Биологическое действие радиоактивного излучения. Дозы и воздействие ионизирующего излучения на организм

наши тела вместе с воздухом.

естественной радиации.

облучения.

проводилось.

По материалам staynatural.ru

Радиация вокруг нас. Она естественна для окружающей среды нашей

планеты - радиация существовала на Земле с самого её зарождения.

Следовательно, жизнь развивалась в условиях постоянной ионизирующей

радиации на планете. Излучение приходит из космоса, от земли, а также

вырабатывается внутри наших тел. Радиация присутствует в воздухе,

которым мы дышим, в еде и воде, а также в строительных материалах,

которые мы используем для наших домов. Некоторые продукты содержат

больше радиации, чем другие (например, бананы и бразильские орехи). В

домах из камня и кирпича уровень радиации больше, чем в строениях из

дерева и тростника. Гранит обладает наиболее высоким уровнем радиации

среди строительных материалов.

Уровень естественной радиации на планете варьируется от региона к

региону. Он зависит от типа местности (горные регионы получают больше

радиации из космоса), а также от типа почвы (в местах зарождения урана

уровень радиации намного больше). Большая часть излучения для людей

происходит от радона - газа, образуемого в коре Земли, который попадает в

наши тела вместе с воздухом.

Среднестатистический житель планеты получает половину облучения из

природных источников. За вторую половину обычно ответственны медицинские

обследования (рентген и др.). Из естественных источников мы обычно

получаем около 310 мили Р. Обычно, две трети этой радиации излучают газы

радон и торон. Оставшаяся треть приходит из космоса, от земли и от

наших собственных тел. При этом, до настоящего момента ученые не

обнаружили никакого потенциального негативного влияния естественной

радиации на человека и его здоровье.

Человек получает также небольшую дозу искусственно созданного

излучения (от рентгенов, техники, антенн и т.д.), которая обычно не

превышает 310милиР. Компьютерная томография, например, дарит нам дозу

около 150 милиР. Процедуры вроде рентгена и флюорографии дают еще

где-то 150 милиР. Вдобавок, определенным уровнем излучения обладают

некоторые продукты: табак, удобрения, сварочные аппараты, указатели

«Выход», светящиеся в темноте предметы, дымовые детекторы. Именно

поэтому довольно сложно определить точный уровень облучения в год для

отдельного человека: это зависит от личных привычек, работы, места

жительства и т.д. Хотя существуют различия между естественной и

искусственно созданной радиацией, оба типа одинаково влияют на человека.

Биологические влияние радиации на человека

Мы определяет биологическое влияние радиации её воздействием на живую

клетку. В случае несильного облучения, биологическое влияние столь

мало, что часто его просто невозможно определить. У человеческого тела

есть определенные защитные механизмы, как против радиации, так и против

химических канцерогенов. Следовательно, биологическое влияние радиации

на живую клетку можно свести к трем вариантам: (1) поврежденная клетка

восстанавливается сама, останавливая негативные последствия. (2) клетка

умирает, как умирают миллионы клеток каждый день, и её замещает новая в

ходе естественных биологических процессов. (3) клетка восстанавливается

неправильно, что приводит к биофизической вариации.

Связь между радиацией и развитием рака наблюдалась, в основном, при

высоком уровне облучения (например, при разрыве атомной бомбы в Японии,

или при прохождении определенной терапии, предусматривающей сильное

облучение). Рак, связанный с высоким облучением (больше 50,000 милиР),

включает лейкемию, рак груди, мочевого пузыря, толстой кишки, печени,

легких, пищевода, яичек и желудка. Научная литература также предполагает

связь между ионизирующей радиацией и раком предстательной железы,

полости носа, глотки и гортани, а также поджелудочной железы. Период

между облучением и непосредственным развитием рака называется латентным и

может продолжаться несколько лет. Рак, возникающий от облучения, нельзя

отличить от заболевания, возникшего по другим причинам. Именно поэтому,

Национальный институт раковых заболеваний США указывает на то, что и

другие привычки и факторы (курение, потребление алкогольных напитков и

диета) существенно влияю на развитие тех же самых заболеваний.

Хотя сильное облучение связано с раком, на данный момент еще нет

доказательств того, что низкие дозы радиации (менее 10,000 милиР)

способны вызвать развитие раковых заболеваний. Люди, проживающие в

регионах с высоким уровнем естественной радиации, не более подвержены

этим заболеваниям, чем жители регионов с более низким уровнем

естественной радиации.

