Русской равнины оценивается в 170 м.

Морфоструктура. Явно преобладает морфоструктура пластовых равнин на горизонтально и субгоризонтально залегающих пластах чехла Русской плиты. В периферийных участках Восточно– Европейской равниныпреобладает пологое (не более 3– 5 градусов) моноклинальное залегание пластов, нередко наблюдается чередование непрочных и бронирующих пластов. Это приводит к формированию моноклинально– пластовых равнин с широким распространением асимметричных гряд - куэст. Классическими являются куэсты северо– западной части Русской равнины. По южному побережью Финского залива и Ладожского озера на толщах кембрийского, ордовикского и силурийского возраста сформировались куэсты, получившие название Глинт (или Балтийско– Ладожский уступ). В пределах главного девонского поля и в полосе каменноугольных толщ также развиты куэсты.

В центральных районах Русской равнины преобладает горизонтальное залегание пластов, в которых сформировались пластово– денудационные возвышенности (Среднерусская, Приволжская и другие). При чередовании непрочных и бронирующих пластов образуются многоярусно– пластовые равнины со ступенчатым рельефом. В пределах низменных равнин возникли аккумулятивные равнины, крупнейшими из которых являются Прикаспийкая, Причерноморская, Печорская, Окско– Донская. На Приднепровской возвышенности, где под маломощным чехлом лежат кристаллические породы фундамента Украинского щита, образовалась морфоструктура полупогребенной цокольной равнины. В пределах Тиманского и Донецкого кряжей сформировались структурно– денудационные кряжевые возвышенности, сходные с цокольными равнинами.

Влияние событий антропогена на рельеф. Плейстоценовое оледенение . Наряду с Альпами и Северной Америкой Русская равнина явилась своеобразным полигоном исследования плейстоцена. Предложен ряд методов изучения, среди которых особенное значение имеют стратиграфический и палеонтологический. Стратиграфический метод предполагает подробное изучение и сопоставление геологических разрезов плейстоцена и прежде всего морен, флювиогляциальных отложений, а в перигляциальной области – лессов и суглинков. Среди палеонтологических остатков большую роль играют растительные остатки, которые принято делить на два комплекса. Комплекс дриадовой флоры характерен для ледниковий. Для него обычны остатки полярных ивы и березки, куропаточьей травы или дриады, плаунов, диатомовых водорослей и других морозостойких представителей. Для межледниковий типична бразениева флора (кувшинка бразения, тис, граб, ископаемый орешник, липа, падуб, виноград лесной).

Окское оледенение охватило значительные площади, его южная граница располагалась лишь несколько севернее границы максимального оледенения. Ледник переместил особенно много рыхлого, чаще песчаного, материала и выровнял поверхность. Максимальный днепровский ледник в южных районах Русской равнины имел мощность не более 500 - 700 м (в центре –4900 м), так как не смог перекрыть Среднерусской возвышенности. Далекое проникновение его на юг облегчалось предшествующим выравниванием поверхности, проделанным окским ледником, относительно “высокой” температурой льда и, вследствие этого, пластичностью и сильным обводнением льда. Огромная масса ледника “продавила” земную кору примерно на 1 км, а при движении льда создала гляциодислокации. У южной границы напор ледника сильно ослаб, конечные морены маломощны, зато значительны масштабы водноледниковых отложений. Во время московского оледенения ледник под влиянием Валдайской возвышенности делился на два крупных языка, один из которых двигался на юг, другой - на юго– восток. Валдайский ледник развивался в условиях особенно сурового климата, поэтому лед был жестким и малопластичным, продвижение ледника было минимальным, зато экзарация была обострена, моренные отложения обогащены валунами, формы моренного рельефа наиболее четко выражены.

В перигляциальной зоне в плейстоцене широко распространилась многолетняя мерзлота. В эпоху максимального оледенения ее южная граница доходила до низовий Волги, Дона и Днепра. В голоцене она быстро – за 1 – 1.5 тыс. лет деградировала. Сохранились реликтовые формы криогенного рельефа – следы трещинно– полигональных образований, “клиньев” жильного льда, термокарстовых западин и других. Широко распространялись эоловые формы, реликты которых имеются в современном рельефе: на зандровых равнинах полесий – песчаные образования (дюны, гряды), от широты Москвы до побережий южных морей – сглаженный рельеф в лессовых отложениях. В последних в плейстоцене уже формировался долинно– балочный рельеф.

Эволюция Черноморско– Каспийского бассейна . Под влиянием ритмических изменений климата и тектонических движений на юге Русской равнины проявились следующие трансгрессии (см. таблицу 2).

Таблица 2. Трансгрессии Черноморско- Каспийского бассейна в плейстоцене.