Тем не менее, органы по защите от радиации продолжают действовать на

основе предположения, что любое количество радиации способно привести к

раковым заболеваниям, при этом, чем выше доза облучения, тем вероятнее

развитие рака. Данная гипотеза сейчас воспринимается с сомнением и

считается несколько преувеличенной.

Сильное облучение имеет тенденцию убивать клетки, в то время как

низкое - повреждать их и изменять генетический год (ДНК) облученной

клетки. Сильное облучение способно убить так много клеток, что это

приводит к немедленному поражению тканей и органов. В этом случае, тело

реагирует на аварийную ситуацию - эта реакция называется острым

синдромом облучения. Чем выше доза радиации, тем быстрее проявляется

воздействие, и тем вероятнее летальный исход. Этот синдром наблюдался у

многих выживших после разрыва ядерной бомбы в 1945, а также у работников

атомной станции Чернобыль в 1986 году. Около 134 работников станции и

пожарных, которые старались потушить пламя, подверглись мощнейшему

излучению (80,000 -1,600,000 милиР). 28 из них умерли в течении 3-х

месяцев после аварии. Двое умерли в течении 2-х дней от ожогов и

облучения.

Радиация по-разному влияет на людей. Именно поэтому, смертельную дозу

облучения установить весьма трудно. Тем не менее, считается, что

половина населения Земли умерла бы в течении 30 дней после облучения в

350,000 - 500,000 милиР, продолжающегося от нескольких минут до

нескольких часов. Летальный исход и его срок в данном случае зависит от

состояния здоровья человека до облучения и качества медицинского

обслуживания, полученного после. Тем не менее, летальный исход возможен

только при облучении всего тела. При облучении отдельных его частей,

результаты будут менее драматичными - например, ожоги кожи.

Низкие дозы радиации (менее 10,000 милиР), продолжающиеся на

протяжении длительного периода времени не вызывают немедленного

поражения отдельных органов. Воздействие несильного, но длительного

облучения проявляется на клеточном уровне. Поэтому изменения в теле

человека могут проходить скрыто на протяжении десятков лет (от 5 до 20

Изменения на генетическом уровне и развитие рака - это основные

риски, связанные с радиоактивным облучением. Вероятность развития рака

после облучения в 5 раз превышает вероятность генетической мутации. К

генетическим эффектам относится изменение репродуктивных клеток, которое

передается к детям. Подобная мутация может проявиться у первого

поколения потомков, или через несколько поколений, в зависимости от

того, являются ли мутировавшие гены доминантными или рецессивными.

Хотя передача мутировавших ген была доказана в лабораторных условиях

на животных, у потомков людей, переживших разрыв ядерной бомбы в

Хиросиме и Нагасаки, ничего подобного не наблюдалось.

Американские исследования не зафиксировали какой-либо генетической

мутации у людей, живущих рядом с атомными электростанциями. Тем не

менее, необходимо отметить, что исследований о более высокой

предрасположенности к развитию рака у жителей этих регионов пока еще не

проводилось.

По материалам staynatural.ru

« Биологическое действие радиации на человека»

Прошло более двадцати столетий, и перед человечеством вновь встала подобная дилемма: атом и радиация, которую он испускает, могут стать для нас источником благоденствия или гибели, угрозой или надеждой, лучшей или худшей вещью.

Цели работы:

1) Выявить воздействия радиации на биологическую среду.

2) Выявить воздействия радиации на человека.

3) Определить меры защиты от радиационного фона.

Задачи:

1) Изучить литературные источники.

2) С помощью полученной информации определить плюсы и минусы радиации.

3) Посетить КГТУ для изучения прибора, определяющего радиационный фон.

4) Определить, как радиационный фон влияет на окружающую среду и человека.

5) Выяснить меры защиты от радиационного облучения.

В нашем мире существует множество мест и предметов, от которых мы получаем облучение. Например, от телефона. Наш мобильный излучает электромагнитные волны, которые подвергают наш организм облучению. Так же мы облучаемся при воздействии с не заземленным компьютером. Когда мы делаем флюрографию, мы тоже подвергаемся к малому излучению. Есть еще множество вещей и факторов, благодаря которым мы подвергаемся излучению.