Среди экзогенных факторов важнейшим является энергия Солнца, которая определяет климат. Климатические условия обусловливают проявление важнейших экзогенных процессов – выветривания, деятельность льда, ветра, водных потоков, их интенсивность и выражение в рельефе.В разных климатических условиях возникают разные формы рельефа. Изменения климата вызывали появление материковых оледенений, эвстатические понижения уровня моря, преобразовывали характер растительности. В распределении климата наблюдается широтная и вертикальная зональность. Последняя находит отражение в рельефе. В распространении экзогенных форм наблюдается климатическая зональность.

По роли в рельефообразовании выделяются нивальный, полярный, гумидный и аридный климат. Нивальный климат имеют Антарктида, Гренландия, острова Северного Ледовитого океана и вершины гор. Здесь осадки выпадают в твердом виде и происходит образование ледников. Основными факторами образования рельефа являются снег и ледники. Интенсивно развиваются процессы физическоко выветривания и процессы, вызванные существованием многолетней мерзлоты. Полярный климат характерен для севера Евразии и Северной Америки, гор Средней Азии. Отличается сухостью, низкими зимними температурами, малоснежными змами, развитием криолитозоны, преобладанием процессов физического выветривания. Гумидный климат распространен в умеренных широтах северного и южного полушарий, на экваторе и мусонных областях. Здесь выпадает много осадков, развивается плоскостная денудация, химическое выветривание, образуются эрозионные и карстовые формы. Аридный климат развит на материках между 20 и 30 о с. и ю. ш., в Центральной Азии и пустынях Намиб и Атакама. Для него характерно малое количество осадков, высокая испаряемость, развитие температурного выветривания, ветровой деятельности, препорирования скальных выступов. Широтную зональность экзогенного рельефа осложняетреликтовый рельеф – формы земной поверхности, образовавшиеся в иных условиях, в прежние геологические эпохи. Например, ледниковые формы рельефа на Восточно-Европейской равнине.

Часть II. Эндогенные процессы и рельеф

ЛЕКЦИЯ 4. РОЛЬ ТЕКТОНИЧЕСКИХ ДВИЖЕНИЙ ЗЕМНОЙ КОРЫ В ОБРАЗОВАНИИ РЕЛЬЕФА

Выделяется два типа тектонических движений: вертикальные и горизонтальные. Они происходят как самостоятельно, так и во взаимосвязи друг с другом. Тектонические движения проявлявляются в перемещении блоков земной поверхности в вертикальном и горизонтальном направлениях, в образовании складок и разрывных нарушений.

Механизм тектонических движений земной коры обьясняется концепцией тектоники литосферных плит. Согласно этой концепции конвекционные потоки разогретого вещества мантии приводят к образованию крупных положительных форм рельефа. В осевых частях таких сводовых поднятий образуются рифты – отрицательные грабеноподобные формы рельефа, обусловленные разрывными нарушениями.В качестве примера можно назвать Восточно-Африканский, Байкальский рифты, рифтовая зона Срединно-Атлантического хребта. Поступление новых порций мантийного вещества по трещинам на дне рифтов вызывает спрединг – раздвигание литосферных плит в горизонтальном направлении от осевой части рифтов. Литосферными плитами называются крупные жесткие блоки литосферы Земли, отделенные тектоническими разрывами.Горизонтальные перемещения литосферных плит навстречу друг другу приводят к их сталкиванию между собой. В процессе сталкивания происходит субдукция – поддвигание одних плит под друие или обдукция – надвиг плит одна на другую. Все эти процессы сопровождаются образованием глубоководных желобов и островных дуг (Японский желоб и Японские острова); появленикм крупных горных систем типа Анд Гималаев; смятием горных пород в складки, возникновением многочисленных разломов, интрузивных и эффузивных тел. Различные типы тектонических движений и обусловленные ими деформации земной коры находят прямое или инверсионное выражение в рельефе.

Вертикальные движения . Они проявляются в формировании складок, разрывов, наклонов.Элементарными видами складок являются антиклинали и синклинали. Эти структуры могут выражаться в рельефе в виде прямого и инверсионного рельефа. Небольшие и простые по строению антиклинальные и синклинальные складки образуют в рельефе невысокие хребты, возвышенности и понижения. Развивающаяся синклиналь образует аккумулятивные равнины. Более крупные складчатые структуры – антиклинории представлены в рельефе крупными горными хребтами и разделяющими их понижениями (Рис.). Например, антиклинорий Главного и Бокового хребтов Большого Кавказа, Копетдаг и др. Синклинории выражены в рельефе компенсированными впадинами – равнинами, заполненными в верхней части плейстоценовыми и современными отложениями. Еще более крупные поднятия, состояще из нескольких антиклинориев и синклинориев, получили название мегаантиклинории. Они образуют мегаформы рельефа и имеют облик горной страны, состоящей из нескольких хребтов и разделяющих их впадин. К мегаантиклинориям относятся горные сооружения Большого и Малого Кавказа.