Источники радиации:

Естественные: Космические, солнечные лучи; газ радон, радиоактивные изотопы в горных породах (уран 238,торий 232,калий 40, рубидий 87); внутреннее облучение человека за счёт радионуклидов (с водой и пищей). Созданные человеком: Медицинские процедуры и методы лечения, атомная энергетика , ядерные взрывы, мусорные свалки, строительные материалы, сжигаемое топливо, бытовая техника .

Использование радиации:

Радиация используется в медицине в диагностических целях и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Исследования в области - радиационной генетики и радиационной селекции дали около сотни новых разновидностей высокоурожайных культурных растений, устойчивых к различным заболеваниям.

Последствия воздействия радиации :

Лучевая болезнь, бесплодие , генетические мутации, поражения органов зрения, поражения нервной системы, ускоренное старение организма, нарушение психического и умственного развития, раковые заболевания.

Меры безопасности:

·не выходим из помещений, 2-3 раза в день делаем влажную (именно влажную!) уборку;

·как можно чаще принимаем душ (особенно после выхода на улицу), стираем вещи. Регулярное промывание физраствором слизистых носа, глаз и глотки не столь важно, поскольку при дыхании поступает значительно большее количество радионуклидов;

·чтобы оградить организм от радиоактивного йода-131, достаточно смазать небольшой участок кожи медицинским йодом. По мнению врачей, эта нехитрый способ защиты действует месяц;

·если Вам приходится выходить на улицу, лучше надевать светлую одежду, желательно хлопчатобумажную и влажную. На голову рекомендуют надевать капюшон и бейсболку одновременно;

·в первые несколько дней нужно опасаться радиоактивных осадков, то есть «затаиться и отсидеться».

Наши исследования в калининградском центре атома.

Для нашего опыта мы взвесили людей разной весовой категории. И наш опыт показал, что чем больше вес человека, тем выше его нормальный радиационный фон.

Радиационный фон

Дози́метр - прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени. Само измерение

называется дозиметрией. В нашем случае дозиметр представляет собой напольные весы с компьютером. В результате проведенных исследований мы выявили плюсы и минусы радиации:

Плюсы:

использование в медицине (рентгенодиагностика, лучевая терапия и т. п.);

радиационная генетика и селекция;

радиоактивный громоотвод;

стерилизация и сохранение пищевых продуктов;

восстановление фотографий;

использование ионизирующих излучений в промышленности.

Минусы:

облучение; радиоактивный мусор; опасность «мирной» радиации;

генетические последствия облучения.

Вывод: В результате проведенных исследований мы выяснили, что чем больше вес человека, тем выше его нормальный радиационный фон и что он не зависит от возраста человека.

Происходит испускание различных видов излучений, частиц, которые отрицательно влияют на здоровье человека. В первую очередь, это излучение альфа, бета и гамма .

α-лучи – это поток положительно заряженных ядер атомов гелия, β-лучи – это поток отрицательно заряженных электронов, γ-лучи – это высокочастотное электромагнитное излучение. Главная опасность перечисленных видов излучений – их ионизационная способность.

Ионизирующее действие радиации на живой организм

Результатом ионизации атомов и молекул является нарушение нормального функционирования живых клеток организма, что и лежит в основе болезней, называемых лучевыми. Основная величина, характеризующая величину ионизирующего действия излучения на живой организм – это поглощенная доза излучения D:

где E – энергия излучения,
m – масса тела.

То есть доза облучения зависит от того, какой энергией обладает ионизирующее излучение, а также от массы тела. Поглощенная доза излучения выражается в греях (1 Гр). 1 Гр = 100 Р (рентгенам). 1 Р – величина, которая при t = 0˚C и давлении 760 мм рт.ст. в единицу объема сухого воздуха создает количество ионизирующих излучений 3*10-10 Кл.

Если излучение продолжается достаточно долго, то доза облучения накапливается. Имеет большое значение время облучения или экспозиции, которое показывает, сколько времени человек находился под воздействием ионизирующих излучений. Для характеристики времени облучения следует учитывать период полураспада T – промежуток времени, в течение которого исходное число радиоактивных ядер уменьшается вдвое. Для различных элементов это время разное.

Биологическое действие радиации

Ущерб от радиоактивного облучения зависит от силы излучения и от массы тела, но еще имеет значение и какие органы подверглись облучению. На разные части организма радиация будет оказывать различное действие. В связи с этим вводится еще одна величина, характеризующая биологическое действие радиации. Это эквивалентная доза H:

где D – поглощенная доза,
K – коэффициент качества.

Единицей измерения эквивалентной дозы является зиверт (1 Зв). Коэффициент качества K показывает, во сколько раз радиационная опасность от воздействия на органы данного вида облучения больше, чем от воздействия γ-излучения. Для каждого органа K имеет свое значение.

Защита от радиоактивного воздействия

Как следует защищаться от радиоактивного воздействия? В первую очередь необходимо защищать органы дыхания, чтобы с воздухом продукты радиоактивного распада не попадали внутрь человека. Именно так они наносят наибольший вред. Не менее важной является защита кожи.

Дело в том, что α и β-частицы в первую очередь поражают именно кожу. Для защиты от таких излучений нужен специальный костюм. А от γ-лучей до конца защититься костюмом не получится. Так как γ-лучи – это высокочастотное излучение, и специальными костюмами его можно только ослабить. Поэтому все противорадиационные бункеры и спецсооружения строятся именно для защиты от гамма-излучения. Лучшая защита от всех видов ионизирующих излучений – это бетон и свинец.

РАДИОЧУВСТВИТЕЛЬНОСТЬ. ЗАКОН БЕРГОНЬЕ–ТРИБОНДО.

Радиочувствительность - чувствительность биологических объектов к повреждающему воздействию ионизирующего излучения. Количественная оценка радиочувствительности производится путем измерения поглощенных доз ионизирующего излучения, вызывающих определенный эффект. Во многих исследованиях она основывается на измерении дозы ионизирующего излучения, вызывающей гибель 50% облученных объектов (так называемая 50% летальная доза, или ЛД 50).

Многие реакции на облучение специфичны для определенных тканей и систем. Например, такая универсальная реакция клеток на облучение, как задержка деления, легко выявляется в активно пролиферирующих тканях и не может быть обнаружена в тканях, где клеточное деление выражено слабо или отсутствует. Поэтому для оценки радиочувствительности обычно используют такие четко регистрируемые реакции, как выживаемость (или гибель) клеток либо организмов.

Изучение механизмов поврежденного действия ионизирующего излучения и механизмов восстановления организмов от лучевых повреждений имеет большое значение для разработки методов противолучевой защиты и повышения эффективности лучевой терапии опухолей.

Диапазон видовых различий радиочувствительности организмов весьма широк и измеряется несколькими порядками. Не меньше различий радиочувствительности отмечается у разных клеток и тканей. Наряду с радиочувствительными (система крови, кишечник и половые железы) существуют так называемые радиоустойчивые или радиорезистентные системы и ткани (костная, мышечная и нервная).

Радиочувствительность варьирует в пределах одного вида в зависимости от возраста - возрастная радиочувствительность (так, наиболее радиочувствительными являются молодые и старые животные, наиболее радиорезистентными - половозрелые и новорожденные), от пола - половая радиочувствительность (как правило, самцы более радиочувствительны) и индивидуальная радиочувствительность у разных особей одной или той же популяции.

На популяционном уровне радиочувствительность зависит от следующих факторов:

    особенности генотипа (в человеческой популяции 10 - 12% людей отличаются повышенной радиочувствительностью). Связано это с наследственно сниженной способностью к ликвидации разрывов ДНК, а также со сниженной точностью процесса репарации. Повышенная радиочувствительность сопровождает такие наследственные заболевания как атаксия-телеангиэктазия, пигментная ксеродерма.);

    физиологическое (например, сон, бодрость, усталость, беременность) или патофизиологическое состояние организма (хронические заболевания, ожоги);

    пол (мужчины обладают большей радиочувствительностью);

    возраст (наименее чувствительны люди зрелого возраста).

Степень радиочувствительности варьирует не только в пределах вида. В пределах одного ор­ганизма клетки и ткани также различаются своей радиочувст­вительностью. Поэтому для правильной оценки последствий облучения орга­низма человека необходимо оценить радиочувствительность на различных уровнях.