Образование складок происходит в геосинклинальных областтях. Складкообразование сопровождается разрывными нарушениями и магматизмом. Эти процессы усложняют проявление складок в рельефе. При воздействии внешних факторов на складчатые структуры возникает разнообразный структурно-денудационный рельеф.

Разрывные нарушения– это тектонические нарушения сплошности горных пород. Они часто сопровождаются перемещением разорванных блоков геологических тел относительно друг друга. Среди разрывов выделяются: трещины, проникающие на относительно небольшую глубину; глубинные разломы – олее или менее широкие зоны сильно раздробленных пород и сверхглубинные разломы, которые своими корнями уходят в мантию. По разломам нередко проявляются сбросы и надвиги. В рельефе эти структуры обычно выражены уступом. По высоте уступа можносудить о величине вертикального смещения блоков. При системе сбросов и надвигов образуется ступенчатый рельеф, который состоит из ступеней – блоков, смещенных в одном направлении.Если блоки смещены в разных напавлениях, то в рельефе они выступают в виде глыбовых гор. По характеру строения выделяются столовые и складчатые глыбовые горы. Столовые глыбовые горы сложены ненарушенными пластами горных пород, например, Столовая Юра в Африке. Складчатые глыбовые горы образуются тогда, когда по разрывам поднимаются складчатые структуры, например, Алтай, Тянь-Шань. Складчато-глыбовые горы состоят из горст-антиклиналей – хребтов и грабен-синклиналей - впадин (Главный и Боковой хребты Большого Кавказа). В условиях растяжения и проседания сводов по сбросам образуются грабен-антиклинали. При воздымании блоков по разрывам в синклинали закладываются горст-синклинали. Глыбовые горы формируются в областях распространения складчатых областей, нарушенных последующими тектоническими движениями по разломам. Примерами глыбовых гор служат горы Забайкалья, Большого бассейна Северной Америки, а горстов – Гарц, Шварцвальд и Вогезы

Вдоль линий новейших разрывов развиваются зоны современной аккумуляции – полосы обломочных пород, зарождаются речные долины. Этому способствуют трещиноватость горных пород вдоль зон нарушений, скопление в них подземных вод. Эрозионные формы, заложившиеся вдоль разломов, принимают их направление в плане. В речных долинах прямолинейные участки чередуются с резкими изгибами под прямым и острыми углами. Зоны разломов могут определять очертания линий морей и океанов. Например, полуостров Сомали, Синайский полуостров, Красное море. Вдоль линий разломов частонаблюдаются выходы магматических пород, горячих и минеральных источников, цепочки вулканов, озовых и конечно-моренных гряд, землетрясения. Разломы играют большую роль также в пределах рифтовых зон материков и океанов. С ними связано формирование Байкальской системы рифтов, Восточно-Африканской системы, сводовой части Срединно-океанических хребтов.

Значительна роль в образовании рельефа земной поверхности вертикальных колебательных движений – постоянных обратимых тектонических движений разных масштабов, площадного распространения, различных скоростей, амплитуд и знака, не создающих складчатых структур. Такие движения называются эпейрогеническими. Они создают материки, управляют трансгрессии и регрессии моря. В пределах кплатформ с их проявлением связано образование синеклиз и антеклиз, а в геосинклинальных областях – поднятий и прогибов, рельфа складчато-глыбовых и столовых гор, сбросов, надвигов, горстов, складок и соответствующих форм рельефа.Вертикальные движения контролируют распределение площадей, занятых сушей и морем, определяют конфигурацию материков и океанов и расположение областей преобладания денудационного и аккумулятивного рельефа.

Горизонтальные тектонические движения проявляются в горизонтальном перемещении плит земной, в формировании складок, а также разрывов с большой горизонтальной составляющей. Согласно концепции глобальной тектоники они обусловливают горизонтальное перемещение материков и образование океанов: Атлантического, Индийского. Смещения блоков земной коры по отношению друг к другу в горизонтальном направлении получили название сдвиги. Сдвиги могут достигать амплитуды более тысячи километров, как например, разлом Мендосино в северо-восточной чати Тихого океана. Сдвиги выявляются по одновременному смещению положительных форм (возышенностей, цепей гор) и отрицательных форм (речных долин) в одном направлении. Очень крупные горизонтальные надвиги, в которых массы земной коры перемещаются на десятки и сотни километров, называются шарьяжами. Гигантскими шарьяжами являются Альпы и Карпаты. Их корни расположены на сотни километров к югу. Горизонтальные движения приводят к образованию горстов и грабенов. Примером гигантского молодого расширяющегося грабена-рифта служит впадина Красного моря. Относительно оси рифта его борта смещаются в разные стороны на несколько миллиметров в год. Еще одной формой горизонтальных тектонических движений служат трансформные разломы, которые пересекают Срединно-океанические хребты. Амплитуда горизонтальнго смещения по ним достигает нескольких сотен километров.