На клеточном уровне радиочувствительность зависит от ряда факторов: организации генома, состояния системы репарации ДНК, содержания в клетке антиоксидантов, интенсивности окислительно-восстановительных процессов, активность ферментов, утилизирующих продукты радиолиза воды (например, каталаза, разрушающая перекись водорода, или супероксиддисмутаза, инактивирующая супероксидный радикал).

На тканевом уровне выполняется правило Бергонье Трибондо: радио­чувствительность ткани прямо пропорциональна пролиферативной активно­сти и обратно пропорциональна степени дифференцировки составляющих ее клеток. Следовательно, наиболее радиочувствительными в организме будут интенсивно делящиеся, быстро растущие и мало специализированные ткани, например, кроветворные клетки костного мозга, эпителий тонкого кишечника и кожи. Наименее радиочувствительными будут специализированные слабо обновляющиеся ткани, например, мышечная, костная, нервная. Исключением являются лимфо­циты, отличающиеся высокой радиочув­ствительностью. В то же время ткани, резистентные к непосредственному действию ионизирующих излучений, оказываются весьма уязвимыми в отношении отдаленных последствий.

На уровне органов радиочувствительность зависит не только от радио­чувствительности тканей, составляющих данный орган, но и от его функций. Большинство тканей взрослого человека относительно мало чувствительны к действию радиации.

Биологическое действие ионизирующих излучений. Факторы, определяющие поражение организма.

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

Для биологического действия ионизирующих излучений характерен ряд общих закономерностей:

1) Глубокие нарушения жизнедеятельности вызываются ничтожно малыми количествами поглощаемой энергии.

2) Биологическое действие ионизирующих излучений не ограничивается подвергнутым облучению организмом, но может распространяться и на последующие поколения, что объясняется действием на наследственный аппарат организма.

3) Для биологического действия ионизирующих излучений характерен скрытый (латентный) период, т. е. развитие лучевого поражения наблюдается не сразу. Продолжительность латентного периода может варьировать от нескольких минут до десятков лет в зависимости от дозы облучения, радиочувствительности организма. Так, при облучении в очень больших дозах (десятки тыс. рад ) можно вызвать «смерть под лучом», длительное же облучение в малых дозах ведёт к изменению состояния нервной и других систем, к возникновению опухолей спустя годы после облучения.

Большое значение имеют также возраст, физиологическое состояние, интенсивность обменных процессов организма, а также условия облучения. При этом, помимо дозы облучения организма, играют роль: мощность, ритм и характер облучения (однократное, многократное, прерывистое, хроническое, внешнее, общее или частичное, внутреннее), его физические особенности, определяющие глубину проникновения энергии в организм (рентгеновское, гамма-излучение, альфа- и бета-частицы), плотность ионизации (под влиянием альфа-частиц она больше, чем при действии других видов излучения). Все эти особенности воздействующего лучевого агента определяют относительную биологическую эффективность излучения. Если источником излучения служат попавшие в организм радиоактивные изотопы, то огромное значение для биологического действия ионизирующих излучений испускаемого этими изотопами, имеет их химическая характеристика, определяющая участие изотопа в обмене веществ, концентрацию в том или ином органе, а следовательно, и характер облучения организма.

Факторы, определяющие поражение организма :

1. Тип радиации. Все виды ионизирующей радиации могут оказать влияние на здоровье. Главное различие заключается в количестве энергии, определяющей проникающую способность альфа и бета частиц, гамма и рентгеновского излучения.

2. Размер полученной дозы. Чем выше доза полученной радиации, тем выше вероятность возникновения медико-биологических последствий.

3. Продолжительность воздействия радиации. Если доза получена в течение дней или недели, эффекты часто не такие серьезные, если подобная доза была получена в течение минут.

4 . Часть тела, подвергнутая действию. Конечности, такие как руки или ноги получают большее количество радиации с менее выраженными повреждением, чем кровь, формирующая органы, размещенные в пояснице.

5. Возраст человека. С возрастом человека замедляется деление клеток, и тело менее чувствительно к эффектам ионизирующей радиации. Как только деление клетки замедлилось, эффекты радиации несколько менее разрушительны чем тогда, когда клетки быстро делились.

6. Биологические различия. Одни люди более чувствительны к эффектам радиации чем другие.