Влияние новейших и современных тектонических движений на рельеф . Новейшие тектонические движения –перемещения, которые проявлялись в неоген – четвертичное время. Их роль огромна в деформации дневной поверхности и создании положительных, отрицательных и форм рельефа разного порядка и моноклиналей. Так, например, южная часть территории Беларуси в конце палеогенового времени была занята морем.Теперь этот бывший морской уровень лежит на 80 – 100 м и выше уровня моря. Областям со слабо выраженными положительными тектоническими движениями в рельефе соответствуют равнины, невысокие плато и плоскогорья: Восточно-Европейская равнина, южная часть Западно-Сибирской равнины, плато Устюрт. Областям со слабо выраженными отрицательными движениями отвечают котловина Балтийского моря, Прикаспийская низменность, Полоцкая низина с мощными толщами неоген-четвертичных отложений. Областям интенсивных положительных тектонических движений соответствуют горы Кавказ, Памир, Тянь-Шань.

Новейшие тектонические движения контролируют расположение областей с преобладанием денудационного и аккумулятивного рельефа. Они влияют на интенсивность проявления экзогенных процессов и на выражение в рельефе геологических структур. Одни неотектонические структуры прямо выражаются в рельефе и образуется прямой рельеф. На месте других структур формируется обращенный рельеф. Формы рельефа, которые образовались в результате эндогенных процессов и в морфологии которых отражаются геологические структуры, академик И. П. Герасимов назвал морфоструктурами . Пассивные тектонические структуры, отпрепарированные денудацией, получили названиелитоморфоструктуры.

В настоящее время земная кора всюду испытывает деформации разного характера. Исходящие тектонические движения испытывает североморское побережье Западной Европы и территория Нидерландов, третяя часть которых опустилась ниже уровня моря и отгорожена дамбами. В тоже время Фенноскандия и север Северной Америки испытывают восходящие движения со скоростью до 10 мм/год. Современное поднятие испытывают также области альпийской складчатости: Альпы, Гималаи, Памир. Амплитуда поднятия этих гор за неоген – четвертичное время сотавила несколько километров.

Геоморфологическими признаками неотектонических движений служат: наличие морских и речных террас, не связанных с изменением климата; деформации продольного профиля речных долин и террас; аномально залегающие коралловые рифы; затопленные морские береговые, ледниковые и карстовые формы; антецедентные речные долины, возникшие в результате пропиливания рекой тектонического повышения; морфологический облик эрозионных форм и др.

В зависимости от скоростей тектонических и денудационных процессов рельеф может развиваться двумя путями:по восходящему типу и нисходящему типу. По первому способу рельеф формируется, если тектоническое поднятие территории превышает интенсивность денудации. В случае восходящего развития рельефа увеличиваются его абсолютные и относительные высоты, усиливается глубинная эрозия, речные долины приобретают форму теснин, ущелий и каньонов, активизируются обвально-осыпные процессы. В речных долинах поймы сужаются или полностью исчезают, формируются цокольные террасы и обнажения на обрывистых берегах, а в реслах рек – пороги и уступы. В горах геологические структуры приобретают четкое отражение в рельефе, возникает альпийский рельеф и накапливаются толщи флишевого обломочного материала в предгорьях. Нисходящий тип развития рельефа проявляется, если скорость тектонического воздымания территории меньше величины денудации. В этом случае уменьшаются абсолютные и относительные отметки рельефа уменьшаются и выполаживаются склоны. Речные долины расширяются, в них накапливается аллювий. В горах прекращается рельефообразующая роль снега и льда, затушевывается структурность рельефа, вершины и гребни хребтов принимают округлые очертания, уменьшается крупность флиша. Эти признаки важны для палеогеографических, палеотектонических реконструкций, определения характера тектонических движений и местоположения областей сноса, установления возраста проявления тектонических движений и формирования денудационного рельефа.

Современные тектонические движения проявляются в историческое и настоящее время. О их существовании свидетельствуют историко-археологические материалы, данные повторных нивелировок. Часто они унаследуют характер развития неотектонических движений. Современные движения важно учитывать в инженерно-геологических изысканиях при строительстве каналов, нефте- и газопроводов, железных дорог, АЭС и др.

ЛЕКЦИЯ 5. МАГМАТИЗМ И ЗЕМЛЕТРЯСЕНИЯ КАК ФАКТОРЫ РЕЛЬЕФООБРАЗОВАНИЯ