Особенности поражения организма в целом определяются двумя факторами: 1) радиочувствительностью тканей, органов и систем, непосредственно подвергающихся облучению; 2) поглощённой дозой излучения и её распределением во времени. Каждый в отдельности и в сочетании друг с другом эти факторы определяют преимущественный тип лучевых реакций (местные или общие), специфику и время проявления (непосредственно после облучения, вскоре после облучения или в отдаленные сроки) и их значимость для организма .

Реферат

Тема:


План:

Введение

1 Прямое и косвенное действие ионизирующего излучения

2 Воздействие ионизирующего излучения на отдельные органы и организм в целом

3 Мутации

4 Действие больших доз ионизирующих излучений на биологические объекты

5. Два вида облучения организма: внешнее и внутреннее

Заключение

Литература

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИАЦИИ

Фактор радиации присутствовал на нашей планете с момента ее образования, и как показали дальнейшие исследования, ионизирующие излучения наряду с другими явлениями физической, химической и биологической природы сопровождали развитие жизни на Земле. Однако, физическое действие радиации начало изучаться только в конце XIX столетия, а ее биологические эффекты на живые организмы - в середине XX. Ионизационные излучения относятся к тем физическим феноменам, которые не ощущаются нашими органами чувств, сотни специалистов, работая с радиацией, получили радиационные ожоги от больших доз облучения и умерли от злокачественных опухолей, вызванных переоблучением.

Тем не менее, сегодня мировая наука знает 6 биологическом воздействии радиации больше, чем о действии любых других факторов физической и биологической природы в окружающей среде.

При изучении действия радиации на живой организм были определены следующие особенности:

· Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Существует так называемый период мнимого благополучия - инкубационный период проявления действия ионизирующего излучения. Продолжительность его сокращается при облучении в больших дозах.

· Действие от малых доз может суммироваться или накапливаться.

· Излучение действует не только на данный живой организм, но и на его потомство - это так называемый генетический эффект.

· Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови.

· Не каждый организм в целом одинаково воспринимает облучение.

· Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.


1. ПРЯМОЕ И КОСВЕННОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Радиоволны, световые волны, тепловая энергия солнца - все это разновидности излучений. Однако, излучение будет ионизирующим, если оно способно разрывать химические связи молекул, из которых состоят ткани живого организма, и, как следствие, вызывать биологические изменения. Действие ионизирующего излучения происходит на атомном или молекулярном уровне, независимо от того, подвергаемся ли мы внешнему облучению, или получаем радиоактивные вещества с пищей и водой, что нарушает баланс биологических процессов в организме и приводит к неблагоприятным последствиям. Биологические эффекты влияния" радиации на организм человека обусловлены взаимодействием энергии излучения с биологической тканью. Энергию непосредственно передаваемую атомам и молекулам биотканей называют прямым действием радиации. Некоторые клетки из-за неравномерности распределения энергии излучения будут значительно повреждены.

Одним из прямых эффектов является канцерогенез или развитие онкологических заболеваний. Раковая опухоль возникает, когда соматическая клетка выходит из под контроля организма и начинает активно делиться. Первопричиной этого являются нарушения в генетическом механизме, называемые мутациями. При делении раковая клетка производит только раковые клетки. Одним из наиболее чувствительных органов к воздействию радиации является щитовидная железа. Поэтому биоткань этого органа наиболее уязвима в плане развития рака. Не менее восприимчива к влиянию излучения кровь. Лейкоз или рак крови - один из распространенных эффектов прямого воздействия радиации. Заряженные частицы проникают в ткани организма, теряют свою энергию вследствие электрических взаимодействий с электронами атомов Электрическое взаимодействие сопровождает процесс ионизации (вырывание электрона из нейтрального атома)

Физико-химические изменения сопровождают возникновение в организме чрезвычайно опасных "свободных радикалов".

Кроме прямого ионизирующего облучения выделяют также косвенное или непрямое действие, связанное с радиолизом воды. При радиолизе возникают свободные радикалы - определенные атомы или группы атомов, обладающие высокой химической активностью. Основным признаком свободных радикалов являются избыточные или неспаренные электроны. Такие электроны легко смещаются со своих орбит и могут активно участвовать в химической реакции. Важно то, что весьма незначительные внешние изменения могут привести к значительным изменениям биохимических свойств клеток. К примеру, если обычная молекула кислорода захватит свободный электрон, то она превращается в высокоактивный свободный радикал - супероксид. Кроме того, имеются и такие активные соединения, как перекись водорода, гидрооксил и атомарный кислород. Большая часть свободных радикалов нейтральна, но некоторые из них могут иметь положительный или отрицательный заряд.

Если число свободных радикалов мало, то организм имеет возможность их контролировать. Если же их становится слишком много, то нарушается работа защитных систем, жизнедеятельность отдельных функций организма. Повреждения, вызванные свободными радикалами, быстро увеличиваются по принципу цепной реакции. Попадая в клетки, они нарушают баланс кальция и кодирование генетической информации. Такие явления могут привести к сбоям в синтезе белков, что является жизненно важной функцией всего организма, т.к. неполноценные белки нарушают работу иммунной системы. Основные фильтры иммунной системы - лимфатические узлы работают в перенапряженном режиме и не успевают их отделять. Таким образом, ослабляются защитные барьеры и в организме создаются благоприятные условия для размножения вирусов микробов и раковых клеток.

Свободные радикалы, вызывающие химические реакции, вовлекают в этот процесс многие молекулы, не затронутые излучением. Поэтому производимый излучением эффект обусловлен не только количеством поглощенной энергии, а и той формой, в которой эта энергия передается. Никакой другой вид энергии, поглощенный биообъектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение. Однако природа этого явления такова, что все процессы, в том числе и биологические, уравновешиваются. Химические изменения возникают в результате взаимодействия свободных радикалов друг с другом или со "здоровыми" молекулами Биохимические изменения происходят как в момент облучения, так и на протяжении многих лет, что приводит к гибели клеток.

Наш организм в противовес описанным выше процессам вырабатывает особые вещества, которые являются своего рода "чистильщиками".

Эти вещества (ферменты) в организме способны захватывать свободные электроны, не превращаясь при этом в свободные радикалы. В нормальном состоянии в организме поддерживается баланс между появлением свободных радикалов и ферментами. Ионизирующее излучение нарушает это равновесие, стимулирует процессы роста свободных радикалов и приводит к негативным последствиям. Активизировать процессы поглощения свободных радикалов можно, включив в рацион питания антиокислители, витамины А, Е, С или препараты, содержащие селен. Эти вещества обезвреживают свободные радикалы, поглощая их в больших количествах.

2. ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ОТДЕЛЬНЫЕ ОРГАНЫ И ОРГАНИЗМ В ЦЕЛОМ

В структуре организма можно выделить два класса систем: управляющую (нервная, эндокринная, иммунная) и жизнеобеспечивающую (дыхательная, сердечно-сосудистая, пищеварительная). Все основные обменные (метаболические) процессы и каталитические (ферментативные) реакции происходят на клеточном и молекулярном уровнях. Уровни организации организма функционируют в тесном взаимодействии и взаимовлиянии со стороны управляющих систем. Большинство естественных факторов воздействуют сначала на вышестоящие уровни, затем через определенные органы и ткани - на клеточно-молекулярные уровни. После этого начинается ответная фаза, сопровождающаяся коррективами на всех уровнях.

Взаимодействие радиации с организмом начинается с молекулярного уровня. Прямое воздействие ионизирующего излучения, поэтому является более специфичным. Повышение уровня окислителей характерно и для других воздействий. Известно, что различные симптомы (температура, головная боль и др.) встречаются при многих болезнях и причины их различны. Это затрудняет установление диагноза. Поэтому, если в результате вредного воздействия на организм радиации не возникает определенной болезни, установить причину более отдаленных последствий трудно, поскольку они теряют свою специфичность.

Радиочувствительность различных тканей организма зависит от биосинтетических процессов и связанной с ними ферментативной активностью. Поэтому наиболее высокой радиопора-жаемостью отличаются клетки костного мозга, лимфатических узлов, половые клетки. Кровеносная система и красный костный мозг наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах 0,5-1 Гр. Однако, они обладают способностью восстанавливаться и если не все клетки поражены, кровеносная система может восстановить свои функции. Репродуктивные органы, например, семенники, так же отличаются повышенной радиочувствительностью. Облучение свыше 2 Гр приводит к постоянной стерильности. Только через много лет они могут полноценно функционировать. Яичники менее чувствительны, по крайней мере, у взрослых женщин. Но однократная доза более 3 Гр все же приводит к их стерильности, хотя большие дозы при неоднократном облучении не сказываются на способности к деторождению